1
|
Liu X, Fang H, Liang D, Lei Q, Wang J, Xu F, Liang S, Liang D, Yang F, Li H, Chen J, Ni Y, Xie G, Zeng C. Advancing the application of the analytical renal pathology system in allograft IgA nephropathy patients. Ren Fail 2024; 46:2322043. [PMID: 38425049 PMCID: PMC10911252 DOI: 10.1080/0886022x.2024.2322043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND The analytical renal pathology system (ARPS) based on convolutional neural networks has been used successfully in native IgA nephropathy (IgAN) patients. Considering the similarity of pathologic features, we aim to evaluate the performance of the ARPS in allograft IgAN patients and broaden its implementation. METHODS Biopsy-proven allograft IgAN patients from two different centers were enrolled for internal and external validation. We implemented the ARPS to identify glomerular lesions and intrinsic glomerular cells, and then evaluated its performance. Consistency between the ARPS and pathologists was assessed using intraclass correlation coefficients. The association of digital pathological features with clinical and pathological data was measured. Kaplan-Meier survival curve and cox proportional hazards model were applied to investigate prognosis prediction. RESULTS A total of 56 biopsy-proven allograft IgAN patients from the internal center and 17 biopsy-proven allograft IgAN patients from the external center were enrolled in this study. The ARPS was successfully applied to identify the glomerular lesions (F1-score, 0.696-0.959) and quantify intrinsic glomerular cells (F1-score, 0.888-0.968) in allograft IgAN patients rapidly and precisely. Furthermore, the mesangial hypercellularity score was positively correlated with all mesangial metrics provided by ARPS [Spearman's correlation coefficient (r), 0.439-0.472, and all p values < 0.001]. Besides, a higher allograft survival was noticed among patients in the high-level groups of the maximum and ratio of endothelial cells, as well as the maximum and density of podocytes. CONCLUSION We propose that the ARPS could be implemented in future clinical practice with outstanding capability.
Collapse
Affiliation(s)
- Xumeng Liu
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Huiwen Fang
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Dongmei Liang
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qunjuan Lei
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | | | - Feng Xu
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Shaoshan Liang
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Dandan Liang
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Fan Yang
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Heng Li
- Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, China
| | - Jianghua Chen
- Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, China
| | - Yuan Ni
- Ping An Healthcare Technology, Shanghai, China
| | - Guotong Xie
- Ping An Healthcare Technology, Shanghai, China
| | - Caihong Zeng
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
2
|
Haruhara K, Okabayashi Y, Sasaki T, Kubo E, D'Agati VD, Bertram JF, Tsuboi N, Yokoo T. Podocyte density as a predictor of long-term kidney outcome in obesity-related glomerulopathy. Kidney Int 2024; 106:496-507. [PMID: 39046396 DOI: 10.1016/j.kint.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 05/15/2024] [Accepted: 05/28/2024] [Indexed: 07/25/2024]
Abstract
Glomerulomegaly and focal segmental glomerulosclerosis are histopathological hallmarks of obesity-related glomerulopathy (ORG). Podocyte injury and subsequent depletion are regarded as key processes in the development of these glomerular lesions in patients with ORG, but their impact on long-term kidney outcome is undetermined. Here, we correlated clinicopathological findings and podocyte depletion retrospectively in patients with ORG. Relative (podocyte density) and absolute (podocyte number per glomerulus) measures of podocyte depletion were estimated using model-based stereology in 46 patients with ORG. The combined endpoint of kidney outcomes was defined as a 30% decline in estimated glomerular filtration rate (eGFR) or kidney failure. Patients with lower podocyte density were predominantly male and had larger body surface area, greater proteinuria, fewer non-sclerotic glomeruli, larger glomeruli and higher single-nephron eGFR. During a median follow-up of 4.1 years, 18 (39%) patients reached endpoint. Kidney survival in patients with lower podocyte density was significantly worse than in patients with higher podocyte density. However, there was no difference in kidney survival between patient groups based on podocyte number per glomerulus. Cox hazard analysis showed that podocyte density, but not podocyte number per glomerulus, was associated with the kidney outcomes after adjustment for clinicopathological confounders. Thus, our study demonstrates that a relative depletion of podocytes better predicts long-term kidney outcomes than does absolute depletion of podocytes. Hence, the findings implicate mismatch between glomerular enlargement and podocyte number as a crucial determinant of disease progression in ORG.
