1
|
Yu M, Yang H, Ye H, Lin S, Lu Y, Deng H, Xu L, Guo Y, Ho JS, Ye TT. Smartphone administered pulsed radio frequency energy therapy for expedited cutaneous wound healing. NPJ Digit Med 2025; 8:103. [PMID: 39955463 PMCID: PMC11830092 DOI: 10.1038/s41746-025-01462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 01/15/2025] [Indexed: 02/17/2025] Open
Abstract
Pulsed radio frequency energy (PRFE) therapy is a non-invasive, electromagnetic field-based treatment modality successfully used in clinical applications. However, conventional PRFE devices are often bulky, expensive, and require extended treatment durations, limiting patient adherence and efficacy. Here, we present a lightweight, cost-effective wearable PRFE system consisting of a flexible electronic bandage and a smartphone. The bandage, mainly composed of an NFC Frequency Doubler (NFD) and a Radiofrequency Energy Radiator (RER), is powered and administered by the smartphone to generate 27.12 MHz radio wave pulses, for simplified, smartphone-enabled PRFE therapy. Its ultra-flexible, battery-free design supports personalized wound care at a low-cost (
Collapse
Affiliation(s)
- Mengxia Yu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Hongjia Yang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
- School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Haoteng Ye
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Shuhuang Lin
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yujie Lu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Haoqiang Deng
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Lulu Xu
- The Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, UK
| | - Yongxin Guo
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China.
| | - John S Ho
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore.
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore.
| | - Terry Tao Ye
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China.
- Institute of Nanoscience and Applications, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
2
|
Liao F, Li Y, Zhang Z, Yu Q, Liu H. Pulsed electromagnetic fields modulate energy metabolism during wound healing process: an in vitro model study. BMC Complement Med Ther 2025; 25:50. [PMID: 39939866 PMCID: PMC11823022 DOI: 10.1186/s12906-025-04792-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 01/28/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Pulsed electromagnetic fields (PEMFs) therapy was extensively investigated to treat wound healing, which is a highly metabolically demanding process. However, the effect of PEMFs on energy metabolism in wound healing remains largely unexplored. Therefore, our study aims to demonstrate the role of PEMFs on energy metabolism in wound healing. METHODS Scratch-wound healing assay and cell viability assay were performed for the in vitro study of the effect of PEMFs on cell migration and viability. Seahorse assay was conducted for energy metabolism analysis while holo-tomographic microscopy for fine changes of L929 cells. Mitochondrial membrane potential assay and intracellular reactive oxygen species (ROS) and pH assay were performed for analyzing the changes of mitochondrial function. RESULTS PEMFs with specific parameter (4mT, 80 Hz) promoted cell migration and viability. Glycolysis stress and mitochondria stress test revealed that PEMFs-exposed L929 cells was highly glycolytic for energy generation. Besides, PEMFs enhanced intracellular acidification and maintained low level of intracellular ROS in L929 cells. Compared to control group, much more vesicles were generated and then transported to regions close to the nuclear in L929 cells treated with PEMFs. CONCLUSIONS Our major findings revealed for the first time that PEMFs induce metabolic reprogramming of fibroblast shifting from mitochondrial respiration to glycolysis, accompanied with an increase of vesicular transport, which is closely related to wound healing in vitro.
Collapse
Affiliation(s)
- Feng Liao
- Department of Orthopedics, Sichuan Provincial People's Hospital,School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, PR China
| | - Yamei Li
- Department of Rehabilitation Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, PR China
| | - Zhou Zhang
- Department of Rehabilitation Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, PR China
| | - Qian Yu
- Department of Rehabilitation Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, PR China.
| | - Huifang Liu
- Department of Rehabilitation Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, PR China.
| |
Collapse
|
3
|
Lewandoski LT, Grymuza de Souza V, Cannan Kiekiss G, Soares F, Buzanello MR, Bertolini GRF. Static magnetic field on wound healing in rodents: a systematic review and meta-analysis. Electromagn Biol Med 2025; 44:107-118. [PMID: 39760456 DOI: 10.1080/15368378.2024.2448186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/24/2024] [Indexed: 01/07/2025]
Abstract
OBJECTIVE The aim of this study was to systematically review the preclinical studies that have applied the static magnetic field to wound healing. METHODS The search strategy was performed in databases: PubMed, Embase, Scopus, Web of Science, LILACS, CINAHL and Cochrane Database, and in gray literature. The inclusion criteria were: Pre-clinical studies, either with a separate control/sham parallel-group or cross-over design in rodents that used magnets to treat skin injuries anywhere on the body. The risk of bias tool was the Systematic Review Center for Laboratory Animal Experimentation (SYRCLE). RESULTS Eight randomized clinical trials were included. Wound rate area DM experimental vs DM sham [MD = 2.19, 95% CI, (-0.61, 4.99), I2 25%, p = 0.13] and wound rate area - DM experimental vs non-DM control [MD = 3.33, 95% CI, (-1.86, 8.55), I2 63%, p = 0.21] were not statistically significant. A significant improvement in gross healing time in the experimental group DM compared to the DM sham [MD = -4.48, IC 95%, (-7.88, -1.07), I2 38%, p = 0.010]. The same way tensile strength - DM and non DM subgroup analysis showed improved tensile strength in both the non-diabetic and diabetic experiment groups [SMD = 1.36, 95% CI, (0.60, 2.12), I2 0%, p = 0.0005]. CONCLUSIONS Although not statistically significant, the static magnetic field had a positive effect on wound healing in rodents compared to the sham or control group. There was a significant improvement in the assessment of healing time and skin tensile strength.
Collapse
Affiliation(s)
| | - Vanessa Grymuza de Souza
- Graduate Program in Biosciences and Health, Centro de atenção e Pesquisa em anomalias Craniofaciais, Cascavel, Brazil
| | | | - Franciele Soares
- Departamento de Fisioterapia, Curso de Graduação em Fisioterapia, UNIOESTE, Cascavel, Brazil
| | | | | |
Collapse
|
4
|
Aisanjiang M, Dai W, Wu L, Yuan Y, Liu S, Liao G, Li L, Tong X, Zhang H, Chen Y, Liu J, Cheng J, Wang C, Lu Y. Ameliorating lung fibrosis and pulmonary function in diabetic mice: Therapeutic potential of mesenchymal stem cell. Biochem Biophys Res Commun 2024; 737:150495. [PMID: 39126861 DOI: 10.1016/j.bbrc.2024.150495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/27/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
This study aimed to investigate the potential of mesenchymal stem cells (MSCs) in alleviating diabetic lung injury by decreasing inflammation, fibrosis and recovering tissue macrophage homeostasis. To induce pulmonary injuries in an in vivo murine model, we utilized a streptozotocin (STZ), and high-fat diet (HFD) induced diabetic C57 mouse model. Subsequently, human umbilical cord-derived MSCs (hUC-MSCs) were administered through the tail vein on a weekly basis for a duration of 4 weeks. In addition, in vitro experiments involved co-culturing of isolated primary abdominal macrophages from diabetic mice and high glucose-stimulated MLE-12 cells with hUC-MSCs. The objective was to evaluate if hUC-MSCs co-culturing could effectively mitigate cell inflammation and fibrosis. Following hUC-MSCs injection, diabetic mice displayed enhanced pulmonary functional parameters, reduced pulmonary fibrosis, and diminished inflammation. Notably, the dynamic equilibrium of lung macrophages shifted from the M1 phenotype to the M2 phenotype, accompanied by a notable reduction in various indicators associated with inflammation and fibrosis. Results from cell co-culturing experiments further supported this trend, demonstrating a reduction in inflammatory and fibrotic indicators. In conclusion, our findings suggest that hUC-MSCs treatment holds promise in mitigating diabetic pulmonary injury by significantly reducing inflammation, fibrosis and maintain tissue macrophage homeostasis within the lungs. This study sheds light on the therapeutic potential of hUC-MSCs in managing diabetic complications affecting the pulmonary system.
