1
|
Fredrick SR, Iasella CJ, Sacha LM, Rivosecchi RM, Morrell MR, Sanchez PG, Pilewski JM, Snyder ME, McDyer JF, Moore CA. Incidence of Acute Cellular Rejection After Granulocyte Colony-Stimulating Factor in Lung Transplant Recipients. J Pharm Pract 2024; 37:830-837. [PMID: 37345293 DOI: 10.1177/08971900231184308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
BackgroundNeutropenia is a common complication in lung transplant recipients (LTRs). Filgrastim may be used to treat neutropenia in LTRs, but its consequences on acute cellular rejection (ACR) remain controversial. Objective: The purpose was to examine the association between filgrastim and incidence of ACR 6 months after filgrastim administration in LTRs. Secondary outcomes included burden of ACR, infections, chronic lung allograft dysfunction (CLAD), and survival. Methods: This was a matched cohort study of patients transplanted between January 2010 and October 2019. LTRs who received filgrastim for neutropenia were compared to a cohort who did not. LTRs were matched on transplant indication, sex, age, and time post-transplant and multivariable logistic regression models were used to evaluate the likelihood of ACR. Results: 212 patients were included in the analysis (106 in each group). 50 patients (47.2%) in the filgrastim group experienced ACR compared to 37 patients (34.9%) in the no filgrastim group (P = .070). In multivariable analysis, filgrastim use was not associated with ACR at 6 months (OR 1.409, 95% CI 0.772-2.571). Time to first ACR was shorter (P = .049) and 6-month ACR score was higher in the filgrastim group (.49 vs .33, P = .047). LTRs in the filgrastim group had higher incidence of bacterial pneumonia and 1-year mortality. Conclusions: Although not associated with increased likelihood of ACR at 6 months, our study found that filgrastim is associated with increased ACR burden and decreased time to ACR. This study can help inform clinicians of ACR risk after filgrastim use in LTRs.
Collapse
Affiliation(s)
- Stacy R Fredrick
- Department of Pharmacy, University of Rochester Medical Center, Rochester, NY, USA
| | - Carlo J Iasella
- Department of Pharmacy, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lauren M Sacha
- Department of Pharmacy, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Ryan M Rivosecchi
- Department of Pharmacy, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Matthew R Morrell
- Division of Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Pablo G Sanchez
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Joseph M Pilewski
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mark E Snyder
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John F McDyer
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cody A Moore
- Department of Pharmacy, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Bos S, Pradère P, Beeckmans H, Zajacova A, Vanaudenaerde BM, Fisher AJ, Vos R. Lymphocyte Depleting and Modulating Therapies for Chronic Lung Allograft Dysfunction. Pharmacol Rev 2023; 75:1200-1217. [PMID: 37295951 PMCID: PMC10595020 DOI: 10.1124/pharmrev.123.000834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/27/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023] Open
Abstract
Chronic lung rejection, also called chronic lung allograft dysfunction (CLAD), remains the major hurdle limiting long-term survival after lung transplantation, and limited therapeutic options are available to slow the progressive decline in lung function. Most interventions are only temporarily effective in stabilizing the loss of or modestly improving lung function, with disease progression resuming over time in the majority of patients. Therefore, identification of effective treatments that prevent the onset or halt progression of CLAD is urgently needed. As a key effector cell in its pathophysiology, lymphocytes have been considered a therapeutic target in CLAD. The aim of this review is to evaluate the use and efficacy of lymphocyte depleting and immunomodulating therapies in progressive CLAD beyond usual maintenance immunosuppressive strategies. Modalities used include anti-thymocyte globulin, alemtuzumab, methotrexate, cyclophosphamide, total lymphoid irradiation, and extracorporeal photopheresis, and to explore possible future strategies. When considering both efficacy and risk of side effects, extracorporeal photopheresis, anti-thymocyte globulin and total lymphoid irradiation appear to offer the best treatment options currently available for progressive CLAD patients. SIGNIFICANCE STATEMENT: Effective treatments to prevent the onset and progression of chronic lung rejection after lung transplantation are still a major shortcoming. Based on existing data to date, considering both efficacy and risk of side effects, extracorporeal photopheresis, anti-thymocyte globulin, and total lymphoid irradiation are currently the most viable second-line treatment options. However, it is important to note that interpretation of most results is hampered by the lack of randomized controlled trials.