Collapse
Affiliation(s)
- Kotaro Haruhara
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan; Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.
| | - Yusuke Okabayashi
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takaya Sasaki
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Eisuke Kubo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Vivette D D'Agati
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - John F Bertram
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia; Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Brisbane, Australia
| | - Nobuo Tsuboi
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Charnaya O, Van Arendonk K, Segev D. Strategies for choosing the best living donor: A review of the literature and a proposal of a decision-making paradigm. Pediatr Transplant 2024; 28:e14779. [PMID: 38766997 PMCID: PMC11107570 DOI: 10.1111/petr.14779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/31/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024]
Abstract
Transplantation remains the gold-standard treatment for pediatric end-stage kidney disease. While living donor transplant is the preferred option for most pediatric patients, it is not the right choice for all. For those who have the option to choose between deceased donor and living donor transplantation, or from among multiple potential living donors, the transplant clinician must weigh multiple dynamic factors to identify the most optimal donor. This review will cover the key considerations when choosing between potential living donors and will propose a decision-making algorithm.
Collapse
Affiliation(s)
- Olga Charnaya
- Department of Pediatrics, Johns Hopkins University School of Medicine
| | | | | |
Collapse
|
4
|
Roy N, Morales-Alvarez MC, Anis KH, Goral S, Doria C, Kopp JB, Winkler CA, Feng R, Rosas SE. Association of Recipient APOL1 Kidney Risk Alleles With Kidney Transplant Outcomes. Transplantation 2023; 107:2575-2580. [PMID: 37527489 PMCID: PMC11184510 DOI: 10.1097/tp.0000000000004742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
BACKGROUND Kidney transplant survival in African American recipients is lower compared with non-African American transplant recipients. APOL1 risk alleles (RA) have been postulated as likely contributors. We examined the graft outcomes in kidney transplant recipients (KTRs) stratified by APOL1 RA status in a multicenter observational prospective study. METHODS The Renal Transplant Outcome Study recruited a cohort of incident KTRs at 3 transplant centers in the Philadelphia area from 1999-2004. KTRs were genotyped for APOL1 RA. Allograft and patient survival rates were compared by the presence and number of APOL1 RA. RESULTS Among 221 participants, approximately 43% carried 2 APOL1 RA. Recipients carrying 2 APOL1 RA demonstrated lower graft survival compared with recipients with only 1 or none of APOL1 RA at 1 y posttransplant, independently of other donor and recipient characteristics (adjusted hazard ratio 3.2 [95% confidence interval, 1.0-10.4], P = 0.05). There was no significant difference in overall survival or graft survival after 3 y posttransplantation. There was no difference in death by APOL1 -risk status ( P = 0.11). CONCLUSIONS Recipients with 2 APOL1 high-risk alleles exhibited lower graft survival 1 y posttransplantation compared with recipients with only 1 or 0 APOL1 RA. Further research is required to study the combined role of the recipient and donor APOL1 genotypes in kidney transplantation.
Collapse
Affiliation(s)
- Neil Roy
- Kidney and Hypertension Unit, Joslin Diabetes Center, Boston, MA
- Nephrology Department, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - M. Catalina Morales-Alvarez
- Kidney and Hypertension Unit, Joslin Diabetes Center, Boston, MA
- Nephrology Department, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Karim H. Anis
- Kidney and Hypertension Unit, Joslin Diabetes Center, Boston, MA
- Nephrology Department, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Simin Goral
- Division of Renal, Electrolyte, and Hypertension, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | | | - Cheryl A. Winkler
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute and the Basic Research Program, Frederick National Laboratory, Frederick, MD
| | - Rui Feng
- Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sylvia E. Rosas
- Kidney and Hypertension Unit, Joslin Diabetes Center, Boston, MA
- Nephrology Department, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
5
|