Collapse
Affiliation(s)
- Maikeliya Aisanjiang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Wenshu Dai
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Luna Wu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yujia Yuan
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Shuyun Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Guangneng Liao
- Animal experimental center of West China hospital, Sichuan University, Chengdu, China
| | - Lan Li
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Tong
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Heteng Zhang
- Sichuan Neo-Life Stem Cell Biotech Inc., Chengdu, China
| | - Younan Chen
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jingping Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiu Cheng
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Chengshi Wang
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China.
| | - Yanrong Lu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Akbari M, Mobasheri H, Noorizadeh F, Daryabari SH, Dini L. Static magnetic field effects on the secondary structure and elasticity of collagen molecules; a possible biophysical approach to treat keratoconus. Biochem Biophys Res Commun 2024; 733:150726. [PMID: 39317114 DOI: 10.1016/j.bbrc.2024.150726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Type I collagen is among the major extracellular proteins that play a significant role in the maintenance of the cornea's structural integrity and is essential in cell adhesion, differentiation, growth, and integrity. Here, we investigated the effect of 300 mT Static Magnetic Field (300 mT SMF) on the structure and molecular properties of acid-solubilized collagens (ASC) isolated from the rat tail tendon. The SMF effects at molecular and atomic levels were investigated by various biophysical approaches like Circular Dichroism Spectropolarimetery (CD), Fourier Transform Infrared Spectroscopy (FTIR), Zetasizer light Scattering, and Rheological assay. Exposure of isolated type I collagen to 300 mT SMF retained its triple helix. The elasticity of collagen molecules and the keratoconus (KCN) cornea treated with SMF decreased significantly after 5 min and slightly after 10, 15, and 20 min of treatments. The exposure to 300 mT SMF shifted the Amid I bond random coil to antiparallel wave number from 1647 to 1631 cm-1. The pH of the 300 mT SMF treated collagen solution increased by about 25 %. The treatment of the KCN corneas with 300 mT SMF decreased their elasticity significantly. The promising results of the effects of 300 mT SMF on the collagen molecules and KCN cornea propose a novel biophysical approach capable of manipulating the collagen's elasticity, surface charges, electrostatic interactions, cross binding, network formation and fine structure. Therefore, SMF treatment may be considered as a novel non-invasive, direct, non-chemical and fast therapeutic and manipulative means to treat KCN cornea where the deviated physico-chemical status of collagen molecules cause deformation.
Collapse
Affiliation(s)
- Maryam Akbari
- Laboratory of Membrane Biophysics and Macromolecules, Institute of Biochemistry and Biophysics, University of Tehran, Iran.
| | - Hamid Mobasheri
- Laboratory of Membrane Biophysics and Macromolecules, Institute of Biochemistry and Biophysics, University of Tehran, Iran; Institute of Biomaterials of University of Tehran and Tehran University of Medical Sciences (IBUTUMS), Tehran, Iran.
| | | | - Seyed-Hashem Daryabari
- Basir Eye Health Research Center and Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Luciana Dini
- Department of Biology and Biotechnology C. Darwin, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
6
|
Wang Y, Feng C, Yu B, Wang J, Chen W, Song C, Ji X, Guo R, Cheng G, Chen H, Wang X, Zhang L, Li Z, Jiang J, Xie C, Du H, Zhang X. Enhanced Effects of Intermittent Fasting by Magnetic Fields in Severe Diabetes. RESEARCH (WASHINGTON, D.C.) 2024; 7:0468. [PMID: 39238846 PMCID: PMC11376831 DOI: 10.34133/research.0468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024]
Abstract
Intermittent fasting (IF) is a convenient dietary intervention for multiple diseases, including type 2 diabetes. However, whether it can be used as a long-term antidiabetic approach is still unknown. Here, we confirm that IF alone is beneficial for both moderate and severe diabetic mice, but its antidiabetic effects clearly diminish at later stages, especially for severe diabetic db/db mice, which have obviously impaired autophagy. We found that static magnetic fields can directly promote actin assembly and boost IF-induced autophagy. Consequently, the pancreatic islet and liver were improved, and the antidiabetic effects of IF were boosted. In fact, at later stages, combined static magnetic field and IF could reduce the blood glucose level of moderate type 2 diabetic mice by 40.5% (P < 0.001) and severe type 2 diabetes by 34.4% (P < 0.05), when IF alone no longer has significant blood glucose reduction effects. Therefore, although IF is generally beneficial for diabetes, our data reveal its insufficiency for late-stage diabetes, which can be compensated by a simple, noninvasive, long-lasting, and nonpharmacological strategy for effective long-term diabetic control.
Collapse
Affiliation(s)
- Ying Wang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui, China
| | - Chuanlin Feng
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui, China
| | - Biao Yu
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
| | - Junjun Wang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Weili Chen
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Chao Song
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Xinmiao Ji
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui, China
| | - Ruowen Guo
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui, China
| | - Guofeng Cheng
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui, China
| | - Hanxiao Chen
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui, China
| | - Xinyu Wang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Lei Zhang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Zhiyuan Li
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Jialiang Jiang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui, China
| | - Can Xie
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui, China
| | - Haifeng Du
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Xin Zhang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| |
Collapse
|
7
|
Wang M, Hong Y, Fu X, Sun X. Advances and applications of biomimetic biomaterials for endogenous skin regeneration. Bioact Mater 2024; 39:492-520. [PMID: 38883311 PMCID: PMC11179177 DOI: 10.1016/j.bioactmat.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 06/18/2024] Open
Abstract
Endogenous regeneration is becoming an increasingly important strategy for wound healing as it facilitates skin's own regenerative potential for self-healing, thereby avoiding the risks of immune rejection and exogenous infection. However, currently applied biomaterials for inducing endogenous skin regeneration are simplistic in their structure and function, lacking the ability to accurately mimic the intricate tissue structure and regulate the disordered microenvironment. Novel biomimetic biomaterials with precise structure, chemical composition, and biophysical properties offer a promising avenue for achieving perfect endogenous skin regeneration. Here, we outline the recent advances in biomimetic materials induced endogenous skin regeneration from the aspects of structural and functional mimicry, physiological process regulation, and biophysical property design. Furthermore, novel techniques including in situ reprograming, flexible electronic skin, artificial intelligence, single-cell sequencing, and spatial transcriptomics, which have potential to contribute to the development of biomimetic biomaterials are highlighted. Finally, the prospects and challenges of further research and application of biomimetic biomaterials are discussed. This review provides reference to address the clinical problems of rapid and high-quality skin regeneration.
Collapse
Affiliation(s)
- Mengyang Wang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100089, PR China
| | - Yiyue Hong
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100089, PR China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100089, PR China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, PR China
| | - Xiaoyan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100089, PR China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, PR China
| |
Collapse
|
8
|
Bedja-Iacona L, Scorretti R, Ducrot M, Vollaire C, Franqueville L. Pulsed electromagnetic fields used in regenerative medicine: An in vitro study of the skin wound healing proliferative phase. Bioelectromagnetics 2024; 45:293-309. [PMID: 38807301 DOI: 10.1002/bem.22508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/14/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024]
Abstract
Numerous studies have demonstrated the efficacy of extremely low frequency-pulsed electromagnetic fields (ELF-PEMF) in accelerating the wound healing process in vitro and in vivo. Our study focuses specifically on ELF-PEMF applied with the Magnomega® device and aims to assess their effect during the main stages of the proliferative phase of dermal wound closure, in vitro. Thus, after the characterization of the EMFs delivered by the Magnomega® unit, primary culture of human dermal fibroblasts (HDFs) were exposed, or not for the control culture, to 10-12 and 100 Hz ELF-PEMF. These parameters are used in clinical practice by physiotherapists in order to enhance healing of dermal lesions in patients. HDFs proliferation was first assessed and revealed an increase in the expression of one of the two genetic markers of cell proliferation tested (PCNA and MKI67), after initial exposure of the cells to 10-12 Hz PEMF. Next, migration of HDFs was investigated by performing scratch assays on HDF layers. The observed wound closure kinetics corroborate the early organization of actin stress fibers that was revealed in the cytoplasm of HDFs exposed to 100 Hz ELF-PEMF. Also, maturation of HDFs into myofibroblasts was significantly increased in cells exposed to 10-12 or to 100 Hz PEMF. The present study is the first to demonstrate, in vitro, an early stimulation of HDFs, after their exposure to ELF-PEMF delivered by the Magnomega® device, which could contribute to an acceleration of the wound healing process.
Collapse
Affiliation(s)
- Léa Bedja-Iacona
- Ecole Centrale de Lyon, INSA Lyon, Universite Claude Bernard Lyon 1, CNRS, Ampère, UMR5005, Ecully, France
| | - Riccardo Scorretti
- Ecole Centrale de Lyon, INSA Lyon, Universite Claude Bernard Lyon 1, CNRS, Ampère, UMR5005, Ecully, France
- Department of Engineering, University of Perugia, Perugia, Italy
| | - Marie Ducrot
- Ecole Centrale de Lyon, INSA Lyon, Universite Claude Bernard Lyon 1, CNRS, Ampère, UMR5005, Ecully, France
| | - Christian Vollaire
- Ecole Centrale de Lyon, INSA Lyon, Universite Claude Bernard Lyon 1, CNRS, Ampère, UMR5005, Ecully, France
| | - Laure Franqueville
- Ecole Centrale de Lyon, INSA Lyon, Universite Claude Bernard Lyon 1, CNRS, Ampère, UMR5005, Ecully, France
| |
Collapse
|
9
|
Tota M, Jonderko L, Witek J, Novickij V, Kulbacka J. Cellular and Molecular Effects of Magnetic Fields. Int J Mol Sci 2024; 25:8973. [PMID: 39201657 PMCID: PMC11354277 DOI: 10.3390/ijms25168973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Recently, magnetic fields (MFs) have received major attention due to their potential therapeutic applications and biological effects. This review provides a comprehensive analysis of the cellular and molecular impacts of MFs, with a focus on both in vitro and in vivo studies. We investigate the mechanisms by which MFs influence cell behavior, including modifications in gene expression, protein synthesis, and cellular signaling pathways. The interaction of MFs with cellular components such as ion channels, membranes, and the cytoskeleton is analyzed, along with their effects on cellular processes like proliferation, differentiation, and apoptosis. Molecular insights are offered into how MFs modulate oxidative stress and inflammatory responses, which are pivotal in various pathological conditions. Furthermore, we explore the therapeutic potential of MFs in regenerative medicine, cancer treatment, and neurodegenerative diseases. By synthesizing current findings, this article aims to elucidate the complex bioeffects of MFs, thereby facilitating their optimized application in medical and biotechnological fields.