Collapse
Affiliation(s)
- Saskia Bos
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom (S.B., P.P., A.J.F.); Institute of Transplantation, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, United Kingdom (S.B., A.J.F.); Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph and Paris Saclay University, Department of Respiratory Diseases, Paris, France (P.P.); Department of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium (H.B., B.M.V., R.V.); Prague Lung Transplant Program, University Hospital Motol, Department of Pneumology, Prague, Czech Republic (A.Z.); and University Hospitals Leuven, Department of Respiratory Diseases, Leuven, Belgium (R.V.)
| | - Pauline Pradère
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom (S.B., P.P., A.J.F.); Institute of Transplantation, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, United Kingdom (S.B., A.J.F.); Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph and Paris Saclay University, Department of Respiratory Diseases, Paris, France (P.P.); Department of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium (H.B., B.M.V., R.V.); Prague Lung Transplant Program, University Hospital Motol, Department of Pneumology, Prague, Czech Republic (A.Z.); and University Hospitals Leuven, Department of Respiratory Diseases, Leuven, Belgium (R.V.)
| | - Hanne Beeckmans
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom (S.B., P.P., A.J.F.); Institute of Transplantation, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, United Kingdom (S.B., A.J.F.); Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph and Paris Saclay University, Department of Respiratory Diseases, Paris, France (P.P.); Department of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium (H.B., B.M.V., R.V.); Prague Lung Transplant Program, University Hospital Motol, Department of Pneumology, Prague, Czech Republic (A.Z.); and University Hospitals Leuven, Department of Respiratory Diseases, Leuven, Belgium (R.V.)
| | - Andrea Zajacova
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom (S.B., P.P., A.J.F.); Institute of Transplantation, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, United Kingdom (S.B., A.J.F.); Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph and Paris Saclay University, Department of Respiratory Diseases, Paris, France (P.P.); Department of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium (H.B., B.M.V., R.V.); Prague Lung Transplant Program, University Hospital Motol, Department of Pneumology, Prague, Czech Republic (A.Z.); and University Hospitals Leuven, Department of Respiratory Diseases, Leuven, Belgium (R.V.)
| | - Bart M Vanaudenaerde
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom (S.B., P.P., A.J.F.); Institute of Transplantation, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, United Kingdom (S.B., A.J.F.); Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph and Paris Saclay University, Department of Respiratory Diseases, Paris, France (P.P.); Department of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium (H.B., B.M.V., R.V.); Prague Lung Transplant Program, University Hospital Motol, Department of Pneumology, Prague, Czech Republic (A.Z.); and University Hospitals Leuven, Department of Respiratory Diseases, Leuven, Belgium (R.V.)
| | - Andrew J Fisher
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom (S.B., P.P., A.J.F.); Institute of Transplantation, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, United Kingdom (S.B., A.J.F.); Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph and Paris Saclay University, Department of Respiratory Diseases, Paris, France (P.P.); Department of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium (H.B., B.M.V., R.V.); Prague Lung Transplant Program, University Hospital Motol, Department of Pneumology, Prague, Czech Republic (A.Z.); and University Hospitals Leuven, Department of Respiratory Diseases, Leuven, Belgium (R.V.)
| | - Robin Vos
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom (S.B., P.P., A.J.F.); Institute of Transplantation, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, United Kingdom (S.B., A.J.F.); Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph and Paris Saclay University, Department of Respiratory Diseases, Paris, France (P.P.); Department of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium (H.B., B.M.V., R.V.); Prague Lung Transplant Program, University Hospital Motol, Department of Pneumology, Prague, Czech Republic (A.Z.); and University Hospitals Leuven, Department of Respiratory Diseases, Leuven, Belgium (R.V.)
