1
|
Atwood DT, Köhler JR, Vargas SO, Wong W, Klouda T. Identification of Irpex and Rhodotorula on surveillance bronchoscopy in a pediatric lung transplant recipient: A case report and review of literature of these atypical fungal organisms. Pediatr Transplant 2024; 28:e14759. [PMID: 38623871 DOI: 10.1111/petr.14759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 03/14/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Invasive fungal disease (IFD) is a frequent complication in pediatric lung transplant recipients, occurring in up to 12% of patients in the first year. Risk factors for infection include impaired lung defenses and intense immunosuppressive regimens. While most IFD occurs from Aspergillus, other fungal conidia are continuously inhaled, and infections with fungi on a spectrum of human pathogenicity can occur. CASE REPORT We report a case of a 17-year-old lung transplant recipient in whom Irpex lacteus and Rhodotorula species were identified during surveillance bronchoscopy. She was asymptomatic and deemed to be colonized by Irpex lacteus and Rhodotorula species following transplant. 2 years after transplantation, she developed a fever, respiratory symptoms, abnormal lung imaging, and histological evidence of acute and chronic bronchitis on transbronchial biopsy. After developing symptoms concerning for a pulmonary infection and graft dysfunction, she was treated for a presumed IFD. Unfortunately, further diagnostic testing could not be performed at this time given her tenuous clinical status. Despite the initiation of antifungal therapy, her graft function continued to decline resulting in a second lung transplantation. CONCLUSIONS This case raises the concern for IFD in lung transplant recipients from Irpex species. Further investigation is needed to understand the pathogenicity of this organism, reduce the incidence and mortality of IFD in lung transplant recipients, and refine the approach to diagnosis and manage the colonization and isolation of rare, atypical fungal pathogens in immunocompromised hosts.
Collapse
Affiliation(s)
- Daniel T Atwood
- Division of Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Julia R Köhler
- Division of Infectious Disease, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Sara O Vargas
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Wai Wong
- Division of Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Timothy Klouda
- Division of Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Ehrsam JP, Meier Adamenko O, Pannu M, Markus Schöb O, Inci I. Lung transplantation in children. TURK GOGUS KALP DAMAR CERRAHISI DERGISI 2024; 32:S119-S133. [PMID: 38584780 PMCID: PMC10995684 DOI: 10.5606/tgkdc.dergisi.2024.25806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 04/09/2024]
Abstract
Lung transplantation is a well-established treatment for children facing advanced lung disease and pulmonary vascular disorders. However, organ shortage remains highest in children. For fitting the small chest of children, transplantation of downsized adult lungs, lobes, or even segments were successfully established. The worldwide median survival after pediatric lung transplantation is currently 5.7 years, while under consideration of age, underlying disease, and peri- and posttransplant center experience, median survival of more than 10 years is reported. Timing of referral for transplantation, ischemia-reperfusion injury, primary graft dysfunction, and acute and chronic rejection after transplantation remain the main challenges.
Collapse
Affiliation(s)
- Jonas Peter Ehrsam
- School of Medicine, University of Zurich, Zurich, Switzerland
- Department of Thoracic Surgery, Klinik Hirslanden Zurich, Zurich, Switzerland
- Klinik Hirslanden Zurich, Centre for Surgery, Zurich, Switzerland
| | | | | | - Othmar Markus Schöb
- School of Medicine, University of Zurich, Zurich, Switzerland
- Department of Thoracic Surgery, Klinik Hirslanden Zurich, Zurich, Switzerland
- Klinik Hirslanden Zurich, Centre for Surgery, Zurich, Switzerland
| | - Ilhan Inci
- School of Medicine, University of Zurich, Zurich, Switzerland
- Department of Thoracic Surgery, Klinik Hirslanden Zurich, Zurich, Switzerland
- Klinik Hirslanden Zurich, Centre for Surgery, Zurich, Switzerland
- University of Nicosia Medical School, Nicosia, Cyprus
| |
Collapse
|
3
|
Dulek DE. Update on Epidemiology and Outcomes of Infection in Pediatric Organ Transplant Recipients. Infect Dis Clin North Am 2023; 37:561-575. [PMID: 37532391 DOI: 10.1016/j.idc.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Pediatric solid organ transplant (SOT) recipients are at risk for infection following transplantation. Data from adult SOT recipients are often used to guide prevention and treatment of infections associated with organ transplantation in children. This article highlights key recent pediatric SOT-specific publications for an array of infectious complications of organ transplantation. Attention is given to areas of need for future study.