Collapse
Affiliation(s)
- Maciej Tota
- Student Research Group № K148, Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Laura Jonderko
- Student Research Group № K148, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wroclaw, Poland; (L.J.); (J.W.)
| | - Julia Witek
- Student Research Group № K148, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wroclaw, Poland; (L.J.); (J.W.)
| | - Vitalij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, LT-03227 Vilnius, Lithuania;
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių 5, LT-08410 Vilnius, Lithuania
| | - Julita Kulbacka
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių 5, LT-08410 Vilnius, Lithuania
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wrocław, Poland
| |
Collapse
|
10
|
Yang C, Xu L, Liao F, Liao C, Zhao Y, Chen Y, Yu Q, Peng B, Liu H. Pulsed electromagnetic fields regulate metabolic reprogramming and mitochondrial fission in endothelial cells for angiogenesis. Sci Rep 2024; 14:19027. [PMID: 39152229 PMCID: PMC11329790 DOI: 10.1038/s41598-024-69862-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024] Open
Abstract
Pulsed electromagnetic field (PEMF) therapy has been extensively investigated in clinical studies for the treatment of angiogenesis-related diseases. However, there is a lack of research on the impact of PEMFs on energy metabolism and mitochondrial dynamics during angiogenesis. The present study included tube formation and CCK-8 assays. A Seahorse assay was conducted to analyze energy metabolism, and mitochondrial membrane potential assays, mitochondrial imaging, and reactive oxygen species assays were used to measure changes in mitochondrial structure and function in human umbilical vein endothelial cells (HUVECs) exposed to PEMFs. Real-time polymerase chain reaction was used to analyze the mRNA expression levels of antioxidants, glycolytic pathway-related genes, and genes associated with mitochondrial fission and fusion. The tube formation assay demonstrated a significantly greater tube network in the PEMF group compared to the control group. The glycolysis and mitochondrial stress tests revealed that PEMFs promoted a shift in the energy metabolism pattern of HUVECs from oxidative phosphorylation to aerobic glycolysis. Mitochondrial imaging revealed a wire-like mitochondrial morphology in the control group, and treatment with PEMFs led to shorter and more granular mitochondria. Our major findings indicate that exposure to PEMFs accelerates angiogenesis in HUVECs, likely by inducing energy metabolism reprogramming and mitochondrial fission.
Collapse
Affiliation(s)
- Chengyi Yang
- Department of Rehabilitation Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| | - Li Xu
- Department of Rehabilitation Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| | - Feng Liao
- Department of Orthopaedics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| | - Chunmei Liao
- Department of Rehabilitation Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| | - Yunying Zhao
- Department of Rehabilitation Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| | - Yijie Chen
- Department of Rehabilitation Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| | - Qian Yu
- Department of Rehabilitation Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| | - Bo Peng
- Department of Rehabilitation Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.
| | - Huifang Liu
- Department of Rehabilitation Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.
| |
Collapse
|
11
|
Ding H, Hao L, Mao H. Magneto-responsive biocomposites in wound healing: from characteristics to functions. J Mater Chem B 2024; 12:7463-7479. [PMID: 38990160 DOI: 10.1039/d4tb00743c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The number of patients with non-healing wounds continuously increases, and has become a prominent societal issue that imposes a heavy burden on both patients and the entire healthcare system. Although traditional dressings play an important role in wound healing, the complexity and diversity of the healing process pose serious challenges in this field. Magneto-responsive biocomposites, with their excellent biocompatibility, remote spatiotemporal controllability, and unique convenience, demonstrate enticing advantages in the field of wound dressings. However, current research on magneto-responsive biocomposites as wound dressings lacks comprehensive and in-depth reviews, which to some extent, restricts the deeper understanding and further development of this field. Based on this, this paper reviews the latest advances in magnetic responsive wound dressings for wound healing. First, we review the process of skin wound healing and parameters for assessing repair progress. Then, we systematically discuss the preparation strategies and unique characteristics of magneto-responsive biocomposites, focusing on magneto-induced orientation, magneto-induced mechanical stimulation, and magnetocaloric effect. Subsequently, this review elaborates the multiple mechanisms of magneto-responsive biocomposites in promoting wound healing, including regulating cell behavior, enhancing electrical signal, controlling drug release, and accelerating tissue reconstruction. Finally, we further propose the development direction and future challenges of magnetic responsive biomaterials as wound dressings in clinical application.
Collapse
Affiliation(s)
- Haoyang Ding
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Lili Hao
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Hongli Mao
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
12
|
Wang H, Zhao J, Ji S, Liu T, Cheng Z, Huang Z, Zang Y, Chen J, Zhang J, Ding Z. Metallofullerenol alleviates alcoholic liver damage via ROS clearance under static magnetic and electric fields. Free Radic Biol Med 2024; 220:236-248. [PMID: 38704052 DOI: 10.1016/j.freeradbiomed.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Alcoholic liver disease (ALD) is a common chronic redox disease caused by increased alcohol consumption. Abstinence is a major challenge for people with alcohol dependence, and approved drugs have limited efficacy. Therefore, this study aimed to explore a new treatment strategy for ALD using ferroferric oxide endohedral fullerenol (Fe3O4@C60(OH)n) in combination with static magnetic and electric fields (sBE). The primary hepatocytes of 8-9-week-old female BALB/c mice were used to evaluate the efficacy of the proposed combination treatment. A mouse chronic binge ethanol feeding model was established to determine the alleviatory effect of Fe3O4@C60(OH)n on liver injury under sBE exposure. Furthermore, the ability of Fe3O4@C60(OH)n to eliminate •OH was evaluated. Alcohol-induced hepatocyte and mitochondrial damage were reversed in vitro. Additionally, the combination therapy reduced liver damage, alleviated oxidative stress by improving antioxidant levels, and effectively inhibited liver lipid accumulation in animal experiments. Here, we used a combination of magnetic derivatives of fullerenol and sBE to further improve the ROS clearance rate, thereby alleviating ALD. The developed combination treatment may effectively improve alcohol-induced liver damage and maintain redox balance without apparent toxicity, thereby enhancing therapy aimed at ALD and other redox diseases.
Collapse
Affiliation(s)
- Haoyu Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Junqi Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Shiliang Ji
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Department of Pharmacy, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, 215153, China
| | - Tingjun Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Zhisheng Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Zhen Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yuhui Zang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jiangning Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Zhi Ding
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Engineering Research Center of Protein and Peptide Medicine, Ministry of Education, Nanjing, 210023, China; Changzhou High-Tech Research Institute of Nanjing University, Changzhou, 213164, China.
| |
Collapse
|
13
|
Zhang G, Yu T, Chai X, Zhang S, Liu J, Zhou Y, Yin D, Zhang C. Gradient Rotating Magnetic Fields Impairing F-Actin-Related Gene CCDC150 to Inhibit Triple-Negative Breast Cancer Metastasis by Inactivating TGF-β1/SMAD3 Signaling Pathway. RESEARCH (WASHINGTON, D.C.) 2024; 7:0320. [PMID: 38420580 PMCID: PMC10900498 DOI: 10.34133/research.0320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive and lethal malignancy in women, with a lack of effective targeted drugs and treatment techniques. Gradient rotating magnetic field (RMF) is a new technology used in oncology physiotherapy, showing promising clinical applications due to its satisfactory biosafety and the abundant mechanical force stimuli it provides. However, its antitumor effects and underlying molecular mechanisms are not yet clear. We designed two sets of gradient RMF devices for cell culture and animal handling. Gradient RMF exposure had a notable impact on the F-actin arrangement of MDA-MB-231, BT-549, and MDA-MB-468 cells, inhibiting cell migration and invasion. A potential cytoskeleton F-actin-associated gene, CCDC150, was found to be enriched in clinical TNBC tumors and cells. CCDC150 negatively correlated with the overall survival rate of TNBC patients. CCDC150 promoted TNBC migration and invasion via activation of the transforming growth factor β1 (TGF-β1)/SMAD3 signaling pathway in vitro and in vivo. CCDC150 was also identified as a magnetic field response gene, and it was marked down-regulated after gradient RMF exposure. CCDC150 silencing and gradient RMF exposure both suppressed TNBC tumor growth and liver metastasis. Therefore, gradient RMF exposure may be an effective TNBC treatment, and CCDC150 may emerge as a potential target for TNBC therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dachuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 710072 Xi’an, China
| | - Chenyan Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 710072 Xi’an, China
| |
Collapse
|
14
|
Moses JC, Adibi S, Wickramasinghe N, Nguyen L, Angelova M, Islam SMS. Non-invasive blood glucose monitoring technology in diabetes management: review. Mhealth 2023; 10:9. [PMID: 38323150 PMCID: PMC10839510 DOI: 10.21037/mhealth-23-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/07/2023] [Indexed: 02/08/2024] Open
Abstract
Diabetes is one of the leading non-communicable diseases globally, adversely impacting an individual's quality of life and adding a considerable burden to the healthcare systems. The necessity for frequent blood glucose (BG) monitoring and the inconveniences associated with self-monitoring of BG, such as pain and discomfort, has motivated the development of non-invasive BG approaches. However, the current research progress is slow, and only a few BG self-monitoring devices have made considerable progress. Hence, we evaluate the available non-invasive glucose monitoring technologies validated against BG recordings to provide future research direction to design, develop, and deploy self-monitoring of BG with integrated emerging technologies. We searched five databases, Embase, MEDLINE, Proquest, Scopus, and Web of Science, to assess the non-invasive technology's scope in the diabetes management paradigm published from 2000 to 2020. A total of three approaches to non-invasive screening, including saliva, skin, and breath, were identified and discussed. We observed a statistical relationship between BG measurements obtained from non-invasive methods and standard clinical measures. Opportunities exist for future research to advance research progress and facilitate early technology adoption for healthcare practice. The results promise clinical validity; however, formulating regulatory guidelines could foresee the deployment of approved non-invasive BG monitoring technologies in healthcare practice. Further, research prospects are there to design, develop, and deploy integrated diabetes management systems with mobile technologies, data analytics, and the internet of things (IoT) to deliver a personalised monitoring system.