| |
Collapse
|
3
|
Surviving White-out: How to Manage Severe Noninfectious Acute Lung Allograft Dysfunction of Unknown Etiology. Transplant Direct 2022; 8:e1371. [PMID: 36204187 PMCID: PMC9529053 DOI: 10.1097/txd.0000000000001371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 11/26/2022] Open
|
4
|
Evans RA, Walter KS, Lobo LJ, Coakley R, Doligalski CT. Pharmacotherapy of chronic lung allograft dysfunction post lung transplantation. Clin Transplant 2022; 36:e14770. [PMID: 35801376 DOI: 10.1111/ctr.14770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/30/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022]
Abstract
Chronic lung allograft dysfunction (CLAD) remains the primary cause of death in lung transplant recipients (LTRs) in spite of improvements in immunosuppression management. Despite advances in knowledge regarding the pathogenesis of CLAD, treatments that are currently available are usually ineffective and delay progression of disease at best. There are currently no evidence-based guidelines for the optimal treatment of CLAD, and management varies widely across transplant centers. Additionally, there are minimal publications available to summarize data for currently available therapies and outcomes in LTRs. We identified the major domains of the medical management of CLAD and conducted a comprehensive search of PubMed and Embase databases to identify articles published from inception to December 2021 related to CLAD in LTRs. Studies published in English pertaining to the pharmacologic prevention and treatment of CLAD were included; highest priority was given to prospective, randomized, controlled trials if available. Prospective observational and retrospective controlled trials were prioritized next, followed by retrospective uncontrolled studies, case series, and finally case reports if the information was deemed to be pertinent. Reference lists of qualified publications were also reviewed to find any other publications of interest that were not found on initial search. In the absence of literature published in the aforementioned databases, additional articles were identified by reviewing abstracts presented at the International Society for Heart and Lung Transplantation and American Transplant Congress annual meetings between 2010-2021. This document serves to provide a comprehensive review of the literature and considerations for the prevention and medical management of CLAD. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Rickey A Evans
- Department of Pharmacy, University of Kentucky Healthcare, Lexington, KY, USA
| | - Krysta S Walter
- Department of Pharmacy, Michigan Medicine, Ann Arbor, MI, USA
| | | | | | | |
Collapse
|
5
|
Glanville AR, Benden C, Bergeron A, Cheng GS, Gottlieb J, Lease ED, Perch M, Todd JL, Williams KM, Verleden GM. Bronchiolitis obliterans syndrome after lung or haematopoietic stem cell transplantation: current management and future directions. ERJ Open Res 2022; 8:00185-2022. [PMID: 35898810 PMCID: PMC9309343 DOI: 10.1183/23120541.00185-2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/18/2022] [Indexed: 11/05/2022] Open
Abstract
Bronchiolitis obliterans syndrome (BOS) may develop after either lung or haematopoietic stem cell transplantation (HSCT), with similarities in histopathological features and clinical manifestations. However, there are differences in the contributory factors and clinical trajectories between the two conditions. BOS after HSCT occurs due to systemic graft-versus-host-disease (GVHD), whereas BOS after lung transplantation is limited to the lung allograft. BOS diagnosis after HSCT is more challenging, as the lung function decline may occur due to extrapulmonary GVHD, causing sclerosis or inflammation in the fascia or muscles of the respiratory girdle. Treatment is generally empirical with no established effective therapies. This review provides rare insights and commonalities of both conditions, that are not well elaborated elsewhere in contemporary literature, and highlights the importance of cross disciplinary learning from experts in other transplant modalities. Treatment algorithms for each condition are presented, based on the published literature and consensus clinical opinion. Immunosuppression should be optimised, and other conditions or contributory factors treated where possible. When initial treatment fails, the ultimate therapeutic option is lung transplantation (or re-transplantation in the case of BOS after lung transplantation) in carefully selected candidates. Novel therapies under investigation include aerosolised liposomal cyclosporine, Janus kinase inhibitors, antifibrotic therapies, and (in patients with BOS after lung transplantation) B-cell–directed therapies. Effective novel treatments that have a tangible impact on survival and thereby avoid the need for lung transplantation or re-transplantation are urgently required.
Collapse
|
6
|
Abstract
Rejection is a major complication following lung transplantation. Acute cellular rejection (ACR), and antibody-mediated rejection (AMR) are risk factors for the subsequent development of chronic lung allograft dysfunction and worse outcomes after transplantation. Although ACR has well-defined histopathologic diagnostic criteria and grading, the diagnosis of AMR requires a multidisciplinary diagnostic approach. This article reviews the identification, clinical and pathologic features of, and therapeutic options for ACR and AMR.
Collapse
Affiliation(s)
- Deborah J Levine
- Division of Pulmonary and Critical Care Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Ramsey R Hachem
- Division of Pulmonary and Critical Care Medicine, Washington University in St. Louis, 4523 Clayton Avenue, Mailstop 8052-0043-14, St Louis, MO 63110, USA.
| |
Collapse
|
7
|
Abstract
Chronic lung allograft dysfunction (CLAD) is a syndrome of progressive lung function decline, subcategorized into obstructive, restrictive, and mixed phenotypes. The trajectory of CLAD is variable depending on the phenotype, with restrictive and mixed phenotypes having more rapid progression and lower survival. The mechanisms driving CLAD development remain unclear, though allograft injury during primary graft dysfunction, acute cellular rejection, antibody-mediated rejection, and infections trigger immune responses with long-lasting effects that can lead to CLAD months or years later. Currently, retransplantation is the only effective treatment.
