1
|
Ferreté-Bonastre AG, Cortés-Hernández J, Ballestar E. What can we learn from DNA methylation studies in lupus? Clin Immunol 2022; 234:108920. [PMID: 34973429 DOI: 10.1016/j.clim.2021.108920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/23/2021] [Accepted: 12/26/2021] [Indexed: 11/17/2022]
Abstract
During the past twenty years, a wide range of studies have established the existence of epigenetic alterations, particularly DNA methylation changes, in lupus. Epigenetic changes might have different contributions in children-onset versus adult-onset lupus. DNA methylation alterations have been identified and characterized in relation to disease activity and damage, different lupus subtypes and responses to drugs. However, to date there has been no practical application of these findings in the clinical milieu. In this article, we provide a review of key studies showing the relationship between DNA methylation and the many clinical aspects related to lupus. We also propose several options, in relation to the range of methodological developments and experimental design, that could optimize these findings and make them amenable for use in clinical practice.
Collapse
Affiliation(s)
| | | | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain; Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center (HSC), East China Normal University (ECNU), Shanghai, 200241, China.
| |
Collapse
|
2
|
Chen M, Yang S, Wu Y, Zhao Z, Zhai X, Dong D. High temperature requirement A1 in cancer: biomarker and therapeutic target. Cancer Cell Int 2021; 21:513. [PMID: 34563186 PMCID: PMC8466973 DOI: 10.1186/s12935-021-02203-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/06/2021] [Indexed: 12/16/2022] Open
Abstract
As the life expectancy of the population increases worldwide, cancer is becoming a substantial public health problem. Considering its recurrence and mortality rates, most cancer cases are difficult to cure. In recent decades, a large number of studies have been carried out on different cancer types; unfortunately, tumor incidence and mortality have not been effectively improved. At present, early diagnostic biomarkers and accurate therapeutic strategies for cancer are lacking. High temperature requirement A1 (HtrA1) is a trypsin-fold serine protease that is also a chymotrypsin-like protease family member originally discovered in bacteria and later discovered in mammalian systems. HtrA1 gene expression is decreased in diverse cancers, and it may play a role as a tumor suppressor for promoting the death of tumor cells. This work aimed to examine the role of HtrA1 as a cell type-specific diagnostic biomarker or as an internal and external regulatory factor of diverse cancers. The findings of this study will facilitate the development of HtrA1 as a therapeutic target.
Collapse
Affiliation(s)
- Mingming Chen
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, 222, Zhongshan Road, Xigang District, 116011, Dalian, China.,Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Shilei Yang
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, 222, Zhongshan Road, Xigang District, 116011, Dalian, China
| | - Yu Wu
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, 222, Zhongshan Road, Xigang District, 116011, Dalian, China.,Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Zirui Zhao
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, 222, Zhongshan Road, Xigang District, 116011, Dalian, China.,Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xiaohan Zhai
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, 222, Zhongshan Road, Xigang District, 116011, Dalian, China.
| | - Deshi Dong
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, 222, Zhongshan Road, Xigang District, 116011, Dalian, China.
| |
Collapse
|
3
|
Barıs IC, Hacıoglu S, Turk NS, Cetın GO, Zencır S, Bagcı G, Caner V. Expression and DNA methylation profiles of EZH2-target genes in plasma exosomes and matched primary tumor tissues of the patients with diffuse large B-cell lymphoma. Clin Transl Oncol 2020; 23:1152-1166. [PMID: 33226554 DOI: 10.1007/s12094-020-02504-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/19/2020] [Indexed: 12/26/2022]
Abstract
AIMS Diffuse large B-cell lymphoma (DLBCL) is the most common type of aggressive lymphoma. This study was designed to compare epigenetic alterations observed in Enhancer of Zeste Homolog 2 (EZH2)-target genes between plasma-derived exosomes and primary tumors in DLBCL patients. MAIN METHODS Exosomes were isolated from plasma of 21 DLBCL patients and 21 controls. We analyzed the methylation status of the target genes using methylation-specific PCR. We also examined whether the exosomes and the tumor samples contained transcripts of the target genes. KEY FINDINGS We found that CDKN2A and CDKN2B were methylated in both plasma exosomes and primary tumor tissue samples. None of the transcripts were found in the exosomes except CDKN1B which was expressed in 8 (38%) of the exosome samples. SIGNIFICANCE This study showed that plasma exosomes might preferably package certain target molecules from primary tumors and the exosomes containing dual methylated DNAs of CDKN2A and CDKN2B, or CDKN1B transcript may contribute to DLBCL pathogenesis.