Collapse
Affiliation(s)
- Jeban Chandir Moses
- School of Information Technology, Deakin University, Melbourne, VIC, Australia
| | - Sasan Adibi
- School of Information Technology, Deakin University, Melbourne, VIC, Australia
| | - Nilmini Wickramasinghe
- School of Computing, Engineering and Mathematical Sciences, La Trobe University, Melbourne, VIC, Australia
| | - Lemai Nguyen
- Department of Information Systems and Business Analytics, Deakin Business School, Deakin University, Melbourne, VIC, Australia
| | - Maia Angelova
- School of Information Technology, Deakin University, Melbourne, VIC, Australia
- Aston Digital Futures Institute, College of Physical Sciences and Engineering, Aston University, Birmingham, UK
| | | |
Collapse
|
15
|
Asci H, Savran M, Comlekci S, Sofu MM, Erzurumlu Y, Ozmen O, Kaynak M, Sahin ME, Taner R, Gecin M. Combined Pulsed Magnetic Field and Radiofrequency Electromagnetic Field Enhances MMP-9, Collagen-4, VEGF Synthesis to Improve Wound Healing Via Hif-1α/eNOS Pathway. Aesthetic Plast Surg 2023; 47:2841-2852. [PMID: 37369865 DOI: 10.1007/s00266-023-03450-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND The blood supply of the tissue is very important in the acceleration of wound healing. Radiofrequency electromagnetic field (RF) and the pulsed magnetic field (PMF) increase vasodilation to contribute wound healing. The aim of this study was to evaluate the effects of RF and PMF on wound healing via hypoxia-inducible factor-1 alpha (Hif-1α)/endothelial nitric oxide synthase (eNOS) pathway. METHODS Forty-eight rats were divided into 4 groups as sham (wound created only), PMF (27.12 MHz, 12 times a day at 30-min intervals), RF (0.5 mT, continuously) and PMF + RF groups. Wounds were created at 1.5 × 1.5 cm size to the dorsal region, and animals were put into unit. Six animals were killed on days 4 and 7; wound tissues were collected for histopathological, immunohistochemical as collagen-4, cytokeratin, matrix metalloproteinase-9 (MMP-9), vascular endothelial growth factor (VEGF) staining and Hif-1α/eNOS/VEGF expressions. RESULTS On day 4, in addition to increasing VEGF and MMP-9 stainings, connection between intact tissue and scar tissue which was stronger in the RF- and PMF-applied groups was observed. On day 7, epithelization started; inflammatory reaction decreased; collagen production, cytokeratin, VEGF and MMP-9 expression enhanced, especially in the RF + PMF applied group. eNOS, Hif-1α and VEGF expression levels were found to be significantly highest in both days of RF + PMF-applied group. CONCLUSIONS This study revealed that both in vitro RF and PMF applications can cause notable changes in factors that are required for tissue repair on wound healing such as epithelization, connective tissue formation, collagen production and angiogenesis via vasodilatory Hif-1α/eNOS pathway and VEGF signaling. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Halil Asci
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.
- Department of Bioengineering, Institute of Science, Suleyman Demirel University, Isparta, Turkey.
| | - Mehtap Savran
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
- Department of Bioengineering, Institute of Science, Suleyman Demirel University, Isparta, Turkey
| | - Selcuk Comlekci
- Department of Bioengineering, Institute of Science, Suleyman Demirel University, Isparta, Turkey
- Department of Electronics and Communication Engineering, Faculty of Engineering, Suleyman Demirel University, Isparta, Turkey
| | - Mehmet M Sofu
- Department of Bioengineering, Institute of Science, Suleyman Demirel University, Isparta, Turkey
| | - Yalcin Erzurumlu
- Department of Bioengineering, Institute of Science, Suleyman Demirel University, Isparta, Turkey
- Department of Biochemistry, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey
| | - Ozlem Ozmen
- Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Mine Kaynak
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Mehmet E Sahin
- Department of Biomedical Device Technology, Technical Sciences Vocational High School, Isparta University of Applied Sciences, Isparta, Turkey
| | - Rumeysa Taner
- Department of Bioengineering, Institute of Science, Suleyman Demirel University, Isparta, Turkey
| | - Mustafa Gecin
- Department of Electronics and Communication Engineering, Faculty of Engineering, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
16
|
Tian H, Zhu H, Gao C, Shi M, Yang D, Jin M, Wang F, Sui X. System-level biological effects of extremely low-frequency electromagnetic fields: an in vivo experimental review. Front Neurosci 2023; 17:1247021. [PMID: 37869515 PMCID: PMC10590107 DOI: 10.3389/fnins.2023.1247021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023] Open
Abstract
During the past decades, the potential effects of extremely low-frequency electromagnetic fields (ELF-EMFs) on human health have gained great interest all around the world. Though the International Commission on Non-Ionizing Radiation Protection recommended a 100 μT, and then a 200 μT magnetic field limit, the long-term effects of ELF-EMFs on organisms and systems need to be further investigated. It was reported that both electrotherapy and possible effects on human health could be induced under ELF-EM radiation with varied EM frequencies and fields. This present article intends to systematically review the in vivo experimental outcome and the corresponding mechanisms to shed some light on the safety considerations of ELF-EMFs. This will further advance the subsequent application of electrotherapy in human health.
Collapse
Affiliation(s)
- Haoyang Tian
- Electric Power Research Institute, State Grid Shanghai Municipal Electric Power Company, Shanghai, China
| | - Haozheng Zhu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chenhao Gao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Mingxia Shi
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Dekun Yang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Mingyu Jin
- State Grid Shanghai Municipal Electric Power Company, Shanghai, China
| | - Fenghua Wang
- Department of Electrical Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohong Sui
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Tatarusanu SM, Lupascu FG, Profire BS, Szilagyi A, Gardikiotis I, Iacob AT, Caluian I, Herciu L, Giscă TC, Baican MC, Crivoi F, Profire L. Modern Approaches in Wounds Management. Polymers (Basel) 2023; 15:3648. [PMID: 37688274 PMCID: PMC10489962 DOI: 10.3390/polym15173648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Wound management represents a well-known continuous challenge and concern of the global healthcare systems worldwide. The challenge is on the one hand related to the accurate diagnosis, and on the other hand to establishing an effective treatment plan and choosing appropriate wound care products in order to maximize the healing outcome and minimize the financial cost. The market of wound dressings is a dynamic field which grows and evolves continuously as a result of extensive research on developing versatile formulations with innovative properties. Hydrogels are one of the most attractive wound care products which, in many aspects, are considered ideal for wound treatment and are widely exploited for extension of their advantages in healing process. Smart hydrogels (SHs) offer the opportunities of the modulation physico-chemical properties of hydrogels in response to external stimuli (light, pressure, pH variations, magnetic/electric field, etc.) in order to achieve innovative behavior of their three-dimensional matrix (gel-sol transitions, self-healing and self-adapting abilities, controlled release of drugs). The SHs response to different triggers depends on their composition, cross-linking method, and manufacturing process approach. Both native or functionalized natural and synthetic polymers may be used to develop stimuli-responsive matrices, while the mandatory characteristics of hydrogels (biocompatibility, water permeability, bioadhesion) are preserved. In this review, we briefly present the physiopathology and healing mechanisms of chronic wounds, as well as current therapeutic approaches. The rational of using traditional hydrogels and SHs in wound healing, as well as the current research directions for developing SHs with innovative features, are addressed and discussed along with their limitations and perspectives in industrial-scale manufacturing.
