1
|
Shaw BI, Lee HJ, Ettenger R, Grimm P, Reed EF, Sarwal M, Stempora L, Warshaw B, Zhao C, Martinez OM, MacIver NJ, Kirk AD, Chambers ET. Malnutrition and immune cell subsets in children undergoing kidney transplantation. Pediatr Transplant 2022; 26:e14371. [PMID: 35938682 PMCID: PMC9669171 DOI: 10.1111/petr.14371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Malnutrition, including obesity and undernutrition, among children is increasing in prevalence and is common among children on renal replacement therapy. The effect of malnutrition on the pre-transplant immune system and how the pediatric immune system responds to the insult of both immunosuppression and allotransplantation is unknown. We examined the relationship of nutritional status with post-transplant outcomes and characterized the peripheral immune cell phenotypes of children from the Immune Development of Pediatric Transplant (IMPACT) study. METHODS Ninety-eight patients from the IMPACT study were classified as having obesity, undernutrition, or normal nutrition-based pre-transplant measurements. Incidence of infectious and alloimmune outcomes at 1-year post-transplantation was compared between nutritional groups using Gray's test and Fine-Gray subdistribution hazards model. Event-free survival was estimated by Kaplan-Meier method and compared between groups. Differences in immune cell subsets between nutritional groups over time were determined using generalized estimating equations accounting for the correlation between repeated measurements. RESULTS We did not observe that nutritional status was associated with infectious or alloimmune events or event-free survival post-transplant. We demonstrated that children with obesity had distinct T-and B-cell signatures relative to those with undernutrition and normal nutrition, even when controlling for immunosuppression. Children with obesity had a lower frequency of CD8 Tnaive cells 9-month post-transplant (p < .001), a higher frequency of CD4 CD57 + PD1- T cells, and lower frequencies of CD57-PD1+ CD8 and CD57-PD1- CD8 T cells at 12-month transplant (p < .05 for all). CONCLUSIONS Children with obesity have distinct immunophenotypes that may influence the tailoring of immunosuppression.
Collapse
Affiliation(s)
- Brian I Shaw
- Department of Surgery, Duke University, Durham, NC, United States
| | - Hui-Jie Lee
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC United States
| | - Robert Ettenger
- Department of Pediatrics, University of California Los Angeles, CA, United States
| | - Paul Grimm
- Department of Pediatrics, Stanford University, CA, United States
| | - Elaine F Reed
- Department of Pathology, University of California, Los Angeles, CA, United States
| | - Minnie Sarwal
- Department of Surgery, University of California, San Francisco, CA, United States
| | - Linda Stempora
- Department of Surgery, Duke University, Durham, NC, United States
| | - Barry Warshaw
- Department of Pediatrics, Children’s Healthcare Atlanta, Atlanta, GA, United States
| | - Congwen Zhao
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC United States
| | - Olivia M Martinez
- Department of Surgery, Stanford University School of Medicine, CA, United States
| | - Nancie J MacIver
- Department of Pediatrics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Allan D Kirk
- Department of Surgery, Duke University, Durham, NC, United States
- Department of Pediatrics, Duke University, CA, United States
| | | |
Collapse
|
2
|
Graham ML, Ramachandran S, Singh A, Moore MEG, Flanagan EB, Azimzadeh A, Burlak C, Mueller KR, Martins K, Anazawa T, Balamurugan AN, Bansal-Pakala P, Murtaugh MP, O’Brien TD, Papas KK, Spizzo T, Schuurman HJ, Hancock WW, Hering BJ. Clinically available immunosuppression averts rejection but not systemic inflammation after porcine islet xenotransplant in cynomolgus macaques. Am J Transplant 2022; 22:745-760. [PMID: 34704345 PMCID: PMC9832996 DOI: 10.1111/ajt.16876] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/30/2021] [Accepted: 10/19/2021] [Indexed: 01/25/2023]
Abstract
A safe, efficacious, and clinically applicable immunosuppressive regimen is necessary for islet xenotransplantation to become a viable treatment option for diabetes. We performed intraportal transplants of wild-type adult porcine islets in 25 streptozotocin-diabetic cynomolgus monkeys. Islet engraftment was good in 21, partial in 3, and poor in 1 recipient. Median xenograft survival was 25 days with rapamycin and CTLA4Ig immunosuppression. Adding basiliximab induction and maintenance tacrolimus to the base regimen significantly extended median graft survival to 147 days (p < .0001), with three animals maintaining insulin-free xenograft survival for 265, 282, and 288 days. We demonstrate that this regimen suppresses non-Gal anti-pig antibody responses, circulating effector memory T cell expansion, effector function, and infiltration of the graft. However, a chronic systemic inflammatory state manifested in the majority of recipients with long-term graft survival indicated by increased neutrophil to lymphocyte ratio, IL-6, MCP-1, CD40, and CRP expression. This suggests that this immunosuppression regimen fails to regulate innate immunity and resulting inflammation is significantly associated with increased incidence and severity of adverse events making this regimen unacceptable for translation. Additional studies are needed to optimize a maintenance regimen for regulating the innate inflammatory response.