Collapse
Affiliation(s)
- I C Barıs
- Department of Medical Biology, School of Medicine, Pamukkale University, Denizli, Turkey
| | - S Hacıoglu
- Department of Hematology, School of Medicine, Pamukkale University, Denizli, Turkey
| | - N S Turk
- Department of Medical Pathology, School of Medicine, Pamukkale University, Denizli, Turkey
| | - G O Cetın
- Department of Medical Genetics, School of Medicine, Pamukkale University, Denizli, Turkey
| | - S Zencır
- Department of Medical Biology, School of Medicine, Pamukkale University, Denizli, Turkey.,Department of Molecular Biology, University of Geneva, 1211, Geneva 4, Switzerland
| | - G Bagcı
- Department of Medical Genetics, School of Medicine, Pamukkale University, Denizli, Turkey
| | - V Caner
- Department of Medical Genetics, School of Medicine, Pamukkale University, Denizli, Turkey.
| |
Collapse
|
4
|
Neja SA. Site-Specific DNA Demethylation as a Potential Target for Cancer Epigenetic Therapy. Epigenet Insights 2020; 13:2516865720964808. [PMID: 35036833 PMCID: PMC8756105 DOI: 10.1177/2516865720964808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 09/13/2020] [Indexed: 12/13/2022] Open
Abstract
Aberrant promoter DNA hypermethylation is a typical characteristic of cancer and it is often seen in malignancies. Recent studies showed that regulatory cis-elements found up-stream of many tumor suppressor gene promoter CpG island (CGI) attract DNA methyltransferases (DNMT) that hypermethylates and silence the genes. As epigenetic alterations are potentially reversible, they make attractive targets for therapeutic intervention. The currently used decitabine (DAC) and azacitidine (AZA) are DNMT inhibitors that follow the passive demethylation pathway. However, they lead to genome-wide demethylation of CpGs in cells, which makes difficult to use it for causal effect analysis and treatment of specific epimutations. Demethylation through specific demethylase enzymes is thus critical for epigenetic resetting of silenced genes and modified chromatins. Yet DNA-binding factors likely play a major role to guide the candidate demethylase enzymes upon its fusion. Before the advent of clustered regulatory interspaced short palindromic repeats (CRISPR), both zinc finger proteins (ZNFs) and transcription activator-like effector protein (TALEs) were used as binding platforms for ten-eleven translocation (TET) enzymes and both systems were able to induce transcription at targeted loci in an in vitro as well as in vivo model. Consequently, the development of site-specific and active demethylation molecular trackers becomes more than hypothetical to makes a big difference in the treatment of cancer in the future. This review is thus to recap the novel albeit distinct studies on the potential use of site-specific demethylation for the development of epigenetic based cancer therapy.
Collapse
|
5
|
Shawky SA, El-Borai MH, Khaled HM, Guda I, Mohanad M, Abdellateif MS, Zekri ARN, Bahanasy AA. The prognostic impact of hypermethylation for a panel of tumor suppressor genes and cell of origin subtype on diffuse large B-cell lymphoma. Mol Biol Rep 2019; 46:4063-4076. [DOI: 10.1007/s11033-019-04856-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 05/03/2019] [Indexed: 01/11/2023]
|
6
|
Wang H, Zhou LY, Guan ZB, Zeng WB, Zhou LL, Liu YN, Pan XY. Prognostic significance of DAPK promoter methylation in lymphoma: A meta-analysis. PLoS One 2019; 14:e0210943. [PMID: 30682070 PMCID: PMC6347251 DOI: 10.1371/journal.pone.0210943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 01/04/2019] [Indexed: 01/15/2023] Open
Abstract
We aimed to characterize the clinical significance of epigenetic loss of death-associated protein kinase (DAPK) gene function through promoter methylation in the development and prognosis of lymphoma. PubMed, Web of Science and ProQuest databases were searched for relevant studies. Twelve studies involving 709 patients with lymphoma were identified. The prognostic value of DAPK methylation was expressed as risk ratio (RR) and its corresponding 95% confidence interval (CI), while the associations between DAPK methylation and the clinical characteristics of patients with lymphoma were expressed as odd ratios (ORs) and their corresponding 95% CIs. Meta-analysis showed that the 5-year survival rate was significantly lower in lymphoma patients with hypermethylated DAPK (RR = 0.85, 95% CI (0.73, 0.98), P = 0.025). Sensitivity analysis demonstrated consistent result. However, no associations were found between DAPK methylation and clinicopathological features of lymphoma, in relation to gender (OR = 1.07, 95% CI (0.72, 1.59), P = 0.751), age (OR = 1.01, 95% CI (0.66, 1.55), P = 0.974), international prognostic index (OR = 1.20, 95% CI (0.63, 2.27), P = 0.575), B symptoms (OR = 0.76, 95% CI (0.38, 1.51), P = 0.452), serum lactate dehydrogenase (OR = 1.13, 95% CI (0.62, 2.05), P = 0.683), and BCL-2 expression (OR = 1.55, 95% CI (0.91, 2.66), P = 0.106). Lymphoma patients with hypermethylated DAPK are at risk for poorer 5-year survival rate. DAPK methylation may serve as a negative prognostic biomarker among lymphoma patients, although it may not be associated with the progression of lymphoma.