Collapse
Affiliation(s)
- Simona-Maria Tatarusanu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (S.-M.T.); (F.-G.L.); (A.-T.I.); (I.C.); (L.H.)
- Research & Development Department, Antibiotice Company, 1 Valea Lupului Street, 707410 Iasi, Romania
| | - Florentina-Geanina Lupascu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (S.-M.T.); (F.-G.L.); (A.-T.I.); (I.C.); (L.H.)
| | - Bianca-Stefania Profire
- Department of Internal Medicine, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 University Street, 700115 Iasi, Romania;
| | - Andrei Szilagyi
- Advanced Research and Development Center for Experimental Medicine (CEMEX), University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 University Street, 700115 Iasi, Romania; (A.S.); (I.G.)
| | - Ioannis Gardikiotis
- Advanced Research and Development Center for Experimental Medicine (CEMEX), University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 University Street, 700115 Iasi, Romania; (A.S.); (I.G.)
| | - Andreea-Teodora Iacob
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (S.-M.T.); (F.-G.L.); (A.-T.I.); (I.C.); (L.H.)
| | - Iulian Caluian
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (S.-M.T.); (F.-G.L.); (A.-T.I.); (I.C.); (L.H.)
| | - Lorena Herciu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (S.-M.T.); (F.-G.L.); (A.-T.I.); (I.C.); (L.H.)
| | - Tudor-Catalin Giscă
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 University Street 700115 Iasi, Romania;
| | - Mihaela-Cristina Baican
- Department of Pharmaceutical Physics, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 University Street, 700115 Iasi, Romania;
| | - Florina Crivoi
- Department of Pharmaceutical Physics, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 University Street, 700115 Iasi, Romania;
| | - Lenuta Profire
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (S.-M.T.); (F.-G.L.); (A.-T.I.); (I.C.); (L.H.)
| |
Collapse
|
18
|
Lyu S, Dong Z, Xu X, Bei HP, Yuen HY, James Cheung CW, Wong MS, He Y, Zhao X. Going below and beyond the surface: Microneedle structure, materials, drugs, fabrication, and applications for wound healing and tissue regeneration. Bioact Mater 2023; 27:303-326. [PMID: 37122902 PMCID: PMC10140753 DOI: 10.1016/j.bioactmat.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/11/2023] [Accepted: 04/02/2023] [Indexed: 05/02/2023] Open
Abstract
Microneedle, as a novel drug delivery system, has attracted widespread attention due to its non-invasiveness, painless and simple administration, controllable drug delivery, and diverse cargo loading capacity. Although microneedles are initially designed to penetrate stratum corneum of skin for transdermal drug delivery, they, recently, have been used to promote wound healing and regeneration of diverse tissues and organs and the results are promising. Despite there are reviews about microneedles, few of them focus on wound healing and tissue regeneration. Here, we review the recent advances of microneedles in this field. We first give an overview of microneedle system in terms of its potential cargos (e.g., small molecules, macromolecules, nucleic acids, nanoparticles, extracellular vesicle, cells), structural designs (e.g., multidrug structures, adhesive structures), material selection, and drug release mechanisms. Then we briefly summarize different microneedle fabrication methods, including their advantages and limitations. We finally summarize the recent progress of microneedle-assisted wound healing and tissue regeneration (e.g., skin, cardiac, bone, tendon, ocular, vascular, oral, hair, spinal cord, and uterine tissues). We expect that our article would serve as a guideline for readers to design their microneedle systems according to different applications, including material selection, drug selection, and structure design, for achieving better healing and regeneration efficacy.
Collapse
Affiliation(s)
- Shang Lyu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, PR China
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, PR China
| | - Zhifei Dong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, PR China
- Faculty of Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Xiaoxiao Xu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, PR China
- Faculty of Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Ho-Pan Bei
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, PR China
| | - Ho-Yin Yuen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, PR China
| | - Chung-Wai James Cheung
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, PR China
| | - Man-Sang Wong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, PR China
- Corresponding author.
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, PR China
- Corresponding author.
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, PR China
- Corresponding author.
| |
Collapse
|
19
|
Raj R, Firoz Khan M, Shariq M, Ahsan N, Singh R, Kumar Basoya P. Point-of-care optical devices in clinical imaging and screening: A review on the state of the art. JOURNAL OF BIOPHOTONICS 2023; 16:e202200386. [PMID: 36906735 DOI: 10.1002/jbio.202200386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/07/2023] [Accepted: 03/09/2023] [Indexed: 06/07/2023]
Abstract
Integration of optical technologies in biomedical sciences permitted light manipulation at smaller time-length scales for specific detection and imaging of biological entities. Similarly, advances in consumer electronics and wireless telecommunications strengthened the development of affordable and portable point-of-care (POC) optical devices, circumventing the necessity of conventional clinical analyses by trained personnel. However, many of the POC optical technologies translated from bench to bedside require industrial support for their commercialization and dissemination to the population. This review aims to demonstrate the intriguing progress and challenges of emerging POC devices utilizing optics for clinical imaging (depth-resolved and perfusion imaging) and screening (infections, cancer, cardiac health, and haematologic disorders) with a focus on research studies over the previous 3 years. Special attention is given to POC optical devices that can be utilized in resource-constrained environments.
Collapse
Affiliation(s)
- Reshmi Raj
- Division of Quantum Biophotonics, QuantLase Laboratory, Abu Dhabi, United Arab Emirates
| | - Mohammad Firoz Khan
- Division of Quantum Biophotonics, QuantLase Laboratory, Abu Dhabi, United Arab Emirates
| | - Mohd Shariq
- Division of Quantum Biophotonics, QuantLase Laboratory, Abu Dhabi, United Arab Emirates
| | - Nuzhat Ahsan
- Division of Quantum Biophotonics, QuantLase Laboratory, Abu Dhabi, United Arab Emirates
| | - Rinky Singh
- Division of Quantum Biophotonics, QuantLase Laboratory, Abu Dhabi, United Arab Emirates
| | - Pramod Kumar Basoya
- Division of Quantum Biophotonics, QuantLase Laboratory, Abu Dhabi, United Arab Emirates
| |
Collapse
|
20
|
Zhang G, Liu X, Liu Y, Zhang S, Yu T, Chai X, He J, Yin D, Zhang C. The effect of magnetic fields on tumor occurrence and progression: Recent advances. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 179:38-50. [PMID: 37019340 DOI: 10.1016/j.pbiomolbio.2023.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/14/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023]
Abstract
Malignancies are the leading human health threat worldwide. Despite rapidly developing treatments, poor prognosis and outcome are still common. Magnetic fields have shown good anti-tumoral effects both in vitro and in vivo, and represent a potential non-invasive treatment; however, the specific underlying molecular mechanisms remain unclear. We here review recent studies on magnetic fields and their effect on tumors at three different levels: organismal, cellular, and molecular. At the organismal level, magnetic fields suppress tumor angiogenesis, microcirculation, and enhance the immune response. At the cellular level, magnetic fields affect tumor cell growth and biological functions by affecting cell morphology, cell membrane structure, cell cycle, and mitochondrial function. At the molecular level, magnetic fields suppress tumors by interfering with DNA synthesis, reactive oxygen species level, second messenger molecule delivery, and orientation of epidermal growth factor receptors. At present, scientific experimental evidence is still lacking; therefore, systematic studies on the biological mechanisms involved are urgently needed for the future application of magnetic fields to tumor treatment.
Collapse
|
21
|
Li H, Li B, Lv D, Li W, Lu Y, Luo G. Biomaterials releasing drug responsively to promote wound healing via regulation of pathological microenvironment. Adv Drug Deliv Rev 2023; 196:114778. [PMID: 36931347 DOI: 10.1016/j.addr.2023.114778] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/06/2022] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Wound healing is characterized by complex, orchestrated, spatiotemporal dynamic processes. Recent findings demonstrated suitable local microenvironments were necessities for wound healing. Wound microenvironments include various biological, biochemical and physical factors, which are produced and regulated by endogenous biomediators, exogenous drugs, and external environment. Successful drug delivery to wound is complicated, and need to overcome the destroyed blood supply, persistent inflammation and enzymes, spatiotemporal requirements of special supplements, and easy deactivation of drugs. Triggered by various factors from wound microenvironment itself or external elements, stimuli-responsive biomaterials have tremendous advantages of precise drug delivery and release. Here, we discuss recent advances of stimuli-responsive biomaterials to regulate local microenvironments during wound healing, emphasizing on the design and application of different biomaterials which respond to wound biological/biochemical microenvironments (ROS, pH, enzymes, glucose and glutathione), physical microenvironments (mechanical force, temperature, light, ultrasound, magnetic and electric field), and the combination modes. Moreover, several novel promising drug carriers (microbiota, metal-organic frameworks and microneedles) are also discussed.