Collapse
Affiliation(s)
- Aida Venado
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, University of California, San Francisco, 505 Parnassus Ave, M1093A, San Francisco, CA 94143-2204, USA.
| | - Jasleen Kukreja
- Division of Cardiothoracic Surgery, Univeristy of California, San Francisco, 500 Parnassus Ave, MU 405W Suite 305, San Francisco, CA 94143, USA
| | - John R Greenland
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, University of California, San Francisco, SF VAHCS Building 2, Room 453 (Mail stop 111D), 4150 Clement St, San Francisco CA 94121, USA
| |
Collapse
|
8
|
Pulmonary graft-versus-host disease and chronic lung allograft dysfunction: two sides of the same coin? THE LANCET RESPIRATORY MEDICINE 2022; 10:796-810. [DOI: 10.1016/s2213-2600(22)00001-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/17/2021] [Accepted: 01/04/2022] [Indexed: 11/23/2022]
|
9
|
Subramani MV, Pandit S, Gadre SK. Acute rejection and post lung transplant surveillance. Indian J Thorac Cardiovasc Surg 2022; 38:271-279. [PMID: 35340687 PMCID: PMC8938213 DOI: 10.1007/s12055-021-01320-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 12/05/2022] Open
Abstract
Purpose The purpose of this review is to summarize the current evidence on the evaluation and treatment of acute rejection after lung transplantation. Results Despite significant progress in the field of transplant immunology, acute rejection remains a frequent complication after transplantation. Almost 30% of lung transplant recipients experience at least one episode of acute cellular rejection (ACR) during the first year after transplant. Acute cellular rejection, lymphocytic bronchiolitis, and antibody-mediated rejection (AMR) are all risk factors for the subsequent development of chronic lung allograft dysfunction (CLAD). Acute cellular rejection and lymphocytic bronchiolitis have well-defined histopathologic diagnostic criteria and grading. The diagnosis of antibody-mediated rejection after lung transplantation requires a multidisciplinary approach. Antibody-mediated rejection may cause acute allograft failure. Conclusions Acute rejection is a risk factor for development of chronic rejection. Further investigations are required to better define risk factors, surveillance strategies, and optimal management strategies for acute allograft rejection.
Collapse
Affiliation(s)
| | - Sumir Pandit
- Department of Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, 9500 Euclid Avenue A-90, Cleveland, OH 44195 USA
| | - Shruti Kumar Gadre
- Department of Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, 9500 Euclid Avenue A-90, Cleveland, OH 44195 USA
| |
Collapse
|
10
|
Bedair B, Hachem RR. Management of chronic rejection after lung transplantation. J Thorac Dis 2022; 13:6645-6653. [PMID: 34992842 PMCID: PMC8662511 DOI: 10.21037/jtd-2021-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/20/2021] [Indexed: 12/17/2022]
Abstract
Outcomes after lung transplantation are limited by chronic lung allograft dysfunction (CLAD). The incidence of CLAD is high, and its clinical course tends to be progressive over time, culminating in graft failure and death. Indeed, CLAD is the leading cause of death beyond the first year after lung transplantation. Therapy for CLAD has been limited by a lack of high-quality studies to guide management. In this review, we will discuss the diagnosis of CLAD in light of the recent changes to definitions and will discuss the current clinical evidence available for treatment. Recently, the diagnosis of CLAD has been subdivided into bronchiolitis obliterans syndrome (BOS) and restrictive allograft syndrome (RAS). The current evidence for treatment of CLAD mainly revolves around treatment of BOS with more limited data existing for RAS. The best supported treatment to date for CLAD is the macrolide antibiotic azithromycin which has been associated with a small improvement in lung function in a minority of patients. Other therapies that have more limited data include switching immunosuppression from cyclosporine to tacrolimus, fundoplication for gastroesophageal reflux, montelukast, extracorporeal photopheresis (ECP), aerosolized cyclosporine, cytolytic anti-lymphocyte therapies, total lymphoid irradiation (TLI) and the antifibrotic agent pirfenidone. Most of these treatments are supported by case series and observational studies. Finally, we will discuss the role of retransplantation for CLAD.
