1
|
Brugnoni R, Salvi E, Moresco E, Gallone A, Tufano L, Garibaldi M, Filosto M, Grandis M, Maggi L. Pharmacogenetic pilot study of CYP2D6 and CYP1A2 genes in Italian patients with non-dystrophic myotonia and myotonic dystrophy treated with mexiletine. Gene 2025; 960:149536. [PMID: 40324568 DOI: 10.1016/j.gene.2025.149536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 04/16/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
Mexiletine (MXT) is the first-line anti-myotonic drug for myotonic dystrophies (MD) and non-dystrophic myotonias (NDM), metabolized by CYP2D6 and CYP1A2 enzymes. We investigated genetic variants in these genes and their influence on MXT response in Italian MD and NDM patients. Fifty patients (MD: 34, NDM: 16) were treated with MXT (200-600 mg daily) for at least two months. Based on the Myotonic Behaviour Scale (MBS) and neurological examination, 37 patients (74 %) were classified as responders (R), while 13 (26 %) were non-responders (NR). Comparison between R and NR revealed associations with 14 genetic variants (12 in CYP2D6, 2 in CYP1A2). In silico analysis suggested eQTL effects on liver and skeletal muscle gene expression. Functional annotation indicated the regulatory roles of these variants. The CYP2D6*2/*41 diplotype showed a nominal association with non-response (OR = 10.8, p = 0.049), being 11 times more frequent in NR (23 %) than in R (3 %). Most common diplotypes (CYP2D6*1/*2, *1/*1, *1/*10, *2/10) corresponded to Normal Metabolizers, while CYP2D6*10/*10, *10/*41, and *41/41 indicated intermediate metabolism, suggesting a higher risk of adverse reactions with concurrent drugs. The CYP2D6*41 allele was more frequent in NR patients than in the European population, supporting its role in MXT response variability. Our findings suggest CYP2D6 and CYP1A2 variants as potential predictors of MXT treatment response in MD and NDM patients.
Collapse
Affiliation(s)
- Raffaella Brugnoni
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| | - Erika Salvi
- Computational multi-Omics of Neurological Disorders (MIND) Lab, Joint Research Platform, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| | - Elisa Moresco
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy; Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| | - Annamaria Gallone
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy; Neurophysiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| | - Laura Tufano
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, Rome, Italy.
| | - Matteo Garibaldi
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, Rome, Italy.
| | - Massimiliano Filosto
- Department of Clinical and Experimental Sciences, University of Brescia, NeMO-Brescia Clinical Center for Neuromuscular Diseases, Brescia, Italy.
| | - Marina Grandis
- Department of Neuroscience, Ophthalmology, Rehabilitation, Genetics and Maternal and Child Sciences, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Lorenzo Maggi
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| |
Collapse
|
2
|
Calabrò M, Fabbri C, Serretti A, Kasper S, Zohar J, Souery D, Montgomery S, Albani D, Forloni G, Ferentinos P, Rujescu D, Mendlewicz J, Colombo C, Zanardi R, De Ronchi D, Crisafulli C. A machine learning approach to predict treatment efficacy and adverse effects in major depression using CYP2C19 and clinical-environmental predictors. Psychiatr Genet 2025; 35:17-25. [PMID: 40008580 DOI: 10.1097/ypg.0000000000000379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
BACKGROUND Major depressive disorder (MDD) is among the leading causes of disability worldwide and treatment efficacy is variable across patients. Polymorphisms in cytochrome P450 2C19 (CYP2C19) play a role in response and side effects to medications; however, they interact with other factors. We aimed to predict treatment outcome in MDD using a machine learning model combining CYP2C19 activity and nongenetic predictors. METHODS A total of 1410 patients with MDD were recruited in a cross-sectional study. We extracted the subgroup treated with psychotropic drugs metabolized by CYP2C19. CYP2C19 metabolic activity was determined by the combination of *1, *2, *3, and *17 alleles. We tested if treatment response, treatment-resistant depression, and side effects could be inferred from CYP2C19 activity in combination with clinical-demographic and environmental features. The model used for the analysis was based on a decision tree algorithm using five-fold cross-validation. RESULTS A total of 820 patients were treated with CYP2C19 metabolized drugs. The predictive performance of the model showed at best.70 accuracy for the classification of treatment response (average accuracy = 0.65, error = ±0.047) and an average accuracy of approximately 0.57 across all the tested outcomes. Age, BMI, and baseline depression severity were the main features influencing prediction across all the tested outcomes. CYP2C19 metabolizing status influenced both response and side effects but to a lower extent than the previously indicated features. CONCLUSION Predictive modeling could contribute to precision psychiatry. However, our study underlines the difficulty in selecting variables with sufficient impact on complex outcomes.
Collapse
Affiliation(s)
- Marco Calabrò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, Messina
| | - Chiara Fabbri
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna
| | - Alessandro Serretti
- Department of Medicine and Surgery, Kore University of Enna, Enna
- Oasi Research Institute-IRCCS, Troina, Italy
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University Vienna, Vienna, Austria
| | - Joseph Zohar
- Department of Psychiatry, Sheba Medical Center, Ramat Gan
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Souery
- Psy Pluriel - Epsylon Caring for Mental Health Brussels and Laboratoire de Psychologie Médicale, Université libre de Bruxelles, Brussels, Belgium
| | | | - Diego Albani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Gianluigi Forloni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | - Dan Rujescu
- Department of Psychiatry and Psychotherapy, Medical University Vienna, Vienna, Austria
| | | | - Cristina Colombo
- Department of Clinical Neurosciences, Mood Disorder Unit, IRCCS San Raffaele Institute
- Department of Clinical Neurosciences, University Vita-Salute San Raffaele, Milan, Italy
| | - Raffaella Zanardi
- Department of Clinical Neurosciences, Mood Disorder Unit, IRCCS San Raffaele Institute
- Department of Clinical Neurosciences, University Vita-Salute San Raffaele, Milan, Italy
| | - Diana De Ronchi
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna
| | - Concetta Crisafulli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina
| |
Collapse
|
3
|
Ma K, Yang X, Mao Y. Advancing evolutionary medicine with complete primate genomes and advanced biotechnologies. Trends Genet 2025; 41:201-217. [PMID: 39627062 DOI: 10.1016/j.tig.2024.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 03/06/2025]
Abstract
Evolutionary medicine, which integrates evolutionary biology and medicine, significantly enhances our understanding of human traits and disease susceptibility. However, previous studies in this field have often focused on single-nucleotide variants due to technological limitations in characterizing complex genomic regions, hindering the comprehensive analyses of their evolutionary origins and clinical significance. In this review, we summarize recent advancements in complete telomere-to-telomere (T2T), primate genomes and other primate resources, and illustrate how these resources facilitate the research of complex regions. We focus on several biomedically relevant regions to examine the relationship between primate genome evolution and human diseases. We also highlight the potentials of high-throughput functional genomic technologies for assessing candidate loci. Finally, we discuss future directions for primate research within the context of evolutionary medicine.
Collapse
Affiliation(s)
- Kaiyue Ma
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangyu Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Yafei Mao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China; Center for Genomic Research, International Institutes of Medicine, Fourth Affiliated Hospital, Zhejiang University, Yiwu, Zhejiang, China.
| |
Collapse
|
4
|
Zhong YS, Kong QH, Wang J, Ye F, Li XY, Zhang LQ, Dai DP, Hu GX, Cai JP, Qian JC, Ji FS. Discovery and Enzyme Kinetic Characterization of Novel CYP2D6 Variants. Chem Res Toxicol 2024; 37:1903-1910. [PMID: 39433447 DOI: 10.1021/acs.chemrestox.4c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Cytochrome P450 2D6 (CYP2D6) exhibits rich genetic polymorphism, and functional changes caused by variations are the key reasons for differences in substrate drug systemic exposure. Discovering novel variants and defining their enzymatic kinetic characteristics can contribute to the personalized application of drugs. In this study, a data chain of variant-function-structure was established through population-based sequencing, baculovirus insect cell expression, in vitro enzymatic incubation, and ultrahigh performance liquid chromatography tandem mass spectrometry. Results revealed nine novel missense mutations in the exonic regions. After the corresponding microsomes were obtained, the kinetics of the variants were investigated using dextromethorphan as a probe substrate. It was found that the activities of CYP2D6.2, 10, 17, 35, 65, R28G, T76M, and E215K were significantly reduced, while D301V almost led to loss of enzyme function. Additionally, the relative clearance rate of R25Q was significantly increased. From the molecular structure perspective, the mutation sites are distributed outside the dextromethorphan binding pocket, suggesting that they primarily influence CYP2D6 activity via allosteric modulation. These research findings provide fundamental data for the precise application of CYP2D6 substrate drugs.
Collapse
Affiliation(s)
- Yun-Shan Zhong
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Qi-Hui Kong
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Jing Wang
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Feng Ye
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Xin-Yue Li
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Li-Qun Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100005, P.R. China
| | - Da-Peng Dai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100005, P.R. China
| | - Guo-Xin Hu
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Jian-Ping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100005, P.R. China
| | - Jian-Chang Qian
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Fu-Sui Ji
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100005, P.R. China
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100005, P.R. China
| |
Collapse
|
5
|
Prasad B, Al-Majdoub ZM, Wegler C, Rostami-Hodjegan A, Achour B. Quantitative Proteomics for Translational Pharmacology and Precision Medicine: State of The Art and Future Outlook. Drug Metab Dispos 2024; 52:1208-1216. [PMID: 38821856 DOI: 10.1124/dmd.124.001600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/02/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024] Open
Abstract
Over the past 20 years, quantitative proteomics has contributed a wealth of protein expression data, which are currently used for a variety of systems pharmacology applications, as a complement or a surrogate for activity of the corresponding proteins. A symposium at the 25th North American International Society for the Study of Xenobiotics meeting, in Boston, in September 2023, was held to explore current and emerging applications of quantitative proteomics in translational pharmacology and strategies for improved integration into model-informed drug development based on practical experience of each of the presenters. A summary of the talks and discussions is presented in this perspective alongside future outlook that was outlined for future meetings. SIGNIFICANCE STATEMENT: This perspective explores current and emerging applications of quantitative proteomics in translational pharmacology and precision medicine and outlines the outlook for improved integration into model-informed drug development.