Collapse
Affiliation(s)
- Haisheng Li
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Buying Li
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dalun Lv
- Department of Burn and Plastic Surgery, First Affiliated Hospital of Wannan Medical College, Wuhu City, China; Beijing Jayyalife Biological Technology Company, Beijing, China
| | - Wenhong Li
- Beijing Jayyalife Biological Technology Company, Beijing, China
| | - Yifei Lu
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Gaoxing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
22
|
Nazari-Vanani R, Vafaiee M, Asadian E, Mohammadpour R, Rafii-Tabar H, Sasanpour P. Enhanced proliferation and migration of fibroblast cells by skin-attachable and self-cleaning triboelectric nanogenerator. BIOMATERIALS ADVANCES 2023; 149:213364. [PMID: 36996572 DOI: 10.1016/j.bioadv.2023.213364] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/07/2023] [Accepted: 02/26/2023] [Indexed: 03/09/2023]
Abstract
Skin wounds are common in accidental injuries, surgical operations, and chronic diseases. The migration and proliferation of fibroblast cells are fundamental to wound healing, which can be promoted by electrical stimulation as a physical therapy modality. Therefore, the development of portable electrical stimulation devices that can be used by patients on-site is an essential need. In the present study, a self-cleaning triboelectric nanogenerator (TENG) has been fabricated for enhancing cell proliferation and migration. The polycaprolactone‑titanium dioxide (PCL/TiO2) and polydimethylsiloxane (PDMS) layers were fabricated via a facile method and used as the electropositive and electronegative pair, respectively. The effect of stimulation time on proliferation and migration of fibroblast cells was investigated. The results demonstrated that when the cells were stimulated once-a-day for 40 min, the cell viability was increased, while a long daily stimulation time has an inhibitory effect. Under electrical stimulation, the cells move toward the middle of the scratch, making the scratch almost invisible. During repeated movements, the prepared TENG connected to a rat skin generated an open-circuit voltage and a short-circuit current around 4 V and 0.2 μA, respectively. The proposed self-powered device can pave the way for a promising therapeutic strategy for patients with chronic wounds.
Collapse
Affiliation(s)
- Razieh Nazari-Vanani
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohaddeseh Vafaiee
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran
| | - Elham Asadian
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Raheleh Mohammadpour
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran.
| | - Hashem Rafii-Tabar
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; The Physics Branch of the Iran Academy of Sciences, Tehran, Iran
| | - Pezhman Sasanpour
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Nanoscience, Institute for Research in Fundamental Sciences (IPM), P. O. Box 19395-5531, Tehran, Iran.
| |
Collapse
|
23
|
Playing with Biophysics: How a Symphony of Different Electromagnetic Fields Acts to Reduce the Inflammation in Diabetic Derived Cells. Int J Mol Sci 2023; 24:ijms24021754. [PMID: 36675268 PMCID: PMC9861282 DOI: 10.3390/ijms24021754] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/02/2022] [Accepted: 12/22/2022] [Indexed: 01/18/2023] Open
Abstract
Several factors, such as ischemia, infection and skin injury impair the wound healing process. One common pathway in all these processes is related to the reactive oxygen species (ROS), whose production plays a vital role in wound healing. In this view, several strategies have been developed to stimulate the activation of the antioxidative system, thereby reducing the damage related to oxidative stress and improving wound healing. For this purpose, complex magnetic fields (CMFs) are used in this work on fibroblast and monocyte cultures derived from diabetic patients in order to evaluate their influence on the ROS production and related wound healing properties. Biocompatibility, cytotoxicity, mitochondrial ROS production and gene expression have been evaluated. The results confirm the complete biocompatibility of the treatment and the lack of side effects on cell physiology following the ISO standard indication. Moreover, the results confirm that the CMF treatment induced a reduction in the ROS production, an increase in the macrophage M2 anti-inflammatory phenotype through the activation of miRNA 5591, a reduction in inflammatory cytokines, such as interleukin-1 (IL-1) and IL-6, an increase in anti-inflammatory ones, such as IL-10 and IL-12 and an increase in the markers related to improved wound healing such as collagen type I and integrins. In conclusion, our findings encourage the use of CMFs for the treatment of diabetic foot.
Collapse
|
24
|
Lv H, Yang J, Xue Y. Impacts of Static Magnetic Field on Bone Health. BIOLOGICAL EFFECTS OF STATIC MAGNETIC FIELDS 2023:321-336. [DOI: 10.1007/978-981-19-8869-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
25
|
Differential biological responses of adherent and non-adherent (cancer and non-cancerous) cells to variable extremely low frequency magnetic fields. Sci Rep 2022; 12:14225. [PMID: 35987807 PMCID: PMC9392794 DOI: 10.1038/s41598-022-18210-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 08/08/2022] [Indexed: 11/08/2022] Open
Abstract
Extremely low-frequency electromagnetic field (ELF-EMF) induces biological effects on different cells through various signaling pathways. To study the impact of the ELF-EMF on living cells under an optimal physiological condition, we have designed and constructed a novel system that eliminates several limitations of other ELF-EMF systems. Apoptosis and cell number were assessed by flow cytometry and the Trypan Blue dye exclusion method, respectively. In vitro cell survival was evaluated by colony formation assay. The distribution of cells in the cell cycle, intracellular ROS level, and autophagy were analyzed by flow cytometer. Suspended cells differentiation was assessed by phagocytosis of latex particles and NBT reduction assay. Our results showed that response to the exposure to ELF-EMF is specific and depends on the biological state of the cell. For DU145, HUVEC, and K562 cell lines the optimum results were obtained at the frequency of 0.01 Hz, while for MDA-MB-231, the optimum response was obtained at 1 Hz. Long-term exposure to ELF-EMF in adherent cells effectively inhibited proliferation by arresting the cell population at the cell cycle G2/M phase and increased intracellular ROS level, leading to morphological changes and cell death. The K562 cells exposed to the ELF-EMF differentiate via induction of autophagy and decreasing the cell number. Our novel ELF-EMF instrument could change morphological and cell behaviors, including proliferation, differentiation, and cell death.
Collapse
|
26
|
Gholipour Hamedani B, Goliaei B, Shariatpanahi SP, Nezamtaheri M. An overview of the biological effects of extremely low frequency electromagnetic fields combined with ionizing radiation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 172:50-59. [PMID: 35513112 DOI: 10.1016/j.pbiomolbio.2022.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 04/09/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
By growing the electrical power networks and electronic devices, electromagnetic fields (EMF) have become an inseparable part of the modern world. Considering the inevitable exposure to a various range of EMFs, especially at extremely low frequencies (ELF-EMF), investigating the biological effects of ELF-EMFs on biological systems became a global issue. The possible adverse consequences of these exposures were studied, along with their potential therapeutic capabilities. Also, their biological impacts in combination with other chemical and physical agents, specifically ionizing radiation (IR), as a co-carcinogen or as adjuvant therapy in combination with radiotherapy were explored. Here, we review the results of several in-vitro and in-vivo studies and discuss some proposed possible mechanisms of ELF-EMFs' actions in combination with IR. The results of these experiments could be fruitful to develop more precise safety standards for environmental ELF-EMFs exposures. Furthermore, it could evaluate the therapeutic capacities of ELF-EMFs alone or as an improver of radiotherapy.
Collapse
Affiliation(s)
- Bahareh Gholipour Hamedani
- Laboratory of Biophysics and Molecular Biology, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Bahram Goliaei
- Laboratory of Biophysics and Molecular Biology, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| | - Seyed Peyman Shariatpanahi
- Laboratory of Biophysics and Molecular Biology, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Maryamsadat Nezamtaheri
- Laboratory of Biophysics and Molecular Biology, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| |
Collapse
|
27
|
Tang LS, Fan ZX, Tian XF, He SM, Ji C, Chen AQ, Ren DL. The influences and regulatory mechanisms of magnetic fields on circadian rhythms. Chronobiol Int 2022; 39:1307-1319. [PMID: 35880245 DOI: 10.1080/07420528.2022.2105231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A variety of devices used in daily life and biomedical field will generate magnetic fields with different parameters, raising concern about their influences on people's physiological functions. Multiple experimental works have been devoted to the influences of magnetic fields on circadian rhythms, yet the findings were not always consistent due to the differences in magnetic field parameters and experimental organisms. Also, clear regulatory mechanisms have not been found. By systematizing the major achievements in research on magnetic and circadian rhythms based on magnetic flux density and analyzing the potential mechanisms of the magnetic fields affecting circadian rhythms, this review sheds light on the effects of magnetic fields on circadian rhythms and the potential applications in biomedicine.