Collapse
Affiliation(s)
- Bahaa Bedair
- Division of Pulmonary & Critical Care Medicine, Washington University School of Medicine, MO 63110, USA
| | - Ramsey R Hachem
- Division of Pulmonary & Critical Care Medicine, Washington University School of Medicine, MO 63110, USA
| |
Collapse
|
11
|
Immunosuppression in Lung Transplantation. Handb Exp Pharmacol 2021; 272:139-164. [PMID: 34796380 DOI: 10.1007/164_2021_548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Immunosuppression in lung transplantation is an area devoid of robust clinical data. This chapter will review the history of immunosuppression in lung transplantation. Additionally, it will evaluate the three classes of induction, maintenance, and rescue immunosuppression in detail. Induction immunosuppression in lung transplantation aims to decrease incidence of lung allograft rejection, however infectious risk must be considered when determining if induction is appropriate and which agent is most favorable. Similar to other solid organ transplant patient populations, a multi-drug approach is commonly prescribed for maintenance immunosuppression to minimize single agent drug toxicities. Emphasis of this review is placed on key medication considerations including dosing, adverse effects, and drug interactions. Clinical considerations will be reviewed per drug class given available literature. Finally, acute cellular, antibody mediated, and chronic rejection are reviewed.
Collapse
|
12
|
Amubieya O, Ramsey A, DerHovanessian A, Fishbein GA, Lynch JP, Belperio JA, Weigt SS. Chronic Lung Allograft Dysfunction: Evolving Concepts and Therapies. Semin Respir Crit Care Med 2021; 42:392-410. [PMID: 34030202 DOI: 10.1055/s-0041-1729175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The primary factor that limits long-term survival after lung transplantation is chronic lung allograft dysfunction (CLAD). CLAD also impairs quality of life and increases the costs of medical care. Our understanding of CLAD continues to evolve. Consensus definitions of CLAD and the major CLAD phenotypes were recently updated and clarified, but it remains to be seen whether the current definitions will lead to advances in management or impact care. Understanding the potential differences in pathogenesis for each CLAD phenotype may lead to novel therapeutic strategies, including precision medicine. Recognition of CLAD risk factors may lead to earlier interventions to mitigate risk, or to avoid risk factors all together, to prevent the development of CLAD. Unfortunately, currently available therapies for CLAD are usually not effective. However, novel therapeutics aimed at both prevention and treatment are currently under investigation. We provide an overview of the updates to CLAD-related terminology, clinical phenotypes and their diagnosis, natural history, pathogenesis, and potential strategies to treat and prevent CLAD.
Collapse
Affiliation(s)
- Olawale Amubieya
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Allison Ramsey
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Ariss DerHovanessian
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Gregory A Fishbein
- Department of Pathology, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Joseph P Lynch
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - John A Belperio
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - S Samuel Weigt
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
13
|
Abstract
Lung transplantation improves survival and quality of life in patients with advanced pulmonary disease. Over the past several decades, the volume of lung transplants has grown substantially, with increasing transplantation of older and acutely ill individuals facilitated by improved utilization and preservation of available donor organs. Other advances include improvements in the diagnosis and mechanistic understanding of frequent post-transplant complications, such as primary graft dysfunction, acute rejection, and chronic lung allograft dysfunction (CLAD). CLAD occurs as a result of the host immune response to the allograft and is the principal factor limiting long-term survival after lung transplantation. Two distinct clinical phenotypes of CLAD have emerged, bronchiolitis obliterans syndrome and restrictive allograft syndrome, and this distinction has enabled further understanding of underlying immune mechanisms. Building on these advances, ongoing studies are exploring novel approaches to diagnose, prevent, and treat CLAD. Such studies are necessary to improve long-term outcomes for lung transplant recipients.
Collapse
Affiliation(s)
- Aparna C Swaminathan
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA; , , .,Duke Clinical Research Institute, Durham, North Carolina 27710, USA
| | - Jamie L Todd
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA; , , .,Duke Clinical Research Institute, Durham, North Carolina 27710, USA
| | - Scott M Palmer
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA; , , .,Duke Clinical Research Institute, Durham, North Carolina 27710, USA
| |
Collapse
|
14
|