Collapse
Affiliation(s)
- Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (Z.M.A.-M., A.R.-H.); Department of Plant Physiology, Umeå University, Umeå, Sweden (C.W.); Certara UK, Sheffield, United Kingdom (A.R.-H.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Zubida M Al-Majdoub
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (Z.M.A.-M., A.R.-H.); Department of Plant Physiology, Umeå University, Umeå, Sweden (C.W.); Certara UK, Sheffield, United Kingdom (A.R.-H.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Christine Wegler
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (Z.M.A.-M., A.R.-H.); Department of Plant Physiology, Umeå University, Umeå, Sweden (C.W.); Certara UK, Sheffield, United Kingdom (A.R.-H.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Amin Rostami-Hodjegan
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (Z.M.A.-M., A.R.-H.); Department of Plant Physiology, Umeå University, Umeå, Sweden (C.W.); Certara UK, Sheffield, United Kingdom (A.R.-H.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Brahim Achour
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (Z.M.A.-M., A.R.-H.); Department of Plant Physiology, Umeå University, Umeå, Sweden (C.W.); Certara UK, Sheffield, United Kingdom (A.R.-H.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.)
| |
Collapse
|
6
|
Plender EG, Prodanov T, Hsieh P, Nizamis E, Harvey WT, Sulovari A, Munson KM, Kaufman EJ, O'Neal WK, Valdmanis PN, Marschall T, Bloom JD, Eichler EE. Structural and genetic diversity in the secreted mucins MUC5AC and MUC5B. Am J Hum Genet 2024; 111:1700-1716. [PMID: 38991590 PMCID: PMC11344006 DOI: 10.1016/j.ajhg.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
The secreted mucins MUC5AC and MUC5B are large glycoproteins that play critical defensive roles in pathogen entrapment and mucociliary clearance. Their respective genes contain polymorphic and degenerate protein-coding variable number tandem repeats (VNTRs) that make the loci difficult to investigate with short reads. We characterize the structural diversity of MUC5AC and MUC5B by long-read sequencing and assembly of 206 human and 20 nonhuman primate (NHP) haplotypes. We find that human MUC5B is largely invariant (5,761-5,762 amino acids [aa]); however, seven haplotypes have expanded VNTRs (6,291-7,019 aa). In contrast, 30 allelic variants of MUC5AC encode 16 distinct proteins (5,249-6,325 aa) with cysteine-rich domain and VNTR copy-number variation. We group MUC5AC alleles into three phylogenetic clades: H1 (46%, ∼5,654 aa), H2 (33%, ∼5,742 aa), and H3 (7%, ∼6,325 aa). The two most common human MUC5AC variants are smaller than NHP gene models, suggesting a reduction in protein length during recent human evolution. Linkage disequilibrium and Tajima's D analyses reveal that East Asians carry exceptionally large blocks with an excess of rare variation (p < 0.05) at MUC5AC. To validate this result, we use Locityper for genotyping MUC5AC haplogroups in 2,600 unrelated samples from the 1000 Genomes Project. We observe a signature of positive selection in H1 among East Asians and a depletion of the likely ancestral haplogroup (H3). In Europeans, H3 alleles show an excess of common variation and deviate from Hardy-Weinberg equilibrium (p < 0.05), consistent with heterozygote advantage and balancing selection. This study provides a generalizable strategy to characterize complex protein-coding VNTRs for improved disease associations.
Collapse
Affiliation(s)
- Elizabeth G Plender
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA; Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Timofey Prodanov
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany; Center for Digital Medicine, Heinrich Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - PingHsun Hsieh
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Evangelos Nizamis
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - William T Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Arvis Sulovari
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA; Computational Biology, Cajal Neuroscience Inc, Seattle, WA 98102, USA
| | - Katherine M Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Eli J Kaufman
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Wanda K O'Neal
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Paul N Valdmanis
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA; Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Tobias Marschall
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany; Center for Digital Medicine, Heinrich Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Jesse D Bloom
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA; Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
7
|
Frear S, Sherman A, Rule D, Marcath LA. Prevalence of CYP2D6 structural variation in large retrospective study. Pharmacogenet Genomics 2024; 34:135-138. [PMID: 38372405 DOI: 10.1097/fpc.0000000000000525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
CYP2D6 is a highly polymorphic gene with clinically important structural variations. Commonly, only exon 9 is assayed on clinical pharmacogenomics panels, as it allows for accurate functional characterization even in the presence of a CYP2D6::CYP2D7 conversion. However, this method does not capture CYP2D7::CYP2D6 (CYP2D6*13) conversions, possibly leading to inaccurate phenotype assignment. The study's purpose was to determine the frequency of structural variations in CYP2D6 utilizing multiple copy number variation (CNV) assay locations to quantify the potential impact on clinical phenotype classification. A retrospective analysis was conducted of de-identified pharmacogenomics data submitted through the Translational Software, Inc. platform. Samples with CYP2D6 CNV data for exon 9 and at least one additional CNV location (5'UTR, exon 1, intron 2, exon 5 or intron 6) were included. CYP2D7::CYP2D6 and CYP2D6::CYP2D7 conversions were classified according to PharmVar nomenclature. The CYP2D6 copies were capped at four total copies to account for assay limitations in detecting more than four copies. A total of 106,474 samples were included for analysis. CYP2D7::CYP2D6 conversions were present in approximately 2.44% of samples, and 5.84% of samples had CYP2D6::CYP2D7 conversions. Many samples did not have a CYP2D7 conversion detected (91.5%; 97,462/106,474). A full gene deletion was detected in 0.15%, and 5.98% had a duplication or multiplication present. This retrospective study underscores the importance of testing more than one CNV site for CYP2D6 . Over 2% of patients were found to have a CYP2D7::CYP2D6 conversion. This translates into potentially misclassified phenotype classification and incongruent clinical recommendations.
Collapse
Affiliation(s)
- Samantha Frear
- Translational Software, Inc. Mercer Island, Washington, USA
| | | | | | | |
Collapse
|
8
|
Plender EG, Prodanov T, Hsieh P, Nizamis E, Harvey WT, Sulovari A, Munson KM, Kaufman EJ, O'Neal WK, Valdmanis PN, Marschall T, Bloom JD, Eichler EE. Structural and genetic diversity in the secreted mucins, MUC5AC and MUC5B. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585560. [PMID: 38562829 PMCID: PMC10983947 DOI: 10.1101/2024.03.18.585560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The secreted mucins MUC5AC and MUC5B play critical defensive roles in airway pathogen entrapment and mucociliary clearance by encoding large glycoproteins with variable number tandem repeats (VNTRs). These polymorphic and degenerate protein coding VNTRs make the loci difficult to investigate with short reads. We characterize the structural diversity of MUC5AC and MUC5B by long-read sequencing and assembly of 206 human and 20 nonhuman primate (NHP) haplotypes. We find that human MUC5B is largely invariant (5761-5762aa); however, seven haplotypes have expanded VNTRs (6291-7019aa). In contrast, 30 allelic variants of MUC5AC encode 16 distinct proteins (5249-6325aa) with cysteine-rich domain and VNTR copy number variation. We grouped MUC5AC alleles into three phylogenetic clades: H1 (46%, ~5654aa), H2 (33%, ~5742aa), and H3 (7%, ~6325aa). The two most common human MUC5AC variants are smaller than NHP gene models, suggesting a reduction in protein length during recent human evolution. Linkage disequilibrium (LD) and Tajima's D analyses reveal that East Asians carry exceptionally large MUC5AC LD blocks with an excess of rare variation (p<0.05). To validate this result, we used Locityper for genotyping MUC5AC haplogroups in 2,600 unrelated samples from the 1000 Genomes Project. We observed signatures of positive selection in H1 and H2 among East Asians and a depletion of the likely ancestral haplogroup (H3). In Africans and Europeans, H3 alleles show an excess of common variation and deviate from Hardy-Weinberg equilibrium, consistent with heterozygote advantage and balancing selection. This study provides a generalizable strategy to characterize complex protein coding VNTRs for improved disease associations.
Collapse
Affiliation(s)
- Elizabeth G Plender
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Timofey Prodanov
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany
- Center for Digital Medicine, Heinrich Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - PingHsun Hsieh
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Evangelos Nizamis
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - William T Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Arvis Sulovari
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Katherine M Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Eli J Kaufman
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Wanda K O'Neal
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, 27599, North Carolina, USA
| | - Paul N Valdmanis
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Tobias Marschall
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany
- Center for Digital Medicine, Heinrich Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Jesse D Bloom
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
9
|
Alade AN, Claw KG, McDonald MG, Prasad B, Rettie AE, Thummel KE. Cytochrome P450 Family 4F2 and 4F11 Haplotype Mapping and Association with Hepatic Gene Expression and Vitamin K Hydroxylation Activity. ACS Pharmacol Transl Sci 2024; 7:716-732. [PMID: 38481683 PMCID: PMC10928895 DOI: 10.1021/acsptsci.3c00287] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 10/19/2024]
Abstract
This study evaluated the underlying mechanistic links between genetic variability in vitamin K metabolic pathway genes (CYP4F2 and CYP4F11) and phylloquinone hydroxylation activity using genotype- and haplotype-based approaches. Specifically, we characterized genetic variability in the CYP4F2/CYP4F11 locus and compared common single allele genotypes and common haplotypes as predictors of hepatic gene expression, enzyme abundance, and phylloquinone (VK1) ω-hydroxylation kinetics. We measured CYP4F2 and CYP4F11 mRNA levels, CYP4F2 and CYP4F11 protein abundances, and the VK1 concentration-dependent ω-hydroxylation rate in matched human liver nucleic acid and microsome samples, utilizing a novel in vitro population modeling approach. Results indicate that accounting for the CYP4F2*3 allele alone is sufficient to capture most of the genetic-derived variability in the observed phenotypes. Additionally, our findings highlight the important contribution that CYP4F11 makes toward vitamin K metabolism in the human liver.