Collapse
Affiliation(s)
- Hong Wang
- Department of Hematology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, People’s Republic of China
| | - Lin-Yu Zhou
- Department of Cardiology, The Third Affiliated Hospital of SUN YAT-SEN University, Guangzhou, Guangdong, People’s Republic of China
| | - Ze-Bing Guan
- Department of Hematology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, People’s Republic of China
| | - Wen-Bin Zeng
- Department of Hematology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, People’s Republic of China
| | - Lan-Lan Zhou
- Department of Hematology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, People’s Republic of China
| | - Ya-Nan Liu
- Department of Hematology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, People’s Republic of China
| | - Xue-Yi Pan
- Department of Hematology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, People’s Republic of China
- * E-mail:
| |
Collapse
|
7
|
Özdemir İ, Pınarlı FG, Pınarlı FA, Aksakal FNB, Okur A, Uyar Göçün P, Karadeniz C. Epigenetic silencing of the tumor suppressor genes SPI1, PRDX2, KLF4, DLEC1, and DAPK1 in childhood and adolescent lymphomas. Pediatr Hematol Oncol 2018; 35:131-144. [PMID: 30020823 DOI: 10.1080/08880018.2018.1467986] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of the study was to investigate the expression and methylation status of seven distinctive genes with tumor suppressing properties in childhood and adolescent lymphomas. A total of 96 patients with Hodgkin Lymphoma (HL, n = 41), Non-Hodgkin Lymphoma (NHL, n = 15), and reactive lymphoid hyperplasia (RLH, n = 40, as controls) are included in the research. The expression status of CDKN2A, SPI1, PRDX2, DLEC1, FOXO1, KLF4 and DAPK1 genes were measured with QPCR method after the RNA isolation from paraffin blocks of tumor tissue and cDNA conversion. DNA isolation was performed from samples with low gene expression followed by methylation PCR study specific to promoter regions of these genes. We found that SPI1, PRDX2, DLEC1, KLF4, and DAPK1 genes are significantly less expressed in patient than the control group (p = 0.0001). However, expression of CDKNA2 and FOXO1 genes in the patient and control groups were not statistically different. The methylation ratios of all genes excluding the CDKN2A and FOXO1 were significantly higher in the HL and NHL groups than the controls (p = 0.0001). We showed that SPI1, PRDX2, DLEC1, KLF4 and DAPK1 genes are epigenetically silenced via hypermethylation in the tumor tissues of children with HL and NHL. As CDKN2A gene was not expressed in both patient and control groups, we conclude that it is not specific to malignancy. As FOXO1 gene was similarly expressed in both groups, its relationship with malignancy could not be established. The epigenetically silenced genes may be candidates for biomarkers or therapeutic targets in childhood and adolescent lymphomas.
Collapse
Affiliation(s)
- İhsan Özdemir
- a Department of Pediatrics , Gazi University Medical Faculty , Ankara , Turkey
| | - Faruk Güçlü Pınarlı
- b Department of Pediatric Oncology , Gazi University Medical Faculty , Ankara , Turkey
| | - Ferda Alpaslan Pınarlı
- c Center of Cell Research and Genetic Diagnosis, Dışkapı Yıldırım Beyazıt Research Hospital , Health Sciences University , Ankara , Turkey
| | - F Nur Baran Aksakal
- d Department of Public Health , Gazi University Medical Faculty , Ankara , Turkey
| | - Arzu Okur
- b Department of Pediatric Oncology , Gazi University Medical Faculty , Ankara , Turkey
| | - Pınar Uyar Göçün
- e Department of Pathology , Gazi University Medical Faculty , Ankara , Turkey
| | - Ceyda Karadeniz
- b Department of Pediatric Oncology , Gazi University Medical Faculty , Ankara , Turkey
| |
Collapse
|
8
|
Arribas AJ, Bertoni F. Methylation patterns in marginal zone lymphoma. Best Pract Res Clin Haematol 2016; 30:24-31. [PMID: 28288713 DOI: 10.1016/j.beha.2016.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 09/16/2016] [Accepted: 09/19/2016] [Indexed: 02/07/2023]
Abstract
Promoter DNA methylation is a major regulator of gene expression and transcription. The identification of methylation changes is important for understanding disease pathogenesis, for identifying prognostic markers and can drive novel therapeutic approaches. In this review we summarize the current knowledge regarding DNA methylation in MALT lymphoma, splenic marginal zone lymphoma, nodal marginal zone lymphoma. Despite important differences in the study design for different publications and the existence of a sole large and genome-wide methylation study for splenic marginal zone lymphoma, it is clear that DNA methylation plays an important role in marginal zone lymphomas, in which it contributes to the inactivation of tumor suppressors but also to the expression of genes sustaining tumor cell survival and proliferation. Existing preclinical data provide the rationale to target the methylation machinery in these disorders.