Iasella CJ, Ensor CR, Marrari M, Mangiola M, Xu Q, Nolley E, Moore CA, Morrell MR, Pilewski JM, Sanchez PG, McDyer JF, Zeevi A. Donor-specific antibody characteristics, including persistence and complement-binding capacity, increase risk for chronic lung allograft dysfunction. J Heart Lung Transplant 2020; 39:1417-1425. [PMID: 32981841 DOI: 10.1016/j.healun.2020.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/24/2020] [Accepted: 09/01/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Chronic lung allograft dysfunction (CLAD) is the major complication limiting long-term survival in lung transplant recipients (LTRs), with those developing donor-specific anti-human leukocyte antigen (HLA) antibodies (DSAs) previously found to have increased risk for CLAD. However, as DSA responses vary in timing of development, specificity, breadth, persistence, and complement-binding capacity, we hypothesized that these characteristics would impact CLAD and survival outcomes. METHODS We retrospectively analyzed DSA characteristics and outcomes in a single-center cohort of 582 LTRs who had serum samples collected prospectively from 2010 to 2016. Luminex-based single antigen bead assays were performed to assess DSA. RESULTS DSAs were detected in 247 LTRs (42%), of which 124 (21.3%) were de novo DSAs and 53 (9.1%) were complement-binding (C1q+). CLAD developed in 208 LTRs (35.7%) during the follow-up period, with 67.8% determined as bronchiolitis obliterans syndrome phenotype and 32.2% as restrictive allograft syndrome phenotype. We found a shorter time to CLAD in LTRs with persistent DSAs (p = 0.04) and HLA-DQ-specific DSAs (p = 0.03). LTRs who developed C1q+ DSAs had significantly shorter time to CLAD (p < 0.001), with 100% of C1q+ DSAs being persistent and no differences between CLAD phenotypes. CLAD-free survival was significantly reduced in LTRs who developed C1q+ DSAs (p = 0.001), HLA-DQ-specific DSAs (p = 0.03), and multiple DSAs (p = 0.02). CONCLUSIONS Together, our findings demonstrate that DSA characteristics of persistence, HLA-DQ specificity, and C1q+ DSAs are associated with shorter time to CLAD. Additionally, C1q+, HLA-DQ-specific, and multiple DSAs are associated with decreased CLAD-free survival. These characteristics may improve DSA risk stratification for deleterious outcomes in LTRs.
Collapse
Affiliation(s)
- Carlo J Iasella
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania; Department of Pharmacy, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Christopher R Ensor
- Florida Hospital Transplant Institute, AdventHealth Orlando, Orlando, Florida
| | - Marilyn Marrari
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Massimo Mangiola
- Department of Pathology, New York University Langone Transplant Institute, New York, New York
| | - Qingyong Xu
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Eric Nolley
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Cody A Moore
- Department of Pharmacy, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Matthew R Morrell
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Joseph M Pilewski
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Pablo G Sanchez
- Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - John F McDyer
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Adriana Zeevi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.
| |
Collapse
|
15
|
Trindade AJ, Thaniyavarn T, Townsend K, Klasek R, Tsveybel KP, Kennedy JC, Goldberg HJ, El-Chemaly S. Alemtuzumab as a Therapy for Chronic Lung Allograft Dysfunction in Lung Transplant Recipients With Short Telomeres. Front Immunol 2020; 11:1063. [PMID: 32547557 PMCID: PMC7270280 DOI: 10.3389/fimmu.2020.01063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/04/2020] [Indexed: 11/13/2022] Open
Abstract
Alemtuzumab, a monoclonal antibody targeting CD52 that causes lymphocyte apoptosis, is a form of advanced immunosuppression that is currently used as a therapy for refractory acute cellular rejection and chronic lung allograft dysfunction in lung transplant recipients (1–3). Side effects of alemtuzumab include bone marrow suppression, infection, and malignancy. Whether alemtuzumab can be safely used in allograft recipients that have an increased propensity for bone marrow suppression due to telomeropathies is unknown. In a retrospective case series, we report outcomes associated with alemtuzumab in three lung allograft recipients with short telomere lengths, comparing endpoints such as leukopenia, transfusion needs, infection, hospitalization and survival to those of 17 patients without known telomeropathies that received alemtuzumab. We show that the use of alemtuzumab in lung transplant recipients with short telomeres is safe, though is associated with an increased incidence of neutropenia, thrombocytopenia and anemia requiring packed red blood cell transfusions. Alemtuzumab appears to be an acceptable advanced immunosuppressive therapy in patients with telomeropathies, though given the design and scope of this study, the actual clinical effect needs further evaluation in larger trials.