Collapse
Affiliation(s)
- Ayoade N. Alade
- Department
of Pharmaceutics, School of Pharmacy, University
of Washington, Seattle, Washington 98195, United States
| | - Katrina G. Claw
- Department
of Biomedical Informatics, University of
Colorado Anschutz Medical Campus, Aurora, Colorado 80045-2559, United States
| | - Matthew G. McDonald
- Department
of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, Washington 98195, United States
| | - Bhagwat Prasad
- College
of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99210-1495, United States
| | - Allan E. Rettie
- Department
of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, Washington 98195, United States
| | - Kenneth E. Thummel
- Department
of Pharmaceutics, School of Pharmacy, University
of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
10
|
Alade N, Nath A, Isoherranen N, Thummel KE. The Utility of Mixed Effects Models in the Evaluation of Complex Genomic Traits In Vitro. Drug Metab Dispos 2023; 51:1455-1462. [PMID: 37562955 PMCID: PMC10586510 DOI: 10.1124/dmd.123.001260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/15/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023] Open
Abstract
In pharmacogenomic studies, the use of human liver microsomes as a model system to evaluate the impact of complex genomic traits (i.e., linkage-disequilibrium patterns, coding, and non-coding variation, etc.) on efficiency of drug metabolism is challenging. To accurately predict the true effect size of genomic traits requires large richly sampled datasets representative of the study population. Moreover, the acquisition of this data can be labor-intensive if the study design or bioanalytical methods are not high throughput, and it is potentially unfeasible if the abundance of sample needed for experiments is limited. To overcome these challenges, we developed a novel strategic approach using non-linear mixed effects models (NLME) to determine enzyme kinetic parameters for individual liver specimens using sparse data. This method can facilitate evaluation of the impact that complex genomic traits have on the metabolism of xenobiotics in vitro when tissue and other resources are limited. In addition to facilitating the accrual of data, it allows for rigorous testing of covariates as sources of kinetic parameter variability. In this in silico study, we present a practical application of such an approach using previously published in vitro cytochrome P450 (CYP) 2D6 data and explore the impact of sparse sampling, and experimental error on known kinetic parameter estimates of CYP2D6 mediated formation of 4-hydroxy-atomoxetine in human liver microsomes. SIGNIFICANCE STATEMENT: This study presents a novel non-linear mixed effects model (NLME)-based framework for evaluating the impact of complex genomic traits on saturable processes described by a Michaelis-Menten kinetics in vitro using sparse data. The utility of this approach extends beyond gene variant associations, including determination of covariate effects on in vitro kinetic parameters and reduced demand for precious experimental material.
Collapse
Affiliation(s)
- Nathan Alade
- Department of Pharmaceutics (N.A., N.I., K.E.T.) and Medicinal Chemistry (A.N.), School of Pharmacy, University of Washington, Seattle, Washington
| | - Abhinav Nath
- Department of Pharmaceutics (N.A., N.I., K.E.T.) and Medicinal Chemistry (A.N.), School of Pharmacy, University of Washington, Seattle, Washington
| | - Nina Isoherranen
- Department of Pharmaceutics (N.A., N.I., K.E.T.) and Medicinal Chemistry (A.N.), School of Pharmacy, University of Washington, Seattle, Washington
| | - Kenneth E Thummel
- Department of Pharmaceutics (N.A., N.I., K.E.T.) and Medicinal Chemistry (A.N.), School of Pharmacy, University of Washington, Seattle, Washington
| |
Collapse
|
11
|
Avsar O. Identification of the effects of pathogenic genetic variations of human CYP2C9 and CYP2D6: an in silico approach. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 43:356-376. [PMID: 37747773 DOI: 10.1080/15257770.2023.2262519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
Genetic variations in the human cytochrome P450 family 2 subfamily C member 9 (CYP2C9) and cytochrome P450 family 2 subfamily D member 6 (CYP2D6) genes may affect drug metabolism and lead to alterations in phenotypes. Genetic variations are associated with toxicity, adverse drug reactions, inefficient treatment. Various in silico tools were combined to investigate the deleterious effects of missense non-synonymous single nucleotide polymorphisms (nsSNPs) of the human CYP2C9 and CYP2D6. The structural and functional effects of the high-risk non-synonymous SNPs in the human CYP2C9 and CYP2D6 were predicted by numerous computational mutation analysis methods. Out of 24 pathogenic missense SNPs in the CYP2C9, 22 nsSNPs had a decreasing effect on protein stability and 13 SNPs were showed to be located at conserved positions. Out of 27 high-risk deleterious non-synonymous SNPs in the human CYP2D6, 21 SNPs decreased protein stability and 16 nsSNPs were predicted to be positioned at conserved regions. Our present study suggests that the identified functional SNPs may affect drug metabolism associated with CYP2C9 and CYP2D6 enzymes.
Collapse
Affiliation(s)
- Orcun Avsar
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Hitit University, Corum, Türkiye
| |
Collapse
|
12
|
Tremmel R, Zhou Y, Schwab M, Lauschke VM. Structural variation of the coding and non-coding human pharmacogenome. NPJ Genom Med 2023; 8:24. [PMID: 37684227 PMCID: PMC10491600 DOI: 10.1038/s41525-023-00371-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Genetic variants in drug targets and genes encoding factors involved in drug absorption, distribution, metabolism and excretion (ADME) can have pronounced impacts on drug pharmacokinetics, response, and toxicity. While the landscape of genetic variability at the level of single nucleotide variants (SNVs) has been extensively studied in these pharmacogenetic loci, their structural variation is only poorly understood. Thus, we systematically analyzed the genetic structural variability across 908 pharmacogenes (344 ADME genes and 564 drug targets) based on publicly available whole genome sequencing data from 10,847 unrelated individuals. Overall, we extracted 14,984 distinct structural variants (SVs) ranging in size from 50 bp to 106 Mb. Each individual harbored on average 10.3 and 1.5 SVs with putative functional effects that affected the coding regions of ADME genes and drug targets, respectively. In addition, by cross-referencing pharmacogenomic SVs with experimentally determined binding data of 224 transcription factors across 130 cell types, we identified 1276 non-coding SVs that overlapped with gene regulatory elements. Based on these data, we estimate that non-coding structural variants account for 22% of the genetically encoded pharmacogenomic variability. Combined, these analyses provide the first comprehensive map of structural variability across pharmacogenes, derive estimates for the functional impact of non-coding SVs and incentivize the incorporation of structural genomic data into personalized drug response predictions.
Collapse
Affiliation(s)
- Roman Tremmel
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University Tübingen, Tübingen, Germany
| | - Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Matthias Schwab
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University Tübingen, Tübingen, Germany
- Departments of Clinical Pharmacology and Pharmacy and Biochemistry, University Tübingen, Tübingen, Germany
| | - Volker M Lauschke
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.
- University Tübingen, Tübingen, Germany.
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
13
|
Laufer VA, Glover TW, Wilson TE. Applications of advanced technologies for detecting genomic structural variation. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108475. [PMID: 37931775 PMCID: PMC10792551 DOI: 10.1016/j.mrrev.2023.108475] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/07/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023]
Abstract
Chromosomal structural variation (SV) encompasses a heterogenous class of genetic variants that exerts strong influences on human health and disease. Despite their importance, many structural variants (SVs) have remained poorly characterized at even a basic level, a discrepancy predicated upon the technical limitations of prior genomic assays. However, recent advances in genomic technology can identify and localize SVs accurately, opening new questions regarding SV risk factors and their impacts in humans. Here, we first define and classify human SVs and their generative mechanisms, highlighting characteristics leveraged by various SV assays. We next examine the first-ever gapless assembly of the human genome and the technical process of assembling it, which required third-generation sequencing technologies to resolve structurally complex loci. The new portions of that "telomere-to-telomere" and subsequent pangenome assemblies highlight aspects of SV biology likely to develop in the near-term. We consider the strengths and limitations of the most promising new SV technologies and when they or longstanding approaches are best suited to meeting salient goals in the study of human SV in population-scale genomics research, clinical, and public health contexts. It is a watershed time in our understanding of human SV when new approaches are expected to fundamentally change genomic applications.