Chen DP, Henderson CD, Anguiano J, Aiello CP, Collie MM, Moreno V, Hu Y, Hogan SL, Falk RJ. Kidney Disease Progression in Membranous Nephropathy among Black Participants with High-Risk APOL1 Genotype. Clin J Am Soc Nephrol 2023; 18:337-343. [PMID: 36763808 PMCID: PMC10103220 DOI: 10.2215/cjn.0000000000000070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/02/2023] [Indexed: 01/22/2023]
Abstract
BACKGROUND Disparity in CKD progression among Black individuals persists in glomerular diseases. Genetic variants in the apolipoprotein L1 ( APOL1 ) gene in the Black population contribute to kidney disease, but the influence in membranous nephropathy remains unknown. METHODS Longitudinally followed participants enrolled in the Glomerular Disease Collaborative Network or Cure Glomerulonephropathy Network were included if they had DNA or genotyping available for APOL1 (Black participants with membranous nephropathy) or had membranous nephropathy but were not Black. eGFR slopes were estimated using linear mixed-effects models with random effects and adjusting for covariates and interaction terms of covariates. Fisher exact test, Kruskal-Wallis test, and Kaplan-Meier curves with log-rank tests were used to compare groups. RESULTS Among 118 Black membranous nephropathy participants, 16 (14%) had high-risk APOL1 genotype (two risk alleles) and 102 (86%) had low-risk APOL1 genotype (zero or one risk alleles, n =53 and n =49, respectively). High-risk APOL1 membranous nephropathy participants were notably younger at disease onset than low-risk APOL1 and membranous nephropathy participants that were not Black ( n =572). eGFR at disease onset was not different between groups, although eGFR decline (slope) was steeper in participants with high-risk APOL1 genotype (-16±2 [±SE] ml/min per 1.73 m 2 per year) compared with low-risk APOL1 genotype (-4±0.8 ml/min per 1.73 m 2 per year) or membranous nephropathy participants that did not identify themselves as Black (-2.0±0.4 ml/min per 1.73 m 2 per year) ( P <0.0001). Time to kidney failure was faster in the high-risk APOL1 genotype than low-risk APOL1 genotype or membranous nephropathy participants that were not Black. CONCLUSIONS The prevalence of high-risk APOL1 variant among Black membranous nephropathy participants is comparable with the general Black population (10%-15%), yet the high-risk genotype was associated with worse eGFR decline and faster time to kidney failure compared with low-risk genotype and participants that were not Black.
Collapse
Affiliation(s)
- Dhruti P. Chen
- UNC Kidney Center, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Candace D. Henderson
- UNC Kidney Center, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Jaeline Anguiano
- UNC Kidney Center, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Claudia P. Aiello
- UNC Kidney Center, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Mary M. Collie
- UNC Kidney Center, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Vanessa Moreno
- Department of Pathology, University of North Carolina, Chapel Hill, North Carolina
| | - Yichun Hu
- UNC Kidney Center, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Susan L. Hogan
- UNC Kidney Center, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Ronald J. Falk
- UNC Kidney Center, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW More than 5 million African-Americans, and millions more in Africa and worldwide, possess apolipoprotein L1 gene (APOL1) high-risk genotypes with an increased risk for chronic kidney disease. This manuscript reviews treatment approaches for slowing the progression of APOL1-associated nephropathy. RECENT FINDINGS Since the 2010 discovery of APOL1 as a cause of nondiabetic nephropathy in individuals with sub-Saharan African ancestry, it has become apparent that aggressive hypertension control, renin-angiotensin system blockade, steroids and conventional immunosuppressive agents are suboptimal treatments. In contrast, APOL1-mediated collapsing glomerulopathy due to interferon treatment and HIV infection, respectively, often resolve with cessation of interferon or antiretroviral therapy. Targeted therapies, including APOL1 small molecule inhibitors, APOL1 antisense oligonucleotides (ASO) and inhibitors of APOL1-associated inflammatory pathways, hold promise for these diseases. Evolving therapies and the need for clinical trials support the importance of increased use of APOL1 genotyping and kidney biopsy. SUMMARY APOL1-associated nephropathy includes a group of related phenotypes that are driven by the same two genetic variants in APOL1. Clinical trials of small molecule inhibitors, ASO, and inflammatory pathway inhibitors may improve outcomes in patients with primary forms of APOL1-associated nephropathy.