Collapse
Affiliation(s)
- Long-Sheng Tang
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,School of Statistics and Applied Mathematics, Anhui University of Finance & Economics, Bengbu, China
| | - Zi-Xuan Fan
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiao-Fei Tian
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Shi-Min He
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Cheng Ji
- School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - An-Qi Chen
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Da-Long Ren
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
28
|
Mayrovitz HN, Maqsood R, Tawakalzada AS. Do Magnetic Fields Have a Place in Treating Vascular Complications in Diabetes? Cureus 2022; 14:e24883. [PMID: 35698680 PMCID: PMC9184174 DOI: 10.7759/cureus.24883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022] Open
Abstract
The use of electromagnetic field therapy (EMFT) is a non-invasive, potential alternative or complementary choice in the treatment of wounds, chronic pain, neuropathy, and other medical conditions, including tissue repair and cell proliferation. Static magnetic fields (SMFs) have been reported to increase microcirculatory blood flow by mediating vasodilation via nitric oxide. Studies report that SMF exposure causes homeostatic, normalizing effects on the vascular tone that may have beneficial effects in situations where tissue perfusion is limited, such as may be present in diabetes. Pulsed electromagnetic fields (PEMFs) have also shown promise in treating diabetic wounds by improving wound healing rates and other attributes. Our purpose was to critically review prior applications of EMFT for relevancy and effectiveness in treating diabetic complications. The goal was to provide information to allow for informed decisions on the possible use of these modalities in the treatment of persons with diabetic complications. The focus was on the following major areas: wound healing, neuropathy, blood glucose control, blood flow, inflammation and oxidative stress.
Collapse
Affiliation(s)
- Harvey N Mayrovitz
- Medical Education, Nova Southeastern University Dr. Kiran C. Patel College of Allopathic Medicine, Davie, USA
| | - Raneem Maqsood
- Medical School, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Aneil S Tawakalzada
- College of Osteopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| |
Collapse
|
29
|
Ilić AŽ, de Luka SR, Popović TB, Debeljak-Martačić J, Kojadinović M, Ćirković S, Ristić-Djurović JL, Trbovich AM. Distinct fatty acid redistribution and textural changes in the brain tissue upon the static magnetic field exposure. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103853. [PMID: 35318121 DOI: 10.1016/j.etap.2022.103853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/24/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
We observed different outcomes upon the subacute exposure to the 128 mT highly homogeneous static magnetic field (SMF) when its orientation was (i) aligned with the vertical component of the geomagnetic field; (ii) in the opposite direction. We employed the fatty acids (FA) composition and digital image analyses (DIA) to provide insights into the underlying processes and examine the possible weak SMF effects. Swiss-Webster male mice were whole-body exposed for 1 h/day over five days. Brain tissue's thin liquid chromatography resulted in brain FA composition, indicating a possible sequence of changes due to the SMF exposure. Quantitative DIA accurately assessed different image parameters. Delicate textural changes were revealed in the group where pathohistological or biochemical alterations have not been detected. DIA-based biological markers seem to be very promising for studying delicate tissue changes, which results from the high sensitivity and wide availability of DIA.
Collapse
Affiliation(s)
- Andjelija Ž Ilić
- Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, Zemun, Belgrade, Serbia
| | - Silvio R de Luka
- Department of Pathological Physiology, Faculty of Medicine, University of Belgrade, Dr. Subotića 9, 11000 Belgrade, Serbia
| | - Tamara B Popović
- Institute for Medical Research, University of Belgrade, Centre of Excellence in Nutrition and Metabolism, Tadeuša Košćuška 1, Belgrade 11000, Serbia
| | - Jasmina Debeljak-Martačić
- Institute for Medical Research, University of Belgrade, Centre of Excellence in Nutrition and Metabolism, Tadeuša Košćuška 1, Belgrade 11000, Serbia
| | - Milica Kojadinović
- Institute for Medical Research, University of Belgrade, Centre of Excellence in Nutrition and Metabolism, Tadeuša Košćuška 1, Belgrade 11000, Serbia
| | - Saša Ćirković
- Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, Zemun, Belgrade, Serbia
| | - Jasna L Ristić-Djurović
- Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, Zemun, Belgrade, Serbia
| | - Alexander M Trbovich
- Department of Pathological Physiology, Faculty of Medicine, University of Belgrade, Dr. Subotića 9, 11000 Belgrade, Serbia.
| |
Collapse
|
30
|
Abstract
Chronic skin wounds are commonly found in older individuals who have impaired circulation due to diabetes or are immobilized due to physical disability. Chronic wounds pose a severe burden to the health-care system and are likely to become increasingly prevalent in aging populations. Various treatment approaches exist to help the healing process, although the healed tissue does not generally recapitulate intact skin but rather forms a scar that has inferior mechanical properties and that lacks appendages such as hair or sweat glands. This article describes new experimental avenues for attempting to improve the regenerative response of skin using biophysical techniques as well as biochemical methods, in some cases by trying to harness the potential of stem cells, either endogenous to the host or provided exogenously, to regenerate the skin. These approaches primarily address the local wound environment and should likely be combined with other modalities to address regional and systemic disease, as well as social determinants of health. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 24 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- François Berthiaume
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA;
| | - Henry C Hsia
- Department of Surgery, Yale University School of Medicine, and Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
31
|
Static Magnetic Fields Reduce Oxidative Stress to Improve Wound Healing and Alleviate Diabetic Complications. Cells 2022; 11:cells11030443. [PMID: 35159252 PMCID: PMC8834397 DOI: 10.3390/cells11030443] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 12/24/2022] Open
Abstract
Although some studies have shown that some static magnetic fields (SMFs) can promote wound healing in diabetic mice, it is not clear whether the other diabetes complications, such as liver disease and diabetic nephropathy, can also be alleviated. Here, we constructed two simple magnetic plates using neodymium permanent magnets to examine the comprehensive effects of moderate SMFs on genetically obese leptin receptor-deficient db/db diabetic mice. We found that although the blood glucose was not obviously reduced by these two SMF settings, both of the glycated serum protein (GSP) and malondialdehyde (MDA) levels were significantly decreased (Cohen’s d = 2.57–3.04). Moreover, the wound healing, liver lipid accumulation, and renal defects were all significantly improved by SMF treatment (Cohen’s d = 0.91–2.05). Wound tissue examination showed obvious nuclear factor erythroid 2-related factor 2 (NRF2) level decrease (Cohen’s d = 2.49–5.40) and Ki-67 level increase (Cohen’s d = 2.30–3.40), indicating decreased oxidative stress and increased cell proliferation. In vitro cellular studies with fibroblast NIH3T3 cells showed that SMFs could reduce high glucose-induced NRF2 nucleus translocation (Cohen’s d = 0.87–1.15) and cellular reactive oxygen species (ROS) elevation (Cohen’s d = 0.92), indicating decreased oxidative stress. Consequently, high glucose-induced impairments in cell vitality, proliferation, and migration were all improved by SMF treatment. Therefore, our results demonstrate that these simple SMF devices could effectively reduce oxidative stress in diabetic mice and may provide a cost-effective physical therapy strategy to alleviate multiple diabetic complications in the future.
Collapse
|
32
|
High-Intensity, Low-Frequency Pulsed Electromagnetic Field as an Odd Treatment in a Patient with Mixed Foot Ulcer: A Case Report. REPORTS 2022. [DOI: 10.3390/reports5010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lower-extremity ulcers are associated with an increasing prevalence and significant economic and social costs. To date, there is no high-quality evidence related to an optimal treatment algorithm. A multimodal approach is needed particularly in patients with comorbidity and polytherapy. Herein, we report the case of a 94-year-old Caucasian female with comorbidity and polytherapy who was admitted to our observation for a history (1 year) of chronic painful malleolar mixed ulcer. After clinical evaluation, she was treated with a twice daily pain relief therapy and with a weekly diamagnetic therapy protocol plus a local treatment. During the clinical examination, we documented a statistically significant improvement in both pain (VAS score from 8 to 2 p < 0.01) and foot ulcer (surface reduction from 6 cm × 4 cm to 2 cm × 2 cm, p < 0.01) at the sixth week of combined treatment. The ulcer completely healed at the ninth week. This is the first study to document the effect of diamagnetic therapy as an add-on therapy in the management of wound healing. In conclusion, even if high-quality evidence is still lacking, diamagnetic therapy might represent an interesting option as an add-on treatment for ulcer.
Collapse
|
33
|
Wang P, Lv C, Zhou X, Wu Z, Wang Z, Wang Y, Wang L, Zhu Y, Guo M, Zhang P. Tannin-Bridged Magnetic Responsive Multifunctional Hydrogel for Enhanced Wound Healing by Mechanical Stimulation Induced Early Vascularization. J Mater Chem B 2022; 10:7808-7826. [DOI: 10.1039/d2tb01378a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Wound healing is a complex process. Wound repair material requires multiple functionalities, such as anti-inflammatory, antibacterial, angiogenesis, pro-proliferation, and remodeling. To achieve rapid tissue regeneration, magnetic field-assisted therapy has become...