Collapse
Affiliation(s)
- Vincent A Laufer
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Thomas W Glover
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Thomas E Wilson
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
14
|
Zhou Y, Lauschke VM. The genetic landscape of major drug metabolizing cytochrome P450 genes-an updated analysis of population-scale sequencing data. THE PHARMACOGENOMICS JOURNAL 2022; 22:284-293. [PMID: 36068297 PMCID: PMC9674520 DOI: 10.1038/s41397-022-00288-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/05/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Genes encoding cytochrome P450 enzymes (CYPs) are extremely polymorphic and multiple CYP variants constitute clinically relevant biomarkers for the guidance of drug selection and dosing. We previously reported the distribution of the most relevant CYP alleles using population-scale sequencing data. Here, we update these findings by making use of the increasing wealth of data, incorporating whole exome and whole genome sequencing data from 141,614 unrelated individuals across 12 human populations. We furthermore extend our previous studies by systematically considering also uncharacterized rare alleles and reveal that they contribute between 1.5% and 17.5% to the overall genetically encoded functional variability. By using established guidelines, we aggregate and translate the available sequencing data into population-specific patterns of metabolizer phenotypes. Combined, the presented data refine the worldwide landscape of ethnogeographic variability in CYP genes and aspire to provide a relevant resource for the optimization of population-specific genotyping strategies and precision public health.
Collapse
Affiliation(s)
- Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden.
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.
- University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
15
|
Grzegorzewski J, Brandhorst J, König M. Physiologically based pharmacokinetic (PBPK) modeling of the role of CYP2D6 polymorphism for metabolic phenotyping with dextromethorphan. Front Pharmacol 2022; 13:1029073. [PMID: 36353484 PMCID: PMC9637881 DOI: 10.3389/fphar.2022.1029073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/23/2022] [Indexed: 11/24/2022] Open
Abstract
The cytochrome P450 2D6 (CYP2D6) is a key xenobiotic-metabolizing enzyme involved in the clearance of many drugs. Genetic polymorphisms in CYP2D6 contribute to the large inter-individual variability in drug metabolism and could affect metabolic phenotyping of CYP2D6 probe substances such as dextromethorphan (DXM). To study this question, we (i) established an extensive pharmacokinetics dataset for DXM; and (ii) developed and validated a physiologically based pharmacokinetic (PBPK) model of DXM and its metabolites dextrorphan (DXO) and dextrorphan O-glucuronide (DXO-Glu) based on the data. Drug-gene interactions (DGI) were introduced by accounting for changes in CYP2D6 enzyme kinetics depending on activity score (AS), which in combination with AS for individual polymorphisms allowed us to model CYP2D6 gene variants. Variability in CYP3A4 and CYP2D6 activity was modeled based on in vitro data from human liver microsomes. Model predictions are in very good agreement with pharmacokinetics data for CYP2D6 polymorphisms, CYP2D6 activity as described by the AS system, and CYP2D6 metabolic phenotypes (UM, EM, IM, PM). The model was applied to investigate the genotype-phenotype association and the role of CYP2D6 polymorphisms for metabolic phenotyping using the urinary cumulative metabolic ratio (UCMR), DXM/(DXO + DXO-Glu). The effect of parameters on UCMR was studied via sensitivity analysis. Model predictions indicate very good robustness against the intervention protocol (i.e. application form, dosing amount, dissolution rate, and sampling time) and good robustness against physiological variation. The model is capable of estimating the UCMR dispersion within and across populations depending on activity scores. Moreover, the distribution of UCMR and the risk of genotype-phenotype mismatch could be estimated for populations with known CYP2D6 genotype frequencies. The model can be applied for individual prediction of UCMR and metabolic phenotype based on CYP2D6 genotype. Both, model and database are freely available for reuse.
Collapse
Affiliation(s)
- Jan Grzegorzewski
- Institute for Theoretical Biology, Institute of Biology, Humboldt University, Berlin, Germany
| | | | | |
Collapse
|
16
|
Jin Y, Zhang S, Hu P, Zheng X, Guan X, Chen R, Zhang S. The impact of CYP2D6*41 on CYP2D6 enzyme activity using phenotyping methods in urine, plasma, and saliva. Front Pharmacol 2022; 13:940510. [PMID: 36110554 PMCID: PMC9468644 DOI: 10.3389/fphar.2022.940510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Aims: The CYP2D6*41 variant is the second or third frequent reduced function allele in Chinese with a frequency of around 3–4%, while it is the major reduced function allele in Indians, Saudi Arabians and Caucasians with frequencies of around 10–20%. The present study was designed to explore the impact of CYP2D6*41 on the metabolic activity of CYP2D6 using phenotyping methods in urine, plasma, and saliva. Methods: We used dextromethorphan as the probe drug to analyze the phenotypes of 87 subjects with CYP2D6*1/*1 (n = 22), CYP2D6*1/*2 (n = 33), CYP2D6*2/*2 (n = 4), CYP2D6*1/*41 (n = 5), CYP2D6*2/*41 (n = 3), CYP2D6*10/*41 (n = 16), and CYP2D6*5/*41 (n = 4) for CYP2D6. The ratio of parent drug to metabolite in 3 h saliva, 3 h plasma, and in 0–3 h urine was considered the metabolic ratio (MR). Results: The CYP2D6*41 allele had substantial impact on the metabolic activity of CYP2D6 regardless of the urinary, plasma, or salivary phenotyping method used. In subjects with CYP2D6*1(or *2)/*1(or *2), *1 (or *2)/*41, *10/*41 and *5/*41 (all p < 0.001), the salivary, plasma, or urinary MR value increased. The MRs in saliva, plasma, and urine displayed high correlations. Conclusion: The activity score system or the consensus activity score system, instead of the traditional phenotype classification, could predict the CYP2D6 enzyme activity more accurately. CYP2D6*41 had similar or more impact on the CYP2D6 enzyme activity as compared with CYP2D6*10. Assigning *41 a score of 0.5 and assigning *10 a score of 0.25 according to the consensus AS system should be reconsidered.
Collapse
Affiliation(s)
- Ye Jin
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Shuquan Zhang
- Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Pei Hu
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Zheng
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoduo Guan
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui Chen
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Rui Chen, ; Shuyang Zhang,
| | - Shuyang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Rui Chen, ; Shuyang Zhang,
| |
Collapse
|
17
|
From Croatian Roma to 1000 Genomes: The Story of the CYP2D6 Gene Promoter and Enhancer SNPs. J Pers Med 2022; 12:jpm12081353. [PMID: 36013302 PMCID: PMC9409800 DOI: 10.3390/jpm12081353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022] Open
Abstract
The CYP2D6 gene encodes an enzyme responsible for the metabolism of ~20% of clinically prescribed drugs. In this study, 18 SNPs from the enhancer and promoter regions of CYP2D6 in 323 Roma from Croatia were genotyped, to find out whether the demographic history of Roma affected the distribution of the studied SNPs and their linkage disequilibrium (LD) values, with the major SNPs defining the CYP2D6 star alleles. No differences were found between the three Roma groups in allele and genotype frequencies. The distribution of LD values of Roma was compared with LD values of European and Asian populations. Regulatory CYP2D6 SNPs (rs5758550, rs28624811, rs1080985 and rs1080983) showed similar distribution and the highest LDs with rs16947 from the gene-coding region in all populations. In the promoter region, a complete LD between rs1080989 and rs28588594, and between rs1080983 and rs28624811, was found in Croatian Roma and investigated populations from 1000 genomes. A high LD was also found between rs1080985 from the promoter and rs5758550 from the enhancer region. SNP rs28735595 from the gene promoter region had the highest LD, with two gene region SNPs, rs1058164 and rs1135840. To conclude, the Croatian Roma population shows an LD pattern of the CYP2D6 gene region similar to the 1000 Genomes European and Asian populations.
Collapse
|
18
|
ClinPharmSeq: A targeted sequencing panel for clinical pharmacogenetics implementation. PLoS One 2022; 17:e0272129. [PMID: 35901010 PMCID: PMC9333201 DOI: 10.1371/journal.pone.0272129] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/12/2022] [Indexed: 12/02/2022] Open
Abstract
The accurate identification of genetic variants contributing to therapeutic drug response or adverse effects is the first step in implementation of precision drug therapy. Targeted sequencing has recently become a common methodology for large-scale studies of genetic variation thanks to its favorable balance between low cost, high throughput, and deep coverage. Here, we present ClinPharmSeq, a targeted sequencing panel of 59 genes with associations to pharmacogenetic (PGx) phenotypes, as a platform to explore the relationship between drug response and genetic variation, both common and rare. For validation, we sequenced DNA from 64 ethnically diverse Coriell samples with ClinPharmSeq to call star alleles (haplotype patterns) in 27 genes using the bioinformatics tool PyPGx. These reference samples were extensively characterized by multiple laboratories using PGx testing assays and, more recently, whole genome sequencing. We found that ClinPharmSeq can consistently generate deep-coverage data (mean = 274x) with high uniformity (30x or above = 94.8%). Our genotype analysis identified a total of 185 unique star alleles from sequencing data, and showed that diplotype calls from ClinPharmSeq are highly concordant with that from previous publications (97.6%) and whole genome sequencing (97.9%). Notably, all 19 star alleles with complex structural variation including gene deletions, duplications, and hybrids were recalled with 100% accuracy. Altogether, these results demonstrate that the ClinPharmSeq platform offers a feasible path for broad implementation of PGx testing and optimization of individual drug treatments.