Collapse
|
7
|
Zeitler EM, Jennette JC, Flythe JE, Falk RJ, Poulton JS. High-calorie diet results in reversible obesity-related glomerulopathy in adult zebrafish regardless of dietary fat. Am J Physiol Renal Physiol 2022; 322:F527-F539. [PMID: 35224994 PMCID: PMC8977181 DOI: 10.1152/ajprenal.00018.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/10/2022] [Accepted: 02/22/2022] [Indexed: 11/22/2022] Open
Abstract
Obesity is a risk factor for the development of kidney disease. The role of diet in this association remains undetermined, in part due to practical limitations in studying nutrition in humans. In particular, the relative importance of calorie excess versus dietary macronutrient content is poorly understood. For example, it is unknown if calorie restriction modulates obesity-related kidney pathology. To study the effects of diet-induced obesity in a novel animal model, we treated zebrafish for 8 wk with diets varied in both calorie and fat content. Kidneys were evaluated by light and electron microscopy. We evaluated glomerular filtration barrier function using a dextran permeability assay. We assessed the effect of diet on podocyte sensitivity to injury using an inducible podocyte injury model. We then tested the effect of calorie restriction on the defects caused by diet-induced obesity. Fish fed a high-calorie diet developed glomerulomegaly (mean: 1,211 vs. 1,010 µm2 in controls, P = 0.007), lower podocyte density, foot process effacement, glomerular basement membrane thickening, tubular enlargement (mean: 1,038 vs. 717 µm2 in controls, P < 0.0001), and ectopic lipid deposition. Glomerular filtration barrier dysfunction and increased susceptibility to podocyte injury were observed with high-calorie feeding regardless of dietary fat content. These pathological changes resolved with 4 wk of calorie restriction. Our findings suggest that calorie excess rather than dietary fat drives obesity-related kidney dysfunction and that inadequate podocyte proliferation in response to glomerular enlargement may cause podocyte dysfunction. We also demonstrate the value of zebrafish as a novel model for studying diet in obesity-related kidney disease.NEW & NOTEWORTHY Obesity is a risk factor for kidney disease. The role of diet in this association is difficult to study in humans. In this study, zebrafish fed a high-calorie diet, regardless of fat macronutrient composition, developed glomerulomegaly, foot process effacement, and filtration barrier dysfunction, recapitulating the changes seen in humans with obesity. Calorie restriction reversed the changes. This work suggests that macronutrient composition may be less important than total calories in the development of obesity-related kidney disease.
Collapse
Affiliation(s)
- Evan M Zeitler
- Division of Nephrology and Hypertension, Department of Medicine, UNC Kidney Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - J Charles Jennette
- Division of Nephrology and Hypertension, Department of Medicine, UNC Kidney Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Nephropathology Division, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jennifer E Flythe
- Division of Nephrology and Hypertension, Department of Medicine, UNC Kidney Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ronald J Falk
- Division of Nephrology and Hypertension, Department of Medicine, UNC Kidney Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - John S Poulton
- Division of Nephrology and Hypertension, Department of Medicine, UNC Kidney Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
8
|
Harris DD, Fleishman A, Pavlakis M, Pollak MR, Baliga PK, Rohan V, Kayler LK, Rodrigue JR. Apolipoprotein L1 Opinions of African American Living Kidney Donors, Kidney Transplant Patients, and Nonpatients. J Surg Res 2022; 277:116-124. [PMID: 35489216 DOI: 10.1016/j.jss.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/03/2022] [Accepted: 04/06/2022] [Indexed: 11/26/2022]
Abstract
INTRODUCTION The discovery of apolipoprotein L1 (ApoL1) has raised important ethical and clinical questions about genetic testing in the context of living and deceased kidney donation. Largely missing from this discussion are the perspectives of those African Americans (AA) most likely to be impacted by ApoL1 testing. METHODS We surveyed 331 AA potential and former living kidney donors (LKDs), kidney transplant candidates and recipients, and nonpatients at three United States transplant programs about their ApoL1 testing attitudes. RESULTS Overall, 72% felt that transplant programs should offer ApoL1 testing to AA potential LKDs. If a potential LKD has the high-risk genotype, 79% felt that the LKD should be allowed to make their own donation decision or participate in shared decision-making with transplant doctors. More than half of the potential LKDs (58%) would undergo ApoL1 testing and 81% of former LKDs would take the test now if offered. Most transplant candidates expressed a low likelihood of accepting a kidney from a LKD (79%) or a deceased donor (67%) with the high-risk genotype. CONCLUSIONS There is strong support among LKDs and transplant patients for ApoL1 testing when evaluating potential kidney donors of African ancestry. Inclusion of AA stakeholders in developing guidelines and educational programs for ApoL1 testing is critical.
Collapse
Affiliation(s)
- Dwight D Harris
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | - Aaron Fleishman
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | - Martha Pavlakis
- Department of Surgery, Harvard Medical School, Boston, Massachusetts; Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Martin R Pollak
- Department of Surgery, Harvard Medical School, Boston, Massachusetts; Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Prabhakar K Baliga
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Vinayak Rohan
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Liise K Kayler
- Department of Surgery, University at Buffalo (SUNY) Jacobs School of Medicine & Biomedical Sciences and Erie County Medical Center, Buffalo, New York
| | - James R Rodrigue
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Department of Surgery, Harvard Medical School, Boston, Massachusetts; Department of Surgery, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
9
|
Freedman BI, Mena-Gutierrez AM, Ma L. Recipient APOL1 Genotype Effects on Outcomes After Kidney Transplantation. Am J Kidney Dis 2021; 79:450-452. [PMID: 34801598 DOI: 10.1053/j.ajkd.2021.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/04/2021] [Indexed: 02/04/2023]
Affiliation(s)
- Barry I Freedman
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine; Winston-Salem, North Carolina, USA.