Collapse
Affiliation(s)
- Melanie L. Graham
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN
| | | | - Amar Singh
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Meghan E. G. Moore
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN
| | - E. Brian Flanagan
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Agnes Azimzadeh
- Department of Surgery, University of Maryland, Baltimore, MD
| | - Christopher Burlak
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Kate R. Mueller
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Kyra Martins
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN
| | - Takayuki Anazawa
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN
| | | | - Pratima Bansal-Pakala
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Michael P. Murtaugh
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN
| | - Timothy D. O’Brien
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN
| | - Klearchos K. Papas
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN
| | | | - Henk-J. Schuurman
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN,Spring Point Project, Minneapolis, MN
| | - Wayne W. Hancock
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Bernhard. J. Hering
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN
| |
Collapse
|
3
|
Gao Q, Davis R, Fitch Z, Mulvihill M, Ezekian B, Schroder P, Schmitz R, Song M, Leopardi F, Ribeiro M, Miller A, Moris D, Shaw B, Samy K, Reimann K, Williams K, Collins B, Kirk AD. Anti-thymoglobulin induction improves neonatal porcine xenoislet engraftment and survival. Xenotransplantation 2021; 28:e12713. [PMID: 34951057 PMCID: PMC8715890 DOI: 10.1111/xen.12713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/13/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022]
Abstract
Porcine islet xenotransplantation is a viable strategy to treat diabetes. Its translation has been limited by the pre-clinical development of a clinically available immunosuppressive regimen. We tested two clinically relevant induction agents in a non-human primate (NHP) islet xenotransplantation model to compare depletional versus nondepletional induction immunosuppression. Neonatal porcine islets were isolated from GKO or hCD46/GKO transgenic piglets and transplanted via portal vein infusion in diabetic rhesus macaques. Induction therapy consisted of either basiliximab (n = 6) or rhesus-specific anti-thymocyte globulin (rhATG, n = 6), combined with a maintenance regimen using B7 costimulation blockade, tacrolimus with a delayed transition to sirolimus, and mycophenolate mofetil. Xenografts were monitored by blood glucose levels and porcine C-peptide measurements. Of the six receiving basiliximab induction, engraftment was achieved in 4 with median graft survival of 14 days. All six receiving rhATG induction engrafted with significantly longer xenograft survival at 40.5 days (P = 0.03). These data suggest that depletional induction provides superior xenograft survival to nondepletional induction, in the setting of a costimulation blockade-based maintenance regimen.
Collapse
Affiliation(s)
- Qimeng Gao
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Robert Davis
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Zachary Fitch
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Michael Mulvihill
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Brian Ezekian
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Paul Schroder
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Robin Schmitz
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Mingqing Song
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Frank Leopardi
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Marianna Ribeiro
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Allison Miller
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Dimitrios Moris
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Brian Shaw
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Kannan Samy
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Keith Reimann
- MassBiologics, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| | - Kyha Williams
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Bradley Collins
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Allan D Kirk
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| |
Collapse
|
4
|
Manook M, Flores WJ, Schmitz R, Fitch Z, Yoon J, Bae Y, Shaw B, Kirk A, Harnois M, Permar S, Farris AB, Magnani DM, Kwun J, Knechtle S. Measuring the Impact of Targeting FcRn-Mediated IgG Recycling on Donor-Specific Alloantibodies in a Sensitized NHP Model. Front Immunol 2021; 12:660900. [PMID: 34149698 PMCID: PMC8207189 DOI: 10.3389/fimmu.2021.660900] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Background In transplantation, plasmapheresis and IVIg provide the mainstay of treatment directed at reducing or removing circulating donor-specific antibody (DSA), yet both have limitations. We sought to test the efficacy of targeting the IgG recycling mechanism of the neonatal Fc receptor (FcRn) using anti-FcRn mAb therapy in a sensitized non-human primate (NHP) model, as a pharmacological means of lowering DSA. Methods Six (6) rhesus macaque monkeys, previously sensitized by skin transplantation, received a single dose of 30mg/kg anti-RhFcRn IV, and effects on total IgG, as well as DSA IgG, were measured, in addition to IgM and protective immunity. Subsequently, 60mg/kg IV was given in the setting of kidney transplantation from skin graft donors. Kidney transplant recipients received RhATG, and tacrolimus, MMF, and steroid for maintenance immunosuppression. Results Circulating total IgG was reduced from a baseline 100% on D0 to 32.0% (mean, SD ± 10.6) on d4 post infusion (p<0.05), while using a DSA assay. T-cell flow cross match (TFXM) was reduced to 40.6±12.5% of baseline, and B-cell FXCM to 52.2±19.3%. Circulating total IgM and DSA IgM were unaffected by treatment. Pathogen-specific antibodies (anti-gB and anti-tetanus toxin IgG) were significantly reduced for 14d post infusion. Post-transplant, circulating IgG responded to anti-FcRn mAb treatment, but DSA increased rapidly. Conclusion Targeting the FcRn-mediated recycling of IgG is an effective means of lowering circulating donor-specific IgG in the sensitized recipient, although in the setting of organ transplantation mechanisms of rapid antibody rise post-transplant remains unaffected.
Collapse
Affiliation(s)
- Miriam Manook
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Walter J Flores
- Massbiologics of the University of Massachusetts Medical School, Boston, MA, United States
| | - Robin Schmitz
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Zachary Fitch
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Janghoon Yoon
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Yeeun Bae
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Brian Shaw
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Allan Kirk
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Melissa Harnois
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, United States
| | - Sallie Permar
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, United States
| | - Alton B Farris
- Department of Pathology, Emory School of Medicine, Atlanta, GA, United States
| | - Diogo M Magnani
- Massbiologics of the University of Massachusetts Medical School, Boston, MA, United States
| | - Jean Kwun
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Stuart Knechtle
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|