Collapse
Affiliation(s)
- Anil J Trindade
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Tany Thaniyavarn
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Keri Townsend
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, United States
| | - Robin Klasek
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, United States
| | - Karen P Tsveybel
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, United States
| | - John C Kennedy
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Hilary J Goldberg
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Souheil El-Chemaly
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| |
Collapse
|
16
|
January SE, Fester KA, Bain KB, Kulkarni HS, Witt CA, Byers DE, Alexander-Brett J, Trulock EP, Hachem RR. Rabbit antithymocyte globulin for the treatment of chronic lung allograft dysfunction. Clin Transplant 2019; 33:e13708. [PMID: 31494969 DOI: 10.1111/ctr.13708] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/01/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Chronic lung allograft dysfunction (CLAD) is the leading cause of death beyond the first year after lung transplantation. Several treatments have been used to prevent the progression or reverse the effects of CLAD. Cytolytic therapy with rabbit antithymocyte globulin (rATG) has previously shown to be a potential option. However, the effect on patients with restrictive allograft syndrome (RAS) versus bronchiolitis obliterans syndrome (BOS) and the effect of cumulative dosing are unknown. METHODS The charts of lung transplant patients treated with rATG at Barnes-Jewish Hospital from 2009 to 2016 were retrospectively reviewed. The primary outcome was response to rATG; patients were deemed responders if their FEV1 improved in the 6 months after rATG treatment. Safety endpoints included incidence of serum sickness, cytokine release syndrome, malignancy, and infectious complications. RESULTS 108 patients were included in this study; 43 (40%) patients were responders who experienced an increase in FEV1 after rATG therapy. No predictors of response to rATG therapy were identified. Serum sickness occurred in 22% of patients, 15% experienced cytokine release syndrome, and 19% developed an infection after therapy. CONCLUSION 40% of patients with CLAD have an improvement in lung function after treatment with rATG although the improvement was typically minimal.
Collapse
Affiliation(s)
- Spenser E January
- Department of Pharmacy, Barnes-Jewish Hospital, Saint Louis, Missouri
| | - Keith A Fester
- Department of Pharmacy, Barnes-Jewish Hospital, Saint Louis, Missouri
| | | | - Hrishikesh S Kulkarni
- Department of Pharmacy, Barnes-Jewish Hospital, Saint Louis, Missouri.,Division of Pulmonary and Critical Care, Washington University Physicians, Saint Louis, Missouri
| | - Chad A Witt
- Department of Pharmacy, Barnes-Jewish Hospital, Saint Louis, Missouri.,Division of Pulmonary and Critical Care, Washington University Physicians, Saint Louis, Missouri
| | - Derek E Byers
- Department of Pharmacy, Barnes-Jewish Hospital, Saint Louis, Missouri.,Division of Pulmonary and Critical Care, Washington University Physicians, Saint Louis, Missouri
| | - Jennifer Alexander-Brett
- Department of Pharmacy, Barnes-Jewish Hospital, Saint Louis, Missouri.,Division of Pulmonary and Critical Care, Washington University Physicians, Saint Louis, Missouri
| | - Elbert P Trulock
- Department of Pharmacy, Barnes-Jewish Hospital, Saint Louis, Missouri.,Division of Pulmonary and Critical Care, Washington University Physicians, Saint Louis, Missouri
| | - Ramsey R Hachem
- Department of Pharmacy, Barnes-Jewish Hospital, Saint Louis, Missouri.,Division of Pulmonary and Critical Care, Washington University Physicians, Saint Louis, Missouri
| |
Collapse
|
17
|
Lichvar AB, Ensor CR, Zeevi A, Morrell MR, Pilewski JM, Hayanga JWA, D'Cunha J, McDyer JF, Petrov AA. Detrimental Association of Hypogammaglobulinemia With Chronic Lung Allograft Dysfunction and Death Is Not Mitigated by On-Demand Immunoglobulin G Replacement After Lung Transplantation. Prog Transplant 2018; 29:1526924818817028. [PMID: 30537897 DOI: 10.1177/1526924818817028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND: Hypogammaglobulinemia (HGG), immunoglobulin G (IgG) <700 mg/dL, is associated with infections, chronic lung allograft dysfunction, and death following lung transplantation. This study evaluates the use of on-demand intravenous IgG in lung transplant recipients with HGG. MATERIALS AND METHODS: This single-center retrospective cohort study of adult lung recipients evaluated 3 groups, no, untreated (u), or treated (t) HGG at first IgG administration or a matched time posttransplant. Primary outcome was freedom from allograft dysfunction. Secondary outcomes included development of advanced dysfunction, rejection, infection burden, and mortality. RESULTS: Recipients included 484 (no HGG: 76, uHGG: 192, tHGG: 216). Freedom from chronic allograph dysfunction was highest in the non-HGG group 2 years post-enrollment (no HGG 77.9% vs uHGG 56.4% vs tHGG 52.5%; P = .002). Freedom from advanced dysfunction was significantly different 2 years post-enrollment (no HGG 90.5% vs uHGG 84.7% vs tHGG 75.4%; P = .017). Patients without HGG and those with uHGG had less mortality at 2 years post-enrollment (no HGG 84.2% vs uHGG 81.3% vs tHGG 64.8%; P < .001). Gram-negative pneumonias occurred more often in the tHGG group ( P = .02). CONCLUSIONS: Development of chronic lung allograft dysfunction, patient survival, rejection burden, and key infectious outcomes in lung transplant recipients were still problematic in the context of on-demand IgG therapy. Prospective studies are warranted.