Collapse
Affiliation(s)
- Daniel E Dulek
- Vanderbilt University Medical Center, Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, TN, USA.
| |
Collapse
|
4
|
Renner S, Nachbaur E, Jaksch P, Dehlink E. Update on Respiratory Fungal Infections in Cystic Fibrosis Lung Disease and after Lung Transplantation. J Fungi (Basel) 2020; 6:381. [PMID: 33371198 PMCID: PMC7766476 DOI: 10.3390/jof6040381] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 12/19/2022] Open
Abstract
Cystic fibrosis is the most common autosomal-recessive metabolic disease in the Western world. Impaired trans-membrane chloride transport via the cystic fibrosis transmembrane conductance regulator (CFTR) protein causes thickened body fluids. In the respiratory system, this leads to chronic suppurative cough and recurrent pulmonary infective exacerbations, resulting in progressive lung damage and respiratory failure. Whilst the impact of bacterial infections on CF lung disease has long been recognized, our understanding of pulmonary mycosis is less clear. The range and detection rates of fungal taxa isolated from CF airway samples are expanding, however, in the absence of consensus criteria and univocal treatment protocols for most respiratory fungal conditions, interpretation of laboratory reports and the decision to treat remain challenging. In this review, we give an overview on fungal airway infections in CF and CF-lung transplant recipients and focus on the most common fungal taxa detected in CF, Aspergillus fumigatus, Candida spp., Scedosporium apiospermum complex, Lomentospora species, and Exophiala dermatitidis, their clinical presentations, common treatments and prophylactic strategies, and clinical challenges from a physician's point of view.
Collapse
Affiliation(s)
- Sabine Renner
- Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatrics and Adolescent Medicine, Associated National Center in the European Reference Network on Rare Respiratory Diseases ERN-LUNG and the European Reference Network on Transplantation in Children, ERN TRANSPLANT-CHILD, Medical University of Vienna, 1090 Vienna, Austria; (S.R.); (E.N.)
| | - Edith Nachbaur
- Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatrics and Adolescent Medicine, Associated National Center in the European Reference Network on Rare Respiratory Diseases ERN-LUNG and the European Reference Network on Transplantation in Children, ERN TRANSPLANT-CHILD, Medical University of Vienna, 1090 Vienna, Austria; (S.R.); (E.N.)
| | - Peter Jaksch
- Division of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria;
| | - Eleonora Dehlink
- Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatrics and Adolescent Medicine, Associated National Center in the European Reference Network on Rare Respiratory Diseases ERN-LUNG and the European Reference Network on Transplantation in Children, ERN TRANSPLANT-CHILD, Medical University of Vienna, 1090 Vienna, Austria; (S.R.); (E.N.)
| |
Collapse
|
5
|
Sweet SC, Chin H, Conrad C, Hayes D, Heeger PS, Faro A, Goldfarb S, Melicoff-Portillo E, Mohanakumar T, Odim J, Schecter M, Storch GA, Visner G, Williams NM, Kesler K, Danziger-Isakov L. Absence of evidence that respiratory viral infections influence pediatric lung transplantation outcomes: Results of the CTOTC-03 study. Am J Transplant 2019; 19:3284-3298. [PMID: 31216376 PMCID: PMC6883118 DOI: 10.1111/ajt.15505] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/14/2019] [Accepted: 06/11/2019] [Indexed: 01/25/2023]
Abstract
Based on reports in adult lung transplant recipients, we hypothesized that community-acquired respiratory viral infections (CARVs) would be a risk factor for poor outcome after pediatric lung transplant. We followed 61 pediatric lung transplant recipients for 2+ years or until they met a composite primary endpoint including bronchiolitis obliterans syndrome/obliterative bronchiolitis, retransplant, or death. Blood, bronchoalveolar lavage, and nasopharyngeal specimens were obtained with standard of care visits. Nasopharyngeal specimens were obtained from recipients with respiratory viral symptoms. Respiratory specimens were interrogated for respiratory viruses by using multiplex polymerase chain reaction. Donor-specific HLA antibodies, self-antigens, and ELISPOT reactivity were also evaluated. Survival was 84% (1 year) and 68% (3 years). Bronchiolitis obliterans syndrome incidence was 20% (1 year) and 38% (3 years). The primary endpoint was met in 46% of patients. CARV was detected in 156 patient visits (74% enterovirus/rhinovirus). We did not find a relationship between CARV recovery from respiratory specimens and the primary endpoint (hazard ratio 0.64 [95% confidence interval: 0.25-1.59], P = .335) or between CARV and the development of alloimmune or autoimmune humoral or cellular responses. These findings raise the possibility that the immunologic impact of CARV following pediatric lung transplant is different than that observed in adults.