| | - Alejandra M Mena-Gutierrez
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine; Winston-Salem, North Carolina, USA
| | - Lijun Ma
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine; Winston-Salem, North Carolina, USA
| |
Collapse
|
10
|
Ekulu PM, Adebayo OC, Decuypere JP, Bellucci L, Elmonem MA, Nkoy AB, Mekahli D, Bussolati B, van den Heuvel LP, Arcolino FO, Levtchenko EN. Novel Human Podocyte Cell Model Carrying G2/G2 APOL1 High-Risk Genotype. Cells 2021; 10:cells10081914. [PMID: 34440683 PMCID: PMC8391400 DOI: 10.3390/cells10081914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 02/01/2023] Open
Abstract
Apolipoprotein L1 (APOL1) high-risk genotypes (HRG), G1 and G2, increase the risk of various non-diabetic kidney diseases in the African population. To date, the precise mechanisms by which APOL1 risk variants induce injury on podocytes and other kidney cells remain unclear. Trying to unravel these mechanisms, most studies have used animal or cell models created by gene editing. We developed and characterised conditionally immortalised human podocyte cell lines derived from urine of a donor carrying APOL1 HRG G2/G2. Following induction of APOL1 expression by polyinosinic-polycytidylic acid (poly(I:C)), we assessed functional features of APOL1-induced podocyte dysfunction. As control, APOL1 wild type (G0/G0) podocyte cell line previously generated from a Caucasian donor was used. Upon exposure to poly(I:C), G2/G2 and G0/G0 podocytes upregulated APOL1 expression resulting in podocytes detachment, decreased cells viability and increased apoptosis rate in a genotype-independent manner. Nevertheless, G2/G2 podocyte cell lines exhibited altered features, including upregulation of CD2AP, alteration of cytoskeleton, reduction of autophagic flux and increased permeability in an in vitro model under continuous perfusion. The human APOL1 G2/G2 podocyte cell model is a useful tool for unravelling the mechanisms of APOL1-induced podocyte injury and the cellular functions of APOL1.
Collapse
Affiliation(s)
- Pepe M. Ekulu
- Department of Development and Regeneration, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (P.M.E.); (O.C.A.); (J.-P.D.); (A.B.N.); (D.M.); (L.P.v.d.H.); (E.N.L.)
- Department of Paediatrics, Division of Nephrology, Faculty of Medicine, University Hospital of Kinshasa, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Oyindamola C. Adebayo
- Department of Development and Regeneration, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (P.M.E.); (O.C.A.); (J.-P.D.); (A.B.N.); (D.M.); (L.P.v.d.H.); (E.N.L.)
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Jean-Paul Decuypere
- Department of Development and Regeneration, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (P.M.E.); (O.C.A.); (J.-P.D.); (A.B.N.); (D.M.); (L.P.v.d.H.); (E.N.L.)
| | - Linda Bellucci
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10124 Turin, Italy; (L.B.); (B.B.)
| | - Mohamed A. Elmonem
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo 11628, Egypt;
| | - Agathe B. Nkoy
- Department of Development and Regeneration, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (P.M.E.); (O.C.A.); (J.-P.D.); (A.B.N.); (D.M.); (L.P.v.d.H.); (E.N.L.)
- Department of Paediatrics, Division of Nephrology, Faculty of Medicine, University Hospital of Kinshasa, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Djalila Mekahli
- Department of Development and Regeneration, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (P.M.E.); (O.C.A.); (J.-P.D.); (A.B.N.); (D.M.); (L.P.v.d.H.); (E.N.L.)
- Department of Paediatrics, Division of Nephrology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10124 Turin, Italy; (L.B.); (B.B.)
| | - Lambertus P. van den Heuvel
- Department of Development and Regeneration, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (P.M.E.); (O.C.A.); (J.-P.D.); (A.B.N.); (D.M.); (L.P.v.d.H.); (E.N.L.)
- Department of Paediatric Nephrology, Radboud University Medical Centre, 6500 Nijmegen, The Netherlands
| | - Fanny O. Arcolino
- Department of Development and Regeneration, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (P.M.E.); (O.C.A.); (J.-P.D.); (A.B.N.); (D.M.); (L.P.v.d.H.); (E.N.L.)
- Correspondence: ; Tel.: +32-16372647
| | - Elena N. Levtchenko
- Department of Development and Regeneration, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (P.M.E.); (O.C.A.); (J.-P.D.); (A.B.N.); (D.M.); (L.P.v.d.H.); (E.N.L.)
- Department of Paediatrics, Division of Nephrology, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|