Collapse
Affiliation(s)
- Alberto J Arribas
- Lymphoma & Genomics Research Program, Institute of Oncology Research (IOR), Bellinzona, Switzerland.
| | - Francesco Bertoni
- Lymphoma & Genomics Research Program, Institute of Oncology Research (IOR), Bellinzona, Switzerland; Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland.
| |
Collapse
|
9
|
Kristensen LS, Asmar F, Dimopoulos K, Nygaard MK, Aslan D, Hansen JW, Ralfkiaer E, Grønbæk K. Hypermethylation of DAPK1 is an independent prognostic factor predicting survival in diffuse large B-cell lymphoma. Oncotarget 2015; 5:9798-810. [PMID: 25229255 PMCID: PMC4259438 DOI: 10.18632/oncotarget.2394] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin's lymphoma. Improvements in overall survival have been observed with the introduction of rituximab in combination with cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP), however, prognostic markers are still needed. Methylation of the death associated protein kinase (DAPK or DAPK1) gene and TP53 mutations are likely to have prognostic value in DLBCL. We have assessed TP53 mutations and allelic DAPK1 methylation patterns in a cohort of 119 DLBCL patients uniformly treated with R-CHOP-like regimens. We found that DAPK1 promoter methylation was associated with shorter overall survival (p=0.017) and disease-specific survival (p=0.023). In multivariate analyses DAPK1 methylation remained as an independent prognostic factor predicting disease-specific survival (p=0.038). When only considering individuals heterozygous for the rs13300553 SNP monoallelic methylation of the A-allele was associated with shorter overall- and disease-specific survival (p<0.001). Patients carrying both DAPK1 methylation and a TP53 mutation had an inferior survival compared to patients carrying only one of these molecular alterations, however, this was borderline statistically significant. Allele-specific DAPK1 methylation patterns were also studied in a cohort of 67 multiple myeloma patients, and all of the methylated multiple myeloma samples heterozygous for the rs13300553 SNP were methylated on both alleles.
Collapse
Affiliation(s)
| | - Fazila Asmar
- Department of Haematology, Rigshospitalet, Blegdamsvej 9, 2100-DK, Copenhagen, Denmark
| | | | - Mette Kathrine Nygaard
- Department of Haematology, Aalborg University Hospital, Mølleparkvej 4, 9000-DK, Aalborg, Denmark
| | - Derya Aslan
- Department of Haematology, Rigshospitalet, Blegdamsvej 9, 2100-DK, Copenhagen, Denmark
| | - Jakob Werner Hansen
- Department of Haematology, Rigshospitalet, Blegdamsvej 9, 2100-DK, Copenhagen, Denmark
| | | | - Kirsten Grønbæk
- Department of Haematology, Rigshospitalet, Blegdamsvej 9, 2100-DK, Copenhagen, Denmark
| |
Collapse
|
10
|
DNA methylation profiling identifies two splenic marginal zone lymphoma subgroups with different clinical and genetic features. Blood 2015; 125:1922-31. [PMID: 25612624 DOI: 10.1182/blood-2014-08-596247] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Splenic marginal zone lymphoma is a rare lymphoma. Loss of 7q31 and somatic mutations affecting the NOTCH2 and KLF2 genes are the commonest genomic aberrations. Epigenetic changes can be pharmacologically reverted; therefore, identification of groups of patients with specific epigenomic alterations might have therapeutic relevance. Here we integrated genome-wide DNA-promoter methylation profiling with gene expression profiling, and clinical and biological variables. An unsupervised clustering analysis of a test series of 98 samples identified 2 clusters with different degrees of promoter methylation. The cluster comprising samples with higher-promoter methylation (High-M) had a poorer overall survival compared with the lower (Low-M) cluster. The prognostic relevance of the High-M phenotype was confirmed in an independent validation set of 36 patients. In the whole series, the High-M phenotype was associated with IGHV1-02 usage, mutations of NOTCH2 gene, 7q31-32 loss, and histologic transformation. In the High-M set, a number of tumor-suppressor genes were methylated and repressed. PRC2 subunit genes and several prosurvival lymphoma genes were unmethylated and overexpressed. A model based on the methylation of 3 genes (CACNB2, HTRA1, KLF4) identified a poorer-outcome patient subset. Exposure of splenic marginal zone lymphoma cell lines to a demethylating agent caused partial reversion of the High-M phenotype and inhibition of proliferation.
Collapse
|