Collapse
|
19
|
Dinh JC, Boone EC, Staggs VS, Pearce RE, Wang WY, Gaedigk R, Leeder JS, Gaedigk A. The Impact of the CYP2D6 "Enhancer" Single Nucleotide Polymorphism on CYP2D6 Activity. Clin Pharmacol Ther 2022; 111:646-654. [PMID: 34716917 PMCID: PMC8825689 DOI: 10.1002/cpt.2469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/21/2021] [Indexed: 11/10/2022]
Abstract
rs5758550 has been associated with enhanced transcription and suggested to be a useful marker of CYP2D6 activity. As there are limited and inconsistent data regarding the utility of this distant "enhancer" single nucleotide polymorphism (SNP), our goal was to further assess the impact of rs5758550 on CYP2D6 activity toward two probe substrates, atomoxetine (ATX) and dextromethorphan (DM), using in vivo urinary metabolite (DM; n = 188) and pharmacokinetic (ATX; n = 70) and in vitro metabolite formation (ATX and DM; n = 166) data. All subjects and tissues were extensively genotyped, the "enhancer" SNP phased with established CYP2D6 haplotypes either computationally or experimentally, and the impact on CYP2D6 activity investigated using several linear models of varying complexity to determine the proportion of variability in CYP2D6 activity captured by each model. For all datasets and models, the "enhancer" SNP had no or only a modest impact on CYP2D6 activity prediction. An increased effect, when present, was more pronounced for ATX than DM suggesting potential substate-dependency. In addition, CYP2D6*2 alleles with the "enhancer" SNP were associated with modestly higher metabolite formation rates in vitro, but not in vivo; no effect was detected for CYP2D6*1 alleles with "enhancer" SNP. In summary, it remains inconclusive whether the small effects detected in this investigation are indeed caused by the "enhancer" SNP or are rather due to its incomplete linkage with other variants within the gene. Taken together, there does not appear to be sufficient evidence to warrant the "enhancer" SNP be included in clinical CYP2D6 pharmacogenetic testing.
Collapse
Affiliation(s)
- Jean C Dinh
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri, USA
| | - Erin C Boone
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri, USA
| | - Vincent S Staggs
- Biostatistics and Epidemiology Core, Health Services and Outcomes Research, Children's Mercy Kansas City, Kansas City, Missouri, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Robin E Pearce
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri, USA
| | - Wendy Y Wang
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri, USA
| | - Roger Gaedigk
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri, USA
| | - James Steven Leeder
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| |
Collapse
|
20
|
Brown KE, Staples JW, Woodahl EL. Keeping pace with CYP2D6 haplotype discovery: innovative methods to assign function. Pharmacogenomics 2022; 23:255-262. [PMID: 35083931 PMCID: PMC8890136 DOI: 10.2217/pgs-2021-0149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The discovery of haplotypes with unknown or uncertain function in the CYP2D6 pharmacogene is outpacing the capabilities of traditional in vitro and in vivo approaches to characterize their function. This challenge will undoubtedly grow as pharmacogenomic research becomes more inclusive of globally diverse populations. As accurate phenotypic assignment is paramount to the utility of pharmacogenomics, high-throughput technologies are needed for this complex pharmacogene. We describe the evolving landscape of innovative approaches to assign function to CYP2D6 haplotypes and possibilities for adopting these technologies into cohesive processes. Promising approaches include ADME-optimized prediction frameworks, machine learning algorithms, deep mutational scanning and phenoconversion predictions. Implementing these approaches will lead to improved personalization of treatment for patients.
Collapse
Affiliation(s)
- Karen E Brown
- Department of Biomedical & Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Montana, Missoula, MT 59812, USA,Skaggs Institute for Health Innovation, University of Montana, Missoula, MT 59812, USA
| | - Jack W Staples
- Department of Biomedical & Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Montana, Missoula, MT 59812, USA,Skaggs Institute for Health Innovation, University of Montana, Missoula, MT 59812, USA
| | - Erica L Woodahl
- Department of Biomedical & Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Montana, Missoula, MT 59812, USA,Skaggs Institute for Health Innovation, University of Montana, Missoula, MT 59812, USA,Author for correspondence: Tel.: +1 406 243 4129;
| |
Collapse
|
21
|
Metabolizing status of CYP2C19 in response and side effects to medications for depression: Results from a naturalistic study. Eur Neuropsychopharmacol 2022; 56:100-111. [PMID: 35152032 DOI: 10.1016/j.euroneuro.2022.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/19/2022]
Abstract
Major depressive disorder (MDD) is one of the leading causes of disability worldwide. Polymorphisms in cytochrome P450 genes (CYP450) were demonstrated to play a significant role in antidepressant response and side effects, but their effect in real-world clinical practice is poorly known. We determined the metabolic status of CYP2C19 based on the combination of *1, *2, *3 and *17 alleles extracted from genome-wide data in 1239 patients with MDD, pharmacologically treated in a naturalistic setting. Symptom improvement and side effects were assessed using the Montgomery and Åsberg Depression Rating Scale and the Udvalg for Kliniske Undersøgelse scale, respectively. We tested if symptom improvement, response and side effects were associated with CYP2C19 metabolic status adjusting for potential confounders. We considered patients treated with drugs for depression having CYP2C19 genotyping recommended by guidelines (T1 Drugs); secondarily, with all psychotropic drugs having CYP2C19 as relevant metabolic path (T2 Drugs). In the group treated with T1 drugs (n = 540), poor metabolizers (PMs) showed higher response and higher symptom improvement compared to normal metabolizers (p = 0.023 and p = 0.009, respectively), but also higher risk of autonomic and neurological side effects (p = 0.022 and p = 0.022 respectively). In patients treated with T2 drugs (n = 801), similar results were found. No associations between metabolizer status and other types of side effects were found (psychic and other side effects). Our study suggests potential advantages of CYP2C19 pharmacogenetic testing to guide treatment prescription, that may not be limited to the drugs currently recommended by guidelines.
Collapse
|
22
|
Kistler CE, Austin CA, Liu JJ, Cauble M, Wise A, Patel SM, Ward K, Wiltshire T, Zou F, Szeto AH, Crona DJ. The feasibility and potential of pharmacogenetics to reduce adverse drug events in nursing home residents. J Am Geriatr Soc 2022; 70:1573-1578. [PMID: 35157308 PMCID: PMC9106864 DOI: 10.1111/jgs.17679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/26/2021] [Accepted: 01/09/2022] [Indexed: 10/19/2022]
Affiliation(s)
- Christine E Kistler
- Department of Family Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.,Cecil G. Sheps Center for Health Services Research, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Charles Adrian Austin
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Junjian J Liu
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, USA
| | | | - Andrew Wise
- Medical College of Georgia, Augusta, Georgia, USA
| | - Sheel M Patel
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kimberly Ward
- Cecil G. Sheps Center for Health Services Research, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Tim Wiltshire
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Fei Zou
- Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Andy H Szeto
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Daniel J Crona
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Pharmacy, University of North Carolina Hospitals and Clinics, Chapel Hill, North Carolina, USA
| |
Collapse
|
23
|
Cicali EJ, Elchynski AL, Cook KJ, Houder JT, Thomas CD, Smith DM, Elsey A, Johnson JA, Cavallari LH, Wiisanen K. How to Integrate CYP2D6 Phenoconversion Into Clinical Pharmacogenetics: A Tutorial. Clin Pharmacol Ther 2021; 110:677-687. [PMID: 34231197 PMCID: PMC8404400 DOI: 10.1002/cpt.2354] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/15/2021] [Indexed: 01/26/2023]
Abstract
CYP2D6 genotype is increasingly being integrated into practice to guide prescribing of certain medications. The CYP2D6 drug metabolizing enzyme is susceptible to inhibition by concomitant drugs, which can lead to a clinical phenotype that is different from the genotype-based phenotype, a process referred to as phenoconversion. Phenoconversion is highly prevalent but not widely integrated into practice because of either limited experience on how to integrate or lack of knowledge that it has occurred. We built a calculator tool to help clinicians integrate a standardized method of assessing CYP2D6 phenoconversion into practice. During tool-building, we identified several clinical factors that need to be considered when implementing CYP2D6 phenoconversion into clinical practice. This tutorial shares the steps that the University of Florida Health Precision Medicine Program took to build the calculator tool and identified clinical factors to consider when implementing CYP2D6 phenoconversion in clinical practice.
Collapse
Affiliation(s)
- Emily J. Cicali
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, FL, USA
| | - Amanda L. Elchynski
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, FL, USA
| | - Kelsey J. Cook
- Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Jacksonville, Florida, USA
- Nemours Children’s Specialty Care, Jacksonville, FL, USA
| | - John T. Houder
- Dean’s Office, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Cameron D. Thomas
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, FL, USA
| | - D. Max Smith
- MedStar Health, Columbia, Maryland
- Georgetown University Medical Center, Washington, DC
| | - Amanda Elsey
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Julie A. Johnson
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, FL, USA
| | - Larisa H. Cavallari
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, FL, USA
| | - Kristin Wiisanen
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
24
|
Fohner AE, Dalton R, Skagen K, Jackson K, Claw KG, Hopkins SE, Robinson R, Khan BA, Prasad B, Schuetz EG, Nickerson DA, Thornton TA, Dillard DA, Boyer BB, Thummel KE, Woodahl EL. Characterization of CYP3A pharmacogenetic variation in American Indian and Alaska Native communities, targeting CYP3A4*1G allele function. Clin Transl Sci 2021; 14:1292-1302. [PMID: 33503331 PMCID: PMC8301563 DOI: 10.1111/cts.12970] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/13/2020] [Accepted: 12/13/2020] [Indexed: 01/08/2023] Open
Abstract
The frequencies of genetic variants in the CYP3A4 and CYP3A5 genes differ greatly across global populations, leading to profound differences in the metabolic activity of these enzymes and resulting drug metabolism rates, with important consequences for therapeutic safety and efficacy. Yet, the impact of genetic variants on enzyme activity are incompletely described, particularly in American Indian and Alaska Native (AIAN) populations. To characterize genetic variation in CYP3A4 and CYP3A5 and its effect on enzyme activity, we partnered with AIAN people living in two regions of Alaska: Yup'ik Alaska Native people living in the Yukon-Kuskokwim Delta region of rural southwest Alaska and AIAN people receiving care at the Southcentral Foundation in Anchorage, Alaska. We identified low frequencies of novel and known variation in CYP3A4 and CYP3A5, including low frequencies of the CYP3A4*1G and CYP3A5*1 variants, and linkage disequilibrium patterns that differed from those we previously identified in an American Indian population in western Montana. We also identified increased activity of the CYP3A4*1G allele in vitro and in vivo. We demonstrated that the CYP3A4*1G allele confers increased protein content in human lymphoblastoid cells and both increased protein content and increased activity in human liver microsomes. We confirmed enhanced CYP3A4-mediated 4β-vitamin D hydroxylation activity in Yup'ik people with the CYP3A4*1G allele. AIAN people in Alaska and Montana who carry the CYP3A4*1G allele-coupled with low frequency of the functional CYP3A5*1 variant-may metabolize CYP3A substrates more rapidly than people with the reference CYP3A4 allele.