Collapse
Affiliation(s)
| | | | - Carol Conrad
- Lucile Packard Children’s Hospital, Palo Alto, California
| | - Don Hayes
- Nationwide Children’s Hospital, Columbus, Ohio
| | - Peter S. Heeger
- Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Albert Faro
- Cystic Fibrosis Foundation, Bethesda, Maryland
| | - Samuel Goldfarb
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | | | - Jonah Odim
- National Institutes of Health, NIAID, Bethesda, Maryland
| | - Marc Schecter
- Cincinnati Children’s Hospital Medical, Center, Cincinnati, OH, USA
| | | | - Gary Visner
- Boston Children’s Hospital, Boston, Massachusetts
| | | | - Karen Kesler
- Rho Federal Systems, Chapel Hill, North Carolina
| | | |
Collapse
|
6
|
Engel TGP, Slabbers L, de Jong C, Melchers WJG, Hagen F, Verweij PE, Merkus P, Meis JF. Prevalence and diversity of filamentous fungi in the airways of cystic fibrosis patients - A Dutch, multicentre study. J Cyst Fibros 2018; 18:221-226. [PMID: 30514613 DOI: 10.1016/j.jcf.2018.11.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 11/14/2018] [Accepted: 11/21/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND Progressive lung injury in Cystic Fibrosis (CF) patients can lead to chronic colonization with bacteria and fungi. Fungal colonization is obtained from the environment which necessitates locally performed epidemiology studies. We prospectively analyzed respiratory samples of CF patients during a 3-year period, using a uniform fungal culture protocol, focusing on filamentous fungi and azole resistance in Aspergillus fumigatus. METHODS Over a 3-year period, all respiratory specimens collected from CF patients in 5 Dutch CF centers, were analyzed. Samples were inoculated onto the fungal culture media Sabouraud dextrose agar (SDA) and Medium B+. All fungal isolates were collected and identified in one centre, using Amplified Fragment Length Polymorphism (AFLP) fingerprinting, rDNA PCR and ITS, calmodulin and β-tubulin sequencing. Azole resistance was assessed for all A. fumigatus using a qPCR assay followed by phenotypic confirmation. RESULTS Filamentous fungi were recovered from 699 patients from at least one respiratory sample, corresponding with 3787 cultured fungal species. A. fumigatus was cultured most often with a mean prevalence of 31.7%, followed by Penicillium species (12.6%), non-fumigatus Aspergillus species (5.6%), Scedosporium species (4.5%) and Exophiala dermatitidis and Cladosporium species (1.1% each). In total 107 different fungal species were identified, with 39 Penicillium species and 15 Aspergillus species. Azole resistance frequency in A. fumigatus was 7.1%, with TR34/L98H being the dominant resistance mechanism. CONCLUSION A vast diversity of filamentous fungi was demonstrated, dominated by Aspergillus and Penicillium species. We observed a mean azole resistance prevalence of 7.1% of A. fumigatus culture positive patients.
Collapse
Affiliation(s)
- Tobias G P Engel
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands; Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands.
| | - Lydie Slabbers
- Department of Pediatrics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Carmen de Jong
- Department of Pediatrics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Willem J G Melchers
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands; Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
| | - Ferry Hagen
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital (CWZ), Nijmegen, The Netherlands
| | - Paul E Verweij
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands; Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
| | - Peter Merkus
- Department of Pediatrics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jacques F Meis
- Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands; Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital (CWZ), Nijmegen, The Netherlands
| | | |
Collapse
|