Collapse
|
34
|
Wang M, Yang Y, Yuan K, Yang S, Tang T. Dual-functional hybrid quaternized chitosan/Mg/alginate dressing with antibacterial and angiogenic potential for diabetic wound healing. J Orthop Translat 2021; 30:6-15. [PMID: 34466384 PMCID: PMC8365451 DOI: 10.1016/j.jot.2021.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Clinic treatment of diabetic foot ulcers (DFUs) is considerably challenging. Impaired wound healing may be caused by poor vascularization and dysfunction of the extracellular matrix, which leads to poor re-epithelialization and increased risk of infection. In this study, we evaluated the treatment potential of a functional dressing comprising quaternized chitosan (hydroxypropyltrimethyl ammonium chloride chitosan) and magnesium (Mg) on DFUs. METHODS Dressings were prepared by vacuum freeze-drying. The cellular proliferation, migration, and angiogenesis potential of the functional dressings were determined in vitro. Methicillin-resistant Staphylococcus aureus (MRSA, ATCC43300) and methicillin-resistant Staphylococcus epidermidis 287 (MRSE287) were used to evaluate the antibacterial efficiency of the dressings. Finally, a diabetic rat model with infected wounds was used to further evaluate the effects of functional dressings on the healing of DFUs. RESULTS Functional dressings facilitated the migration of human dermal fibroblasts and human umbilical vein endothelial cells (HUVECs), while also stimulating angiogenesis in HUVECs. Additionally, the functional dressing could effectively eradicate MRSA and MRSE, exhibiting excellent antibacterial ability against drug-resistant bacteria. The results of in vivo microbiological and histological tests demonstrated effective anti-infection ability and wound-healing potential of this functional dressing. CONCLUSIONS The dual-functional dressing exhibited wound-healing ability and anti-infection efficiency, demonstrating potential application prospects in DFU treatment. TRANSLATIONAL POTENTIAL OF THIS ARTICLE As one of the common and serious complications of diabetes, DFUs do not heal easily, causing great suffering to patients. Therefore, improvement in the prognosis of DFUs is a crucial clinical need. The dual-functional dressing prepared in this study was proven to improve the treatment of DFUs, both in vitro and in vivo. Considering its urgent clinical necessity and good biocompatibility of its raw materials, such as alginate, Mg, and chitosan derivatives, this dual-functional dressing presents good prospects for clinical translation.
Collapse
Affiliation(s)
- Minqi Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiqi Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Yuan
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengbing Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
35
|
Kuai L, Jiang JS, Li W, Li B, Yin SY. Long non-coding RNAs in diabetic wound healing: Current research and clinical relevance. Int Wound J 2021; 19:583-600. [PMID: 34337861 PMCID: PMC8874090 DOI: 10.1111/iwj.13655] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/15/2021] [Accepted: 06/21/2021] [Indexed: 01/23/2023] Open
Abstract
Diabetic wounds are a protracted complication of diabetes mainly characterised by chronic inflammation, obstruction of epithelialization, damaged blood vessels and collagen production (maturation), as well as neuropathy. As a non‐coding RNA (ncRNA) that lack coding potential, long non‐coding RNAs (lncRNAs) have recently been reported to play a salient role in diabetic wound healing. Here, this review summarises the roles of lncRNAs in the pathology and treatments of diabetic wounds, providing references for its potential clinical diagnostic criteria or therapeutic targets in the future.
Collapse
Affiliation(s)
- Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing-Si Jiang
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Wei Li
- Center for Translational Medicine, Huaihe Hospital of Henan University, Kaifeng, China
| | - Bin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shuang-Yi Yin
- Center for Translational Medicine, Huaihe Hospital of Henan University, Kaifeng, China
| |
Collapse
|
36
|
Use of Network Pharmacology to Explore the Mechanism of Gegen ( Puerariae lobatae Radix) in the Treatment of Type 2 Diabetes Mellitus Associated with Hyperlipidemia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6633402. [PMID: 33953784 PMCID: PMC8068526 DOI: 10.1155/2021/6633402] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/05/2021] [Accepted: 04/06/2021] [Indexed: 01/04/2023]
Abstract
Rapid increases in metabolic disorders, such as type 2 diabetes mellitus (T2DM) and hyperlipidemia, are becoming a substantial challenge to worldwide public health. Traditional Chinese medicine has a long history and abundant experience in the treatment of diabetes and hyperlipidemia, and Puerariae lobatae Radix (known as Gegen in Chinese) is one of the most prevalent Chinese herbs applied to treat these diseases. The underlying mechanism by which Gegen simultaneously treats diabetes and hyperlipidemia, however, has not been clearly elucidated to date. Therefore, we systematically explored the potential mechanism of Gegen in the treatment of T2DM complicated with hyperlipidemia based on network pharmacology. We screened the potential targets of Gegen, T2DM, and hyperlipidemia in several online databases. Then, the hub targets were analyzed by performing protein-protein interaction, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment assays, and finally, the complicated connections among compounds, targets, and pathways were visualized in Cytoscape. We found that isoflavones, including daidzein, genistein, and puerarin, as well as β-sitosterol, are the key active ingredients of Gegen responsible for its antidiabetic and antihyperlipidemia effects, which mainly target AKR1B1, EGFR, ESR, TNF, NOS3, MAPK3, PPAR, CYP19A1, INS, IL6, and SORD and multiple pathways, such as the PI3K-Akt signaling pathway; the AGE-RAGE signaling pathway in diabetic complications, fluid shear stress, and atherosclerosis; the PPAR signaling pathway; insulin resistance; the HIF-1 signaling pathway; the TNF signaling pathway; and others. These active ingredients also target multiple biological processes, including the regulation of glucose and lipid metabolism, the maintenance of metabolic homeostasis, and anti-inflammatory and antioxidant pathways. In conclusion, Gegen is a promising therapeutic phytomedicine for T2DM with hyperlipidemia that targets multiple proteins, biological processes, and pathways.
Collapse
|
37
|
Lv H, Liu J, Zhen C, Wang Y, Wei Y, Ren W, Shang P. Magnetic fields as a potential therapy for diabetic wounds based on animal experiments and clinical trials. Cell Prolif 2021; 54:e12982. [PMID: 33554390 PMCID: PMC7941227 DOI: 10.1111/cpr.12982] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/26/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder with various complications that poses a huge worldwide healthcare burden. Wounds in diabetes, especially diabetic foot ulcers (DFUs), are difficult to manage, often leading to prolonged wound repair and even amputation. Wound management in people with diabetes is an extremely clinical and social concern. Nowadays, physical interventions gain much attention and have been widely developed in the fields of tissue regeneration and wound healing. Magnetic fields (MFs)-based devices are translated into clinical practice for the treatment of bone diseases and neurodegenerative disorder. This review attempts to give insight into the mechanisms and applications of MFs in wound care, especially in improving the healing outcomes of diabetic wounds. First, we discuss the pathological conditions associated with chronic diabetic wounds. Next, the mechanisms involved in MFs' effects on wounds are explored. At last, studies and reports regarding the effects of MFs on diabetic wounds from both animal experiments and clinical trials are reviewed. MFs exhibit great potential in promoting wound healing and have been practised in the management of diabetic wounds. Further studies on the exact mechanism of MFs on diabetic wounds and the development of suitable MF-based devices could lead to their increased applications into clinical practice.
Collapse
Affiliation(s)
- Huanhuan Lv
- School of Life SciencesNorthwestern Polytechnical UniversityXi’anChina
- Heye Health Technology Co., Ltd.AnjiZhejiangChina
- Research & Development InstituteNorthwestern Polytechnical UniversityShenzhenChina
- Key Laboratory for Space Bioscience and BiotechnologyNorthwestern Polytechnical UniversityXi’anChina
| | - Junyu Liu
- School of Life SciencesNorthwestern Polytechnical UniversityXi’anChina
- Research & Development InstituteNorthwestern Polytechnical UniversityShenzhenChina
- Key Laboratory for Space Bioscience and BiotechnologyNorthwestern Polytechnical UniversityXi’anChina
| | - Chenxiao Zhen
- School of Life SciencesNorthwestern Polytechnical UniversityXi’anChina
- Research & Development InstituteNorthwestern Polytechnical UniversityShenzhenChina
- Key Laboratory for Space Bioscience and BiotechnologyNorthwestern Polytechnical UniversityXi’anChina
| | - Yijia Wang
- School of Life SciencesNorthwestern Polytechnical UniversityXi’anChina
- Research & Development InstituteNorthwestern Polytechnical UniversityShenzhenChina
- Key Laboratory for Space Bioscience and BiotechnologyNorthwestern Polytechnical UniversityXi’anChina
| | - Yunpeng Wei
- Research & Development InstituteNorthwestern Polytechnical UniversityShenzhenChina
| | - Weihao Ren
- School of Life SciencesNorthwestern Polytechnical UniversityXi’anChina
- Research & Development InstituteNorthwestern Polytechnical UniversityShenzhenChina
- Key Laboratory for Space Bioscience and BiotechnologyNorthwestern Polytechnical UniversityXi’anChina
| | - Peng Shang
- School of Life SciencesNorthwestern Polytechnical UniversityXi’anChina
- Research & Development InstituteNorthwestern Polytechnical UniversityShenzhenChina
- Key Laboratory for Space Bioscience and BiotechnologyNorthwestern Polytechnical UniversityXi’anChina
| |
Collapse
|