1
|
Chen J, Zhou Q, Su L, Ni L. Mitochondrial dysfunction: the hidden catalyst in chronic kidney disease progression. Ren Fail 2025; 47:2506812. [PMID: 40441691 PMCID: PMC12123951 DOI: 10.1080/0886022x.2025.2506812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Accepted: 05/10/2025] [Indexed: 06/02/2025] Open
Abstract
Chronic kidney disease (CKD) represents a global health epidemic, with approximately one-third of affected individuals ultimately necessitating renal replacement therapy or transplantation. The kidney, characterized by its exceptionally high energy demands, exhibits significant sensitivity to alterations in energy supply and mitochondrial function. In CKD, a compromised capacity for mitochondrial ATP synthesis has been documented. As research advances, the multifaceted roles of mitochondria, extending beyond their traditional functions in oxygen sensing and energy production, are increasingly acknowledged. Empirical studies have demonstrated a strong association between mitochondrial dysfunction and the pathogenesis of fibrosis and cellular apoptosis in CKD. Targeting mitochondrial dysfunction holds substantial therapeutic promise, with emerging insights into its epigenetic regulation in CKD, particularly involving non-coding RNAs and DNA methylation. This article presents a comprehensive review of contemporary research on mitochondrial dysfunction in relation to the onset and progression of CKD. It elucidates the associated molecular mechanisms across various renal cell types and proposes novel research avenues for CKD treatment.
Collapse
Affiliation(s)
- Jinhu Chen
- Department of Nephrology, Huanggang Central Hospital of Yangtze University, Huanggang, China
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiuyuan Zhou
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Pathology, Liang Ping People’s Hospital of Chongqing, Chongqing, People’s Republic of China
| | - Lianjiu Su
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
- Department of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Lihua Ni
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Zanini G, Micheloni G, Sinigaglia G, Selleri V, Mattioli AV, Nasi M, Pierri CL, Pinti M. Modulation of Lonp1 Activity by Small Compounds. Biomolecules 2025; 15:553. [PMID: 40305312 PMCID: PMC12024584 DOI: 10.3390/biom15040553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025] Open
Abstract
The Lon protease homolog 1 (LONP1) is an ATP-dependent mitochondrial protease essential for maintaining proteostasis, bioenergetics, and cellular homeostasis. LONP1 plays a pivotal role in protein quality control, mitochondrial DNA maintenance, and oxidative phosphorylation system (OXPHOS) regulation, particularly under stress conditions. Dysregulation of LONP1 has been implicated in various pathologies, including cancer, metabolic disorders, and reproductive diseases, positioning it as a promising pharmacological target. This review examines compounds that modulate LONP1 activity, categorizing them into inhibitors and activators. Inhibitors such as CDDO and its derivatives selectively target LONP1, impairing mitochondrial proteolysis, inducing protein aggregation, and promoting apoptosis, particularly in cancer cells. Compounds like Obtusilactone A and proteasome inhibitors (e.g., MG262) demonstrate potent cytotoxicity, further expanding the therapeutic landscape. Conversely, LONP1 activators, including Artemisinin derivatives and 84-B10, restore mitochondrial function and protect against conditions such as polycystic ovary syndrome (PCOS) and acute kidney injury (AKI). Future research should focus on improving the specificity, bioavailability, and pharmacokinetics of these modulators. Advances in structural biology and drug discovery will enable the development of novel LONP1-targeted therapies, addressing diseases driven by mitochondrial dysfunction and proteostasis imbalance.
Collapse
Affiliation(s)
- Giada Zanini
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.Z.); (G.M.); (G.S.); (V.S.)
| | - Giulia Micheloni
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.Z.); (G.M.); (G.S.); (V.S.)
| | - Giorgia Sinigaglia
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.Z.); (G.M.); (G.S.); (V.S.)
| | - Valentina Selleri
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.Z.); (G.M.); (G.S.); (V.S.)
- National Institute for Cardiovascular Research—INRC, 40126 Bologna, Italy;
| | - Anna Vittoria Mattioli
- National Institute for Cardiovascular Research—INRC, 40126 Bologna, Italy;
- Department of Quality-of-Life Sciences, University of Bologna, 40126 Bologna, Italy
| | - Milena Nasi
- Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Ciro Leonardo Pierri
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.Z.); (G.M.); (G.S.); (V.S.)
- National Institute for Cardiovascular Research—INRC, 40126 Bologna, Italy;
| |
Collapse
|
3
|
Dong Y, Zheng M, Ding W, Guan H, Xiao J, Li F. Nrf2 activators for the treatment of rare iron overload diseases: From bench to bedside. Redox Biol 2025; 81:103551. [PMID: 39965404 PMCID: PMC11876910 DOI: 10.1016/j.redox.2025.103551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/02/2025] [Accepted: 02/13/2025] [Indexed: 02/20/2025] Open
Abstract
Iron overload and related oxidative damage are seen in many rare diseases, due to mutation of iron homeostasis-related genes. As a core regulator on cellular antioxidant reaction, Nrf2 can also decrease systemic and cellular iron levels by regulating iron-related genes and pathways, making Nrf2 activators very good candidates for the treatment of iron overload disorders. Successful examples include the clinical use of omaveloxolone for Friedreich's Ataxia and dimethyl fumarate for relapsing-remitting multiple sclerosis. Despite these uses, the therapeutic potentials of Nrf2 activators for iron overload disorders may be overlooked in clinical practice. Therefore, this study talks about the potential use, possible mechanisms, and precautions of Nrf2 activators in