Collapse
Affiliation(s)
- Alison E. Fohner
- Department of EpidemiologyUniversity of WashingtonSeattleWashingtonUSA
| | - Rachel Dalton
- Department of Biomedical and Pharmaceutical SciencesUniversity of MontanaMissoulaMontanaUSA
| | - Kasse Skagen
- Department of Biomedical and Pharmaceutical SciencesUniversity of MontanaMissoulaMontanaUSA
| | - Konner Jackson
- Department of Biomedical and Pharmaceutical SciencesUniversity of MontanaMissoulaMontanaUSA
| | - Katrina G. Claw
- Division of Biomedical Informatics and Personalized MedicineUniversity of ColoradoAuroraColoradoUSA
| | - Scarlett E. Hopkins
- Department of Obstetrics and GynecologyOregon Health & Science UniversityPortlandOregonUSA
| | | | | | - Bhagwat Prasad
- Department of PharmaceuticsUniversity of WashingtonSeattleWashingtonUSA
| | - Erin G. Schuetz
- Department of Pharmaceutical SciencesSt. Jude Children’s Research HospitalMemphisTennesseeUSA
| | | | | | | | - Bert B. Boyer
- Department of Obstetrics and GynecologyOregon Health & Science UniversityPortlandOregonUSA
| | | | - Erica L. Woodahl
- Department of Biomedical and Pharmaceutical SciencesUniversity of MontanaMissoulaMontanaUSA
| |
Collapse
|
25
|
Chong CS, Limviphuvadh V, Maurer-Stroh S. Global spectrum of population-specific common missense variation in cytochrome P450 pharmacogenes. Hum Mutat 2021; 42:1107-1123. [PMID: 34153149 DOI: 10.1002/humu.24243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/12/2021] [Accepted: 06/08/2021] [Indexed: 11/06/2022]
Abstract
Next-generation sequencing technology has afforded the discovery of many novel variants that are of significance to inheritable pharmacogenomics (PGx) traits but a large proportion of them have unknown consequences. These include missense variants resulting in single amino acid substitutions in cytochrome P450 (CYP) proteins that can impair enzyme function, leading to altered drug efficacy and toxicity. While most unknown variants are rare, an overlooked minority are variants that are collectively rare but enriched in specific populations. Here, we analyzed sequence variation data in 141,456 individuals from across eight study populations in gnomAD for 38 CYP genes to identify such variants in addition to common variants. By further comparison with data from two PGx-specific databases (PharmVar and PharmGKB) and ClinVar, we identified 234 missense variants in 35 CYP genes, of which 107 were unknown to these databases. Most unknown variants (n = 83) were population-specific common variants and several (n = 7) were found in important CYP pharmacogenes (CYP2D6, CYP4F2, and CYP2C19). Overall, 29% (n = 31) of 107 unknown variants were predicted to affect CYP enzyme function although further biochemical characterization is necessary. These variants may elucidate part of the unexplained interpopulation differences observed in drug response.
Collapse
Affiliation(s)
- Cheng-Shoong Chong
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Innovations in Food and Chemical Safety Programme (IFCS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,National University of Singapore Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore, Singapore
| | - Vachiranee Limviphuvadh
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Innovations in Food and Chemical Safety Programme (IFCS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Innovations in Food and Chemical Safety Programme (IFCS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,National University of Singapore Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
26
|
Luo S, Jiang R, Grzymski JJ, Lee W, Lu JT, Washington NL. Comprehensive Allele Genotyping in Critical Pharmacogenes Reduces Residual Clinical Risk in Diverse Populations. Clin Pharmacol Ther 2021; 110:759-767. [PMID: 33930192 PMCID: PMC8453755 DOI: 10.1002/cpt.2279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/19/2021] [Indexed: 11/25/2022]
Abstract
Genomic‐guided pharmaceutical prescribing is increasingly recognized as an important clinical application of genetics. Accurate genotyping of pharmacogenomic (PGx) genes can be difficult, owing to their complex genetic architecture involving combinations of single‐nucleotide polymorphisms and structural variation. Here, we introduce the Helix PGx database, an open‐source star allele, genotype, and resulting metabolic phenotype frequency database for CYP2C9, CYP2C19, CYP2D6, and CYP4F2, based on short‐read sequencing of >86,000 unrelated individuals enrolled in the Helix DNA Discovery Project. The database is annotated using a pipeline that is clinically validated against a broad range of alleles and designed to call CYP2D6 structural variants with high (98%) accuracy. We find that CYP2D6 has greater allelic diversity than the other genes, manifest in both a long tail of low‐frequency star alleles, as well as a disproportionate fraction (36%) of all novel predicted loss‐of‐function variants identified. Across genes, we observe that many rare alleles (<0.1% frequency) in the overall cohort have 10 times higher frequency in one or more subgroups with non‐European genetic ancestry. Extending these PGx genotypes to predicted metabolic phenotypes, we demonstrate that >90% of the cohort harbors a high‐risk variant in one of the four pharmacogenes. Based on the recorded prescriptions for >30,000 individuals in the Healthy Nevada Project, combined with predicted PGx metabolic phenotypes, we anticipate that standard‐of‐care screening of these 4 pharmacogenes could impact nearly half of the general population.
Collapse
Affiliation(s)
| | | | - Joseph J Grzymski
- Desert Research Institute, Reno, Nevada, USA.,Renown Institute of Health Innovation, Reno, Nevada, USA
| | | | | | | |
Collapse
|
27
|
Fonseca DJ, Morel A, Llinás-Caballero K, Bolívar-Salazar D, Laissue P. Whole-Exome Sequencing in Patients Affected by Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis Reveals New Variants Potentially Contributing to the Phenotype. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:287-299. [PMID: 33688237 PMCID: PMC7935440 DOI: 10.2147/pgpm.s289869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/26/2020] [Indexed: 12/17/2022]
Abstract
Background Adverse drug reactions (ADRs) are frequent occurring events that can essentially be defined as harmful or unpleasant symptoms secondary to the use of a medicinal product. ADRs involve a wide spectrum of clinical manifestations ranging from minor itching and rash to life-threatening reactions. Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are rare ADRs. SJS-TEN may be considered a polygenic pathology due to additive/epistatic effects caused by sequence variants in numerous genes. Next-generation sequencing (NGS) represents a potentially interesting exploration tool in such scenario as it facilitates the simultaneous analysis of large genomic regions and genes at affordable cost. Methods The present study has involved using whole-exome sequencing (WES) for the first time on SJS-TEN patients. It involved robust and innovative multistep bioinformatics analysis focusing on 313 candidate genes potentially participating in the disease’s aetiology, specific drugs’ metabolism and gene regulation. Results We identified combinations of frequently occurring and rare variants that may contribute to the disease’s pathogenesis. Depending on the specific drug being taken, different variants (and alleles) in NAT2, CYP2D8, CYP2B6, ABCC2, UGT2B7 and TCF3 were identified as coherent candidates representing potential future markers for SJS-TEN. Conclusion The present study proposed and has described (for the first time) a large-scale genomic analysis of patients affected by SJS-TEN. The genes and variants identified represent relevant candidates potentially participating in the disease’s pathogenesis. Corroborating that proposed by others, we found that complex combinations of frequently occurring and rare variants participating in particular drug metabolism molecular cascades could be associated with the phenotype. TCF3 TF may be considered a coherent candidate for SJS-TEN that should be analysed in new cohorts of patients having ADRs.
