1
|
Lv J, Chen F, Lv L, Zhang L, Zou H, Liu Y, Bai Y, Fang R, Qin T, Deng Z. LncRNA ABHD11-AS1 Elevates CALM2 to Promote Metastasis of Thyroid Cancer Through Sponging miR-876-5p. Biochem Genet 2025:10.1007/s10528-025-11072-9. [PMID: 40117023 DOI: 10.1007/s10528-025-11072-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/21/2025] [Indexed: 03/23/2025]
Abstract
In the past decade, the treatment of thyroid cancer (TC) has been brought to a new era, but tumor metastasis still is an intractable difficulty in clinical. LncRNA ABHD11-AS1 has been confirmed to be involved in TC progression. However, its specific mechanism remains unknown. Tissues from TC patients and TC cells served as mainly experimental subjects in this study. The migration of TC cells was assessed using the scratch assay, and the ability of cell invasion was evaluated by transwell assay. RT-qPCR and western blot were conducted to determine the levels of related genes and proteins. The dual-luciferase reporter assay was used to validate the relationships among ABHD11-AS1, miR-876-5p and CALM2. ABHD11-AS1 and CALM2 are elevated in TC cancer samples and cells, while the expression of miR-876-5p is reduced. Subsequently, the ability of TC cells to migrate, invade and EMT was inhibited by both ABHD11-AS1 knockdown or miR-876-5p overexpression. Moreover, the suppression of malignant characteristics in TC cells resulting from ABHD11-AS knockdown was counteracted by the inhibition of miR-876-5p or the upregulation of CALM2. On the mechanism, ABHD11-AS1 elevated CALM2 and promoted the malignant development of TC cells by acting as a miR-876-5p sponge. ABHD11-AS1 mediated the miR-876-5p/CALM2 axis to drive the metastasis of thyroid cancer.
Collapse
Affiliation(s)
- Juan Lv
- Department of Nuclear Medicine, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, No. 519 Kunzhou Road, Xishan District, Kunming, 650118, Yunnan Province, China
| | - Fukun Chen
- Department of Nuclear Medicine, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, No. 519 Kunzhou Road, Xishan District, Kunming, 650118, Yunnan Province, China
| | - Ling Lv
- Department of Nuclear Medicine, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, No. 519 Kunzhou Road, Xishan District, Kunming, 650118, Yunnan Province, China
| | - Lu Zhang
- Department of Nuclear Medicine, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, No. 519 Kunzhou Road, Xishan District, Kunming, 650118, Yunnan Province, China
| | - Huangren Zou
- Department of Nuclear Medicine, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, No. 519 Kunzhou Road, Xishan District, Kunming, 650118, Yunnan Province, China
| | - Yanlin Liu
- Department of Nuclear Medicine, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, No. 519 Kunzhou Road, Xishan District, Kunming, 650118, Yunnan Province, China
| | - Yuke Bai
- Department of Nuclear Medicine, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, No. 519 Kunzhou Road, Xishan District, Kunming, 650118, Yunnan Province, China
| | - Ruotong Fang
- Department of Nuclear Medicine, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, No. 519 Kunzhou Road, Xishan District, Kunming, 650118, Yunnan Province, China
| | - Tiantian Qin
- Department of Nuclear Medicine, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, No. 519 Kunzhou Road, Xishan District, Kunming, 650118, Yunnan Province, China
| | - Zhiyong Deng
- Department of Nuclear Medicine, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, No. 519 Kunzhou Road, Xishan District, Kunming, 650118, Yunnan Province, China.
| |
Collapse
|
2
|
Munk M, Berchtold MW. A note of caution for using calmodulin antibodies. J Immunol Methods 2024; 534:113772. [PMID: 39490959 DOI: 10.1016/j.jim.2024.113772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Calmodulin (CaM) is a ubiquitous intracellular calcium receptor that regulates a plethora of cellular functions through interactions with target proteins. In mammals, an identical Calmodulin protein is expressed by 3 independent genes (CALM1, CALM2, CALM3). Therefore, antibodies generated against either of the three products (CaM1, CaM2, CaM3) of these genes cannot be distinguished, and conclusions based on the supposedly specific CaM antibodies claiming functions of one of the 3 genes may be misleading. In this paper we present 44 articles, using such antibodies for Western blot, ELISA assay, immunohistochemistry or which are based on proteomics and the use of databases with incorrect annotations, all potentially reaching misleading conclusions. This should be taken as a note of caution for researchers working with Calmodulin antibodies and misleading databases.