Collapse
Affiliation(s)
- Alicia B Lichvar
- 1 Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA
| | - Christopher R Ensor
- 2 Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adriana Zeevi
- 3 Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew R Morrell
- 2 Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joseph M Pilewski
- 2 Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - J W Awori Hayanga
- 4 Division of Lung Transplant/Lung Failure, Department of Cardiothoracic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jonathan D'Cunha
- 4 Division of Lung Transplant/Lung Failure, Department of Cardiothoracic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - John F McDyer
- 2 Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrej A Petrov
- 2 Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
18
|
Ensor CR, Iasella CJ, Harrigan KM, Morrell MR, Moore CA, Shigemura N, Zeevi A, McDyer JF, Venkataramanan R. Increasing tacrolimus time-in-therapeutic range is associated with superior one-year outcomes in lung transplant recipients. Am J Transplant 2018; 18:1527-1533. [PMID: 29513387 DOI: 10.1111/ajt.14723] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/16/2018] [Accepted: 02/20/2018] [Indexed: 02/06/2023]
Abstract
Calcineurin inhibitors (CNIs) are the backbone of traditional immunosuppressive regimens for lung transplant recipients (LTR). The CNIs are both narrow therapeutic index drugs with significant interpatient and intrapatient variability that require therapeutic drug monitoring to ensure safety and effectiveness. We hypothesized that tacrolimus time-in-therapeutic range (TTR) affects acute and chronic rejection rates in LTRs. This was a single-center, observational, cross-sectional study of 292 adult LTRs. Subjects who received tacrolimus posttransplant for the first year were included. TTR was calculated at 1 year using protocol goal ranges (12-15 mg/mL months 0-6; 10-12 mg/mL for months 7-12). The primary outcome was acute cellular rejection (ACR) burden at 1 year. Chronic lung allograft dysfunction (CLAD), mortality, and infection rate were assessed as secondary outcomes at 1 year. Primary and secondary outcomes were assessed using logistic regression. Increasing TTR by 10% was associated with a significantly lower likelihood of high-burden ACR at 1 year on univariable (OR 0.46, 95% CI 0.40-0.54, P < .001) and multivariable (OR 0.64, 95% CI 0.47-0.86, P = .003) assessment, controlling for age and induction agent. Increasing TTR by 10% was also associated with lower rates of CLAD (P < .001) and mortality (P < .001) at 1 year. Prospective studies confirming these findings appear warranted.
Collapse
Affiliation(s)
- Christopher R Ensor
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA.,Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Carlo J Iasella
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Kate M Harrigan
- Department of Pharmacy Systems, Outcomes & Policy, University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA
| | - Matthew R Morrell
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cody A Moore
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Norihisa Shigemura
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Adriana Zeevi
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John F McDyer
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
19
|
Cyclophosphamide for Refractory Acute Cellular Rejection After Lung Transplantation. Transplant Direct 2018; 4:e350. [PMID: 29796421 PMCID: PMC5959344 DOI: 10.1097/txd.0000000000000790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/28/2018] [Indexed: 11/30/2022] Open
Abstract
Background Acute cellular rejection (ACR) is a major risk factor for chronic lung allograft dysfunction after lung transplantation. Acute cellular rejection can persist or recur despite augmentation of immunosuppression by conventional methods. There are limited therapeutic options in treating these recurrent and refractory ACRs. We describe our experience with cyclophosphamide therapy for recurrent and refractory ACR in lung transplant recipients. Methods Six consecutive patients who were treated with cyclophosphamide for recurrent or refractory ACR were included in the series. The primary outcome measures were improvement in ACR score and forced expiratory volume at 1 second. Secondary outcome measures included adverse drug events including bone marrow suppression, gastrointestinal side effects, and infections. Results Five of the 6 patients treated demonstrated complete resolution of ACR on follow-up biopsies. Acute cellular rejection score improved after cyclophosphamide treatment (P = 0.03). None of the patients had high grade (≥A3) ACR in the 3 months after cyclophosphamide administration. Cyclophosphamide had no effect on forced expiratory volume at 1 second trend or bronchiolitis obliterans score. All patients tolerated cyclophosphamide with minor gastrointestinal side effects, mild bone marrow suppression, and nonfatal infections that were amenable to treatment. Conclusions Cyclophosphamide therapy is an option in treating recurrent and refractory ACR in patients who have failed conventional treatments. Cyclophosphamide is tolerated well without serious adverse drug events (ADE).
Collapse
|