Collapse
Affiliation(s)
- Dora Janeth Fonseca
- Center for Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Adrien Morel
- Center for Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Kevin Llinás-Caballero
- Center for Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - David Bolívar-Salazar
- Center for Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Paul Laissue
- Center for Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia.,BIOPAS Laboratoires, Orphan Diseases Unit, BIOPAS GROUP, Bogotá, Colombia
| |
Collapse
|
28
|
Hongkaew Y, Gaedigk A, Wilffert B, Ngamsamut N, Kittitharaphan W, Limsila P, Sukasem C. Relationship between CYP2D6 genotype, activity score and phenotype in a pediatric Thai population treated with risperidone. Sci Rep 2021; 11:4158. [PMID: 33603025 PMCID: PMC7892547 DOI: 10.1038/s41598-021-83570-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/04/2021] [Indexed: 12/29/2022] Open
Abstract
Recently, the Clinical Pharmacogenetics Implementation Consortium (CPIC) have revised recommendations for the translation of CYP2D6 genotype to phenotype. Changes affect phenotype grouping, as well as the value used to calculate activity score for the CYP2D6*10 allele to better reflect the substantially decreased activity of this allele which is the most frequent allele found in Asian populations. This study aimed to evaluate whether the lower value for CYP2D6*10 as recommended, and the revised phenotype groupings improve the relationship between CYP2D6 genotype and risperidone measures. One hundred and ninety-nine children and adolescents with autism treated with a risperidone-based regimen for at least four weeks were included. CYP2D6 genotype was determined using the Luminex xTAG CYP2D6 Kit assay and translated into phenotype using different translation methods. Plasma concentrations of risperidone and 9-hydroxyrisperidone were measured using LC/MS/MS. Plasma levels of risperidone, risperidone concentration/dose ratio, and risperidone/9-hydroxyrisperidone ratio in patients with an activity score < 1 were significantly higher than those ≥ 1 (P value < 0.001 for all three parameters). Plasma risperidone levels and risperidone concentration/dose ratios were significantly higher in intermediate metabolizers (defined as AS = 0.25–0.75) than normal metabolizer (defined as AS = 1–2) patients (1.44 vs. 0.23 ng/ml, P < 0.001 and 1.63 vs. 0.29 ng/ml/ng, P < 0.001, respectively) as well as risperidone/9-hydroxyrisperidone ratio (0.20 vs. 0.04, P < 0.001). This is the first study in an Asian population utilizing the revised CPIC-recommended method for translating the CYP2D6 genotype to phenotype. In addition to validating that CYP2D6 genetic variation significantly impacts risperidone metabolism, we demonstrated that revised value for the CYP2D6*10 was superior for genotype to phenotype translation. However, at least for risperidone, subjects with an activity score of 1 presented as phenotypic normal, and not intermediate metabolizers, suggesting that phenotype classification is substrate dependent.
Collapse
Affiliation(s)
- Yaowaluck Hongkaew
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand.,Advanced Research and Development Laboratory, Bumrungrad International Hospital, Bangkok, Thailand
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, MO, USA.,School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Bob Wilffert
- Unit of PharmacoTherapy, -Epidemiology and -Economics, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.,Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Nattawat Ngamsamut
- Yuwaprasart Waithayopathum Child and Adolescent Psychiatric Hospital, Department of Mental Health Services, Ministry of Public Health, Samut Prakan, Thailand
| | - Wiranpat Kittitharaphan
- Yuwaprasart Waithayopathum Child and Adolescent Psychiatric Hospital, Department of Mental Health Services, Ministry of Public Health, Samut Prakan, Thailand
| | - Penkhae Limsila
- Yuwaprasart Waithayopathum Child and Adolescent Psychiatric Hospital, Department of Mental Health Services, Ministry of Public Health, Samut Prakan, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand. .,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand.
| |
Collapse
|
29
|
Caspar SM, Schneider T, Stoll P, Meienberg J, Matyas G. Potential of whole-genome sequencing-based pharmacogenetic profiling. Pharmacogenomics 2021; 22:177-190. [PMID: 33517770 DOI: 10.2217/pgs-2020-0155] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pharmacogenetics represents a major driver of precision medicine, promising individualized drug selection and dosing. Traditionally, pharmacogenetic profiling has been performed using targeted genotyping that focuses on common/known variants. Recently, whole-genome sequencing (WGS) is emerging as a more comprehensive short-read next-generation sequencing approach, enabling both gene diagnostics and pharmacogenetic profiling, including rare/novel variants, in a single assay. Using the example of the pharmacogene CYP2D6, we demonstrate the potential of WGS-based pharmacogenetic profiling as well as emphasize the limitations of short-read next-generation sequencing. In the near future, we envision a shift toward long-read sequencing as the predominant method for gene diagnostics and pharmacogenetic profiling, providing unprecedented data quality and improving patient care.
Collapse
Affiliation(s)
- Sylvan Manuel Caspar
- Center for Cardiovascular Genetics & Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich 8952, Switzerland.,Department of Health Sciences & Technology, Laboratory of Translational Nutrition Biology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Timo Schneider
- Center for Cardiovascular Genetics & Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich 8952, Switzerland
| | - Patricia Stoll
- Center for Cardiovascular Genetics & Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich 8952, Switzerland
| | - Janine Meienberg
- Center for Cardiovascular Genetics & Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich 8952, Switzerland
| | - Gabor Matyas
- Center for Cardiovascular Genetics & Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich 8952, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich 8057, Switzerland
| |
Collapse
|
30
|
Cyrius: accurate CYP2D6 genotyping using whole-genome sequencing data. THE PHARMACOGENOMICS JOURNAL 2021; 21:251-261. [PMID: 33462347 PMCID: PMC7997805 DOI: 10.1038/s41397-020-00205-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/13/2020] [Accepted: 12/04/2020] [Indexed: 12/03/2022]
Abstract
Responsible for the metabolism of ~21% of clinically used drugs, CYP2D6 is a critical component of personalized medicine initiatives. Genotyping CYP2D6 is challenging due to sequence similarity with its pseudogene paralog CYP2D7 and a high number and variety of common structural variants (SVs). Here we describe a novel bioinformatics method, Cyrius, that accurately genotypes CYP2D6 using whole-genome sequencing (WGS) data. We show that Cyrius has superior performance (96.5% concordance with truth genotypes) compared to existing methods (84–86.8%). After implementing the improvements identified from the comparison against the truth data, Cyrius’s accuracy has since been improved to 99.3%. Using Cyrius, we built a haplotype frequency database from 2504 ethnically diverse samples and estimate that SV-containing star alleles are more frequent than previously reported. Cyrius will be an important tool to incorporate pharmacogenomics in WGS-based precision medicine initiatives.
Collapse
|
31
|
Lin YS, Thummel KE, Thompson BD, Totah RA, Cho CW. Sources of Interindividual Variability. Methods Mol Biol 2021; 2342:481-550. [PMID: 34272705 DOI: 10.1007/978-1-0716-1554-6_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The efficacy, safety, and tolerability of drugs are dependent on numerous factors that influence their disposition. A dose that is efficacious and safe for one individual may result in sub-therapeutic or toxic blood concentrations in others. A significant source of this variability in drug response is drug metabolism, where differences in presystemic and systemic biotransformation efficiency result in variable degrees of systemic exposure (e.g., AUC, Cmax, and/or Cmin) following administration of a fixed dose.Interindividual differences in drug biotransformation have been studied extensively. It is recognized that both intrinsic factors (e.g., genetics, age, sex, and disease states) and extrinsic factors (e.g., diet , chemical exposures from the environment, and the microbiome) play a significant role. For drug-metabolizing enzymes, genetic variation can result in the complete absence or enhanced expression of a functional enzyme. In addition, upregulation and downregulation of gene expression, in response to an altered cellular environment, can achieve the same range of metabolic function (phenotype), but often in a less predictable and time-dependent manner. Understanding the mechanistic basis for variability in drug disposition and response is essential if we are to move beyond the era of empirical, trial-and-error dose selection and into an age of personalized medicine that will improve outcomes in maintaining health and treating disease.
Collapse
Affiliation(s)
- Yvonne S Lin
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA.
| | - Kenneth E Thummel
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Brice D Thompson
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Rheem A Totah
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Christi W Cho
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| |
Collapse
|
32
|
Sharma S, Suresh Ahire D, Prasad B. Utility of Quantitative Proteomics for Enhancing the Predictive Ability of Physiologically Based Pharmacokinetic Models Across Disease States. J Clin Pharmacol 2020; 60 Suppl 1:S17-S35. [DOI: 10.1002/jcph.1709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Sheena Sharma
- Department of Pharmaceutical Sciences Washington State University Spokane Washington USA
| | - Deepak Suresh Ahire
- Department of Pharmaceutical Sciences Washington State University Spokane Washington USA
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences Washington State University Spokane Washington USA
| |
Collapse
|
33
|
McInnes G, Dalton R, Sangkuhl K, Whirl-Carrillo M, Lee SB, Tsao PS, Gaedigk A, Altman RB, Woodahl EL. Transfer learning enables prediction of CYP2D6 haplotype function. PLoS Comput Biol 2020; 16:e1008399. [PMID: 33137098 PMCID: PMC7660895 DOI: 10.1371/journal.pcbi.1008399] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 11/12/2020] [Accepted: 09/24/2020] [Indexed: 12/31/2022] Open
Abstract
Cytochrome P450 2D6 (CYP2D6) is a highly polymorphic gene whose protein product metabolizes more than 20% of clinically used drugs. Genetic variations in CYP2D6 are responsible for interindividual heterogeneity in drug response that can lead to drug toxicity and ineffective treatment, making CYP2D6 one of the most important pharmacogenes. Prediction of CYP2D6 phenotype relies on curation of literature-derived functional studies to assign a functional status to CYP2D6 haplotypes. As the number of large-scale sequencing efforts grows, new haplotypes continue to be discovered, and assignment of function is challenging to maintain. To address this challenge, we have trained a convolutional neural network to predict functional status of CYP2D6 haplotypes, called Hubble.2D6. Hubble.2D6 predicts haplotype function from sequence data and was trained using two pre-training steps with a combination of real and simulated data. We find that Hubble.2D6 predicts CYP2D6 haplotype functional status with 88% accuracy in a held-out test set and explains 47.5% of the variance in in vitro functional data among star alleles with unknown function. Hubble.2D6 may be a useful tool for assigning function to haplotypes with uncurated function, and used for screening individuals who are at risk of being poor metabolizers.