Collapse
Affiliation(s)
- Mads Munk
- Martin W. Berchtold and Mads Munk Department of Biology, Copenhagen University Copenhagen, Denmark
| | - Martin W Berchtold
- Martin W. Berchtold and Mads Munk Department of Biology, Copenhagen University Copenhagen, Denmark..
| |
Collapse
|
3
|
Yang J, Li S, Wang J, Liu G, Zhang C, Li X, Liu X. Calmodulin 2 expression is associated with poor prognosis in breast cancer. Pathol Res Pract 2024; 258:155326. [PMID: 38754328 DOI: 10.1016/j.prp.2024.155326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/13/2024] [Accepted: 04/21/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Calmodulin 2 (CALM2) belongs to the highly conserved calcium-binding protein family, implicated in the pathogenesis of various malignant tumors. However, its involvement in breast cancer (BRCA) remains unclear. This study aimed to examine CALM2 expression in BRCA and its associations with prognosis, clinicopathological features, protein-protein interactions, and immune cell infiltration. MATERIALS AND METHODS Online bioinformatics tools were employed to assess CALM2 expression and its clinical relevance in BRCA. Western blotting and immunohistochemistry were utilized to evaluate CALM2 expression in BRCA cell lines and tissues. Logistic regression was applied to analyze the relationship between CALM2 expression levels and clinicopathological parameters. Transwell assay was performed to validate the role of CALM2 in BRCA migration and invasion. RESULTS CALM2 expression was significantly elevated in BRCA, with increased levels predicting poor overall survival (OS) and disease-free survival (DFS). Moreover, high CALM2 expression correlated with poorer DFS specifically in triple-negative breast cancer (TNBC). CALM2 expression in BRCA showed significant associations with lymph node metastasis, TP53 mutation status, and menopause status. Silencing CALM2 in BRCA cells demonstrated inhibition of cell migration and invasion in vitro. CONCLUSIONS CALM2 is overexpressed in BRCA and its upregulation is significantly correlated with poor patient prognosis. Elevated CALM2 expression holds promise as a potential molecular marker for predicting poor survival and as a therapeutic target in BRCA.
Collapse
Affiliation(s)
- Ju Yang
- Department of Pathology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Shuixian Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jigang Wang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guoyuan Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chenyang Zhang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaojing Li
- Department of Pathology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Xiuping Liu
- Department of Pathology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Li J, Chen Z, Li Q, Liu R, Zheng J, Gu Q, Xiang F, Li X, Zhang M, Kang X, Wu R. Study of miRNA and lymphocyte subsets as potential biomarkers for the diagnosis and prognosis of gastric cancer. PeerJ 2024; 12:e16660. [PMID: 38259671 PMCID: PMC10802158 DOI: 10.7717/peerj.16660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/21/2023] [Indexed: 01/24/2024] Open
Abstract
Objective The aim of this study was to identify the expression of miRNA and lymphocyte subsets in the blood of gastric cancer (GC) patients, elucidate their clinical significance in GC, and establish novel biomarkers for the early diagnosis and prognosis of GC. Methods The expression of miRNAs in the serum of GC patients was screened using second-generation sequencing and detected using qRT-PCR. The correlation between miRNA expression and clinicopathological characteristics of GC patients was analyzed, and molecular markers for predicting cancer were identified. Additionally, flow cytometry was used to detect the proportion of lymphocyte subsets in GC patients compared to healthy individuals. The correlations between differential lymphocyte subsets, clinicopathological features of GC patients, and their prognosis were analyzed statistically. Results The study revealed that hsa-miR-1306-5p, hsa-miR-3173-5p, and hsa-miR-296-5p were expressed at lower levels in the blood of GC patients, which is consistent with miRNA-seq findings. The AUC values of hsa-miR-1306-5p, hsa-miR-3173-5p, and hsa-miR-296-5p were found to be effective predictors of GC occurrence. Additionally, hsa-miR-296-5p was found to be negatively correlated with CA724. Furthermore, hsa-miR-1306-5p, hsa-miR-3173-5p, and hsa-miR-296-5p were found to be associated with the stage of the disease and were closely linked to the clinical pathology of GC. The lower the levels of these miRNAs, the greater the clinical stage of the tumor and the worse the prognosis of gastric cancer patients. Finally, the study found that patients with GC had lower absolute numbers of CD3+ T cells, CD4+ T cells, CD8+ T cells, CD19+ B cells, and lymphocytes compared to healthy individuals. The quantity of CD4+ T lymphocytes and the level of the tumor marker CEA were shown to be negatively correlated. The ROC curve and multivariate logistic regression analysis demonstrated that lymphocyte subsets can effectively predict gastric carcinogenesis and prognosis. Conclusion These miRNAs such as hsa-miR-1306-5p, hsa-miR-3173-5p, hsa-miR-296-5p and lymphocyte subsets such as the absolute numbers of CD3+ T cells, CD4+ T cells, CD8+ T cells, CD19+ B cells, lymphocytes are down-regulated in GC and are closely related to the clinicopathological characteristics and prognosis of GC patients. They may serve as new molecular markers for predicting the early diagnosis and prognosis of GC patients.
Collapse
Affiliation(s)
- Jinpeng Li
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zixi Chen
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Li
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rongrong Liu
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jin Zheng
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Gu
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fenfen Xiang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoxiao Li
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengzhe Zhang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiangdong Kang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Wu
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|