1
|
Yeo HJ, Kang J, Kim YH, Cho WH. Periostin in Bronchiolitis Obliterans Syndrome after Lung Transplant. Int J Mol Sci 2024; 25:10423. [PMID: 39408746 PMCID: PMC11477235 DOI: 10.3390/ijms251910423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
The utility of measuring serum periostin levels for predicting the occurrence of bronchiolitis obliterans syndrome (BOS) after lung transplantation remains underexplored. We analyzed differentially expressed genes (DEGs) between initially transplanted lung tissue and lung tissue with BOS from four patients. Periostin levels were assessed in 97 patients who had undergone lung transplantation 1 year post-transplantation and at the onset of BOS. The association between periostin levels and BOS, as well as their correlation with the decline in forced expiratory volume in one second (FEV1), was evaluated. Periostin levels in the BOS group were significantly higher than those in the control group (p < 0.001) and the stable group (p < 0.001). Periostin levels at the onset of BOS were significantly higher than those 1 year post-transplantation in the BOS group (p < 0.001). The serum periostin levels at the time of BOS diagnosis showed a positive correlation with the reduction in FEV1 (%) (r = 0.745, p < 0.001). The increase in the serum periostin levels at the time of BOS diagnosis compared with those 1 year post-transplantation was positively correlated with reduction in FEV1 (%) (r = 0.753, p < 0.001). Thus, serum periostin levels may serve as biomarkers for predicting a decline in lung function in patients with BOS after lung transplantation.
Collapse
Affiliation(s)
- Hye Ju Yeo
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Internal Medicine, Transplant Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea;
- Department of Internal Medicine, School of Medicine, Pusan National University, Busan 43241, Republic of Korea
| | - Junho Kang
- Department of research, Keimyung University Donsan Medical Center, Daegu 42601, Republic of Korea;
| | - Yun Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea;
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Woo Hyun Cho
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Internal Medicine, Transplant Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea;
- Department of Internal Medicine, School of Medicine, Pusan National University, Busan 43241, Republic of Korea
| |
Collapse
|
2
|
Bogyó LZ, Török K, Illés Z, Szilvási A, Székely B, Bohács A, Pipek O, Madurka I, Megyesfalvi Z, Rényi-Vámos F, Döme B, Bogos K, Gieszer B, Bakos E. Pseudomonas aeruginosa infection correlates with high MFI donor-specific antibody development following lung transplantation with consequential graft loss and shortened CLAD-free survival. Respir Res 2024; 25:262. [PMID: 38951782 PMCID: PMC11218249 DOI: 10.1186/s12931-024-02868-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Donor-specific antibodies (DSAs) are common following lung transplantation (LuTx), yet their role in graft damage is inconclusive. Mean fluorescent intensity (MFI) is the main read-out of DSA diagnostics; however its value is often disregarded when analyzing unwanted post-transplant outcomes such as graft loss or chronic lung allograft dysfunction (CLAD). Here we aim to evaluate an MFI stratification method in these outcomes. METHODS A cohort of 87 LuTx recipients has been analyzed, in which a cutoff of 8000 MFI has been determined for high MFI based on clinically relevant data. Accordingly, recipients were divided into DSA-negative, DSA-low and DSA-high subgroups. Both graft survival and CLAD-free survival were evaluated. Among factors that may contribute to DSA development we analyzed Pseudomonas aeruginosa (P. aeruginosa) infection in bronchoalveolar lavage (BAL) specimens. RESULTS High MFI DSAs contributed to clinical antibody-mediated rejection (AMR) and were associated with significantly worse graft (HR: 5.77, p < 0.0001) and CLAD-free survival (HR: 6.47, p = 0.019) compared to low or negative MFI DSA levels. Analysis of BAL specimens revealed a strong correlation between DSA status, P. aeruginosa infection and BAL neutrophilia. DSA-high status and clinical AMR were both independent prognosticators for decreased graft and CLAD-free survival in our multivariate Cox-regression models, whereas BAL neutrophilia was associated with worse graft survival. CONCLUSIONS P. aeruginosa infection rates are elevated in recipients with a strong DSA response. Our results indicate that the simultaneous interpretation of MFI values and BAL neutrophilia is a feasible approach for risk evaluation and may help clinicians when to initiate DSA desensitization therapy, as early intervention could improve prognosis.
Collapse
Affiliation(s)
- Levente Zoltán Bogyó
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Rath Gyorgy u. 7-9, Budapest, 1122, Hungary
- National Korányi Institute of Pulmonology, Koranyi Frigyes ut 1, Budapest, 1121, Hungary
| | - Klára Török
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Rath Gyorgy u. 7-9, Budapest, 1122, Hungary
- National Korányi Institute of Pulmonology, Koranyi Frigyes ut 1, Budapest, 1121, Hungary
| | - Zsuzsanna Illés
- Hungarian National Blood Transfusion Service, Budapest, Hungary
| | - Anikó Szilvási
- Hungarian National Blood Transfusion Service, Budapest, Hungary
| | - Bálint Székely
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Rath Gyorgy u. 7-9, Budapest, 1122, Hungary
| | - Anikó Bohács
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Orsolya Pipek
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Rath Gyorgy u. 7-9, Budapest, 1122, Hungary
- Department of Physics of Complex Systems, Eotvos Loránd University, Budapest, Hungary
| | - Ildikó Madurka
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Rath Gyorgy u. 7-9, Budapest, 1122, Hungary
- National Korányi Institute of Pulmonology, Koranyi Frigyes ut 1, Budapest, 1121, Hungary
| | - Zsolt Megyesfalvi
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Rath Gyorgy u. 7-9, Budapest, 1122, Hungary
- National Korányi Institute of Pulmonology, Koranyi Frigyes ut 1, Budapest, 1121, Hungary
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Ferenc Rényi-Vámos
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Rath Gyorgy u. 7-9, Budapest, 1122, Hungary
- National Korányi Institute of Pulmonology, Koranyi Frigyes ut 1, Budapest, 1121, Hungary
- National Institute of Oncology and National Tumor Biology Laboratory, Budapest, Hungary
| | - Balázs Döme
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Rath Gyorgy u. 7-9, Budapest, 1122, Hungary
- National Korányi Institute of Pulmonology, Koranyi Frigyes ut 1, Budapest, 1121, Hungary
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- National Institute of Oncology and National Tumor Biology Laboratory, Budapest, Hungary
- Department of Translational Medicine, Lund University, Lund, Sweden
| | - Krisztina Bogos
- National Korányi Institute of Pulmonology, Koranyi Frigyes ut 1, Budapest, 1121, Hungary.
| | - Balázs Gieszer
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Rath Gyorgy u. 7-9, Budapest, 1122, Hungary.
- National Korányi Institute of Pulmonology, Koranyi Frigyes ut 1, Budapest, 1121, Hungary.
| | - Eszter Bakos
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Rath Gyorgy u. 7-9, Budapest, 1122, Hungary
| |
Collapse
|
4
|
Zhang D, Wang X, Du W, Qin W, Chen W, Zuo X, Li P. Impact of statin treatment and exposure on the risk of chronic allograft dysfunction in Chinese lung transplant recipients. Pulm Pharmacol Ther 2023; 82:102243. [PMID: 37454870 DOI: 10.1016/j.pupt.2023.102243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/24/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
PURPOSE Chronic lung allograft dysfunction (CLAD) was a common complication following lung transplantation that contributed to long-term morbidity and mortality. Statin therapy had been suggested to attenuate recipient inflammation and immune response, potentially reducing the risk and severity of CLAD. This study aimed to evaluate the impact of statin use and in vivo exposure on the incidence of CLAD in lung transplant recipients (LTRs), as well as their effects on immune cells and inflammatory factors. METHODS A retrospective cohort study was conducted on patients who underwent lung transplantation between January 2017 and December 2020. The incidence of CLAD, as per the 2019 ISHLT criteria, was assessed as the clinical outcome. The plasma concentrations of statin were measured using a validated UPLC-MS/MS method, while inflammation marker levels were determined using ELISA kits. RESULTS The statin group exhibited a significantly lower rate of CLAD (P = 0.002). Patients receiving statin therapy showed lower CD4+ T-cell counts, total T-lymphocyte counts, and IL-6 levels (P = 0.017, P = 0.048, and P = 0.038, respectively). Among the CLAD groups, the atorvastatin level (2.51 ± 1.31 ng/ml) was significantly lower than that in the non-CLAD group (OR = 1.438, 95%CI (1.007-2.053), P = 0.046). CONCLUSION Statin therapy significantly reduced the incidence of CLAD, as well as immune cell counts and inflammatory cytokine levels in LTRs. Although the statin exposure was significantly lower in CLAD patients, it was not associated with the incidence of CLAD.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Xiaoxing Wang
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Wenwen Du
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Wei Qin
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Wenqian Chen
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Xianbo Zuo
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China; Department of Dermatology, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Pengmei Li
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
5
|
Santos J, Calabrese DR, Greenland JR. Lymphocytic Airway Inflammation in Lung Allografts. Front Immunol 2022; 13:908693. [PMID: 35911676 PMCID: PMC9335886 DOI: 10.3389/fimmu.2022.908693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Lung transplant remains a key therapeutic option for patients with end stage lung disease but short- and long-term survival lag other solid organ transplants. Early ischemia-reperfusion injury in the form of primary graft dysfunction (PGD) and acute cellular rejection are risk factors for chronic lung allograft dysfunction (CLAD), a syndrome of airway and parenchymal fibrosis that is the major barrier to long term survival. An increasing body of research suggests lymphocytic airway inflammation plays a significant role in these important clinical syndromes. Cytotoxic T cells are observed in airway rejection, and transcriptional analysis of airways reveal common cytotoxic gene patterns across solid organ transplant rejection. Natural killer (NK) cells have also been implicated in the early allograft damage response to PGD, acute rejection, cytomegalovirus, and CLAD. This review will examine the roles of lymphocytic airway inflammation across the lifespan of the allograft, including: 1) The contribution of innate lymphocytes to PGD and the impact of PGD on the adaptive immune response. 2) Acute cellular rejection pathologies and the limitations in identifying airway inflammation by transbronchial biopsy. 3) Potentiators of airway inflammation and heterologous immunity, such as respiratory infections, aspiration, and the airway microbiome. 4) Airway contributions to CLAD pathogenesis, including epithelial to mesenchymal transition (EMT), club cell loss, and the evolution from constrictive bronchiolitis to parenchymal fibrosis. 5) Protective mechanisms of fibrosis involving regulatory T cells. In summary, this review will examine our current understanding of the complex interplay between the transplanted airway epithelium, lymphocytic airway infiltration, and rejection pathologies.
Collapse
Affiliation(s)
- Jesse Santos
- Department of Medicine University of California, San Francisco, San Francisco, CA, United States
| | - Daniel R. Calabrese
- Department of Medicine University of California, San Francisco, San Francisco, CA, United States
- Medical Service, Veterans Affairs Health Care System, San Francisco, CA, United States
| | - John R. Greenland
- Department of Medicine University of California, San Francisco, San Francisco, CA, United States
- Medical Service, Veterans Affairs Health Care System, San Francisco, CA, United States
| |
Collapse
|