Collapse
Affiliation(s)
- Gregory McInnes
- Biomedical Informatics Training Program, Stanford University, Stanford, California, United States of America
| | - Rachel Dalton
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana, United States of America
- Department of Biomedical and Translational Research, University of Florida, Gainesville, Florida, United States of America
| | - Katrin Sangkuhl
- Department of Biomedical Data Science, Stanford University, Stanford, California, United States of America
| | - Michelle Whirl-Carrillo
- Department of Biomedical Data Science, Stanford University, Stanford, California, United States of America
| | - Seung-been Lee
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Philip S. Tsao
- VA Palo Alto Epidemiology Research and Information Center for Genomics, VAPAHCS, Palo Alto, California, United States of America
- Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Children’s Mercy Kansas City, Kansas City, Missouri, United States of America
- School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Russ B. Altman
- Department of Biomedical Data Science, Stanford University, Stanford, California, United States of America
- Departments of Bioengineering, Genetics, and Medicine, Stanford University, Stanford, California, United States of America
| | - Erica L. Woodahl
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana, United States of America
| |
Collapse
|
34
|
Pey AL. Towards Accurate Genotype-Phenotype Correlations in the CYP2D6 Gene. J Pers Med 2020; 10:jpm10040158. [PMID: 33049937 PMCID: PMC7711719 DOI: 10.3390/jpm10040158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 12/17/2022] Open
Abstract
Establishing accurate and large-scale genotype-phenotype correlations and predictions of individual response to pharmacological treatments are two of the holy grails of Personalized Medicine. These tasks are challenging and require an integrated knowledge of the complex processes that regulate gene expression and, ultimately, protein functionality in vivo, the effects of mutations/polymorphisms and the different sources of interindividual phenotypic variability. A remarkable example of our advances in these challenging tasks is the highly polymorphic CYP2D6 gene, which encodes a cytochrome P450 enzyme involved in the metabolization of many of the most marketed drugs (including SARS-Cov-2 therapies such as hydroxychloroquine). Since the introduction of simple activity scores (AS) over 10 years ago, its ability to establish genotype-phenotype correlations on the drug metabolizing capacity of this enzyme in human population has provided lessons that will help to improve this type of score for this, and likely many other human genes and proteins. Multidisciplinary research emerges as the best approach to incorporate additional concepts to refine and improve such functional/activity scores for the CYP2D6 gene, as well as for many other human genes associated with simple and complex genetic diseases.
Collapse
Affiliation(s)
- Angel L Pey
- Departamento de Química Física, Unidad de Excelencia de Química aplicada a Biomedicina y Medioambiente, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
35
|
Levings D, Shaw KE, Lacher SE. Genomic resources for dissecting the role of non-protein coding variation in gene-environment interactions. Toxicology 2020; 441:152505. [PMID: 32450112 DOI: 10.1016/j.tox.2020.152505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 12/27/2022]
Abstract
The majority of single nucleotide variants (SNVs) identified in Genome Wide Association Studies (GWAS) fall within non-protein coding DNA and have the potential to alter gene expression. Non-protein coding DNA can control gene expression by acting as transcription factor (TF) binding sites or by regulating the organization of DNA into chromatin. SNVs in non-coding DNA sequences can disrupt TF binding and chromatin structure and this can result in pathology. Further, environmental health studies have shown that exposure to xenobiotics can disrupt the ability of TFs to regulate entire gene networks and result in pathology. However, there is a large amount of interindividual variability in exposure-linked health outcomes. One explanation for this heterogeneity is that genetic variation and exposure combine to disrupt gene regulation, and this eventually manifests in disease. Many resources exist that annotate common variants from GWAS and combine them with conservation, functional genomics, and TF binding data. These annotation tools provide clues regarding the biological implications of an SNV, as well as lead to the generation of hypotheses regarding potentially disrupted target genes, epigenetic markers, pathways, and cell types. Collectively this information can be used to predict how SNVs can alter an individual's response to exposure and disease risk. A basic understanding of the regulatory information contained within non-protein coding DNA is needed to predict the biological consequences of SNVs, and to determine how these SNVs impact exposure-related disease. We hope that this review will aid in the characterization of disease-associated genetic variation in the non-protein coding genome.
Collapse
Affiliation(s)
- Daniel Levings
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, 1035 University Drive, Duluth, MN, 55812, USA
| | - Kirsten E Shaw
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, 1035 University Drive, Duluth, MN, 55812, USA
| | - Sarah E Lacher
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, 1035 University Drive, Duluth, MN, 55812, USA.
| |
Collapse
|
36
|
Boone EC, Wang WY, Gaedigk R, Cherner M, Bérard A, Leeder JS, Miller NA, Gaedigk A. Long-Distance Phasing of a Tentative "Enhancer" Single-Nucleotide Polymorphism With CYP2D6 Star Allele Definitions. Front Pharmacol 2020; 11:486. [PMID: 32457600 PMCID: PMC7226225 DOI: 10.3389/fphar.2020.00486] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/27/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The CYP2D6 gene locus has been extensively studied over decades, yet a portion of variability in CYP2D6 activity cannot be explained by known sequence variations within the gene, copy number variation, or structural rearrangements. It was proposed that rs5758550, located 116 kb downstream of the CYP2D6 gene locus, increases gene expression and thus contributes to variability in CYP2D6 activity. This finding has, however, not been validated. The purpose of the study was to address a major technological barrier, i.e., experimentally linking rs5758550, also referred to as the "enhancer" single-nucleotide polymorphism (SNP), to CYP2D6 haplotypes >100 kb away. To overcome this challenge is essential to ultimately determine the contribution of the "enhancer" SNP to interindividual variability in CYP2D6 activity. METHODS A large ethnically mixed population sample (n=3,162) was computationally phased to determine linkage between the "enhancer" SNP and CYP2D6 haplotypes (or star alleles). To experimentally validate predicted linkages, DropPhase2D6, a digital droplet PCR (ddPCR)-based method was developed. 10X Genomics Linked-Reads were utilized as a proof of concept. RESULTS Phasing predicted that the "enhancer" SNP can occur on numerous CYP2D6 haplotypes including CYP2D6*1, *2, *5, and *41 and suggested that linkage is incomplete, i.e., a portion of these alleles do not have the "enhancer" SNP. Phasing also revealed differences among the European and African ancestry data sets regarding the proportion of alleles with and without the "enhancer" SNP. DropPhase2D6 was utilized to confirm or refute the predicted "enhancer" SNP location for individual samples, e.g., of n=3 samples genotyped as *1/*41, rs5758550 was on the *41 allele of two samples and on the *1 allele of one sample. Our findings highlight that the location of the "enhancer" SNP must not be assigned by "default." Furthermore, linkage between the "enhancer" SNP and CYP2D6 star allele haplotypes was confirmed with 10X Genomics technology. CONCLUSIONS Since the "enhancer" SNP can be present on a portion of normal, decreased, or no function alleles, the phase of the "enhancer" SNP must be considered when investigating the impact of the "enhancer" SNP on CYP2D6 activity.
Collapse
Affiliation(s)
- Erin C. Boone
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, MO, United States
| | - Wendy Y. Wang
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, MO, United States
| | - Roger Gaedigk
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, MO, United States
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Mariana Cherner
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Anick Bérard
- Faculty of Pharmacy, University of Montreal, Montreal, QC, Canada
- Research Center, CHU Sainte-Justine, Montreal, QC, Canada
| | - J. Steven Leeder
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, MO, United States
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Neil A. Miller
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
- Center for Pediatric Genomic Medicine, Children's Mercy Kansas City, Kansas City, MO, United States
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, MO, United States
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| |
Collapse
|
37
|
Chan CWH, Law BMH, So WKW, Chow KM, Waye MMY. Pharmacogenomics of breast cancer: highlighting CYP2D6 and tamoxifen. J Cancer Res Clin Oncol 2020; 146:1395-1404. [PMID: 32270286 DOI: 10.1007/s00432-020-03206-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE To review recent pharmacogenomics studies on breast cancer patients undergoing tamoxifen therapy, highlighting how our knowledge on cytochrome P450 2D6 (CYP2D6) can help to guide the development of adjuvant therapies for these patients. METHODS A comprehensive literature search was conducted. Articles reporting findings pertaining to the effect of CYP2D6 on the therapeutic efficacy of tamoxifen, those reporting how targeting CYP2D6 could inform tamoxifen-based therapy development, and those on the tamoxifen effects on cell lines and animal models were included in the review. RESULTS With CYP2D6 being the primary enzyme for tamoxifen metabolism, single-nucleotide polymorphisms (SNPs) in this gene were one of the determinants in the rate of tamoxifen metabolism, thereby potentially having an effect on the efficacy of tamoxifen-based therapies. Our review indicates the potential effectiveness of targeting these SNPs, including those for the CYP2D6*10 allele (c. 100C > T), in modifying the level of tamoxifen metabolism. These findings suggest the importance of pharmacogenomics research in our understanding of the efficacy of adjuvant therapies. However, the involvement of multiple enzymes in tamoxifen metabolism, dietary factors, ethnic differences in gene frequencies, and patients' compliance to tamoxifen therapies in studies do present challenges in pharmacogenomics research. CONCLUSIONS Pharmacogenomics could play important roles in mediating the advancement of tamoxifen-based adjuvant therapies. Research efforts should be directed towards the exploration of further SNPs of CYP2D6 that affect tamoxifen metabolism, as well as epigenetic changes in CYP2D6, enabling the design of precision medicine and confirming clinical validity in the use of pharmacogenomics for tamoxifen.
Collapse
Affiliation(s)
- Carmen W H Chan
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, 6/F Esther Lee Building, Hong Kong, China
| | - Bernard M H Law
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, 6/F Esther Lee Building, Hong Kong, China
| | - Winnie K W So
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, 6/F Esther Lee Building, Hong Kong, China
| | - Ka Ming Chow
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, 6/F Esther Lee Building, Hong Kong, China
| | - Mary M Y Waye
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, 6/F Esther Lee Building, Hong Kong, China. .,The Croucher Laboratory for Human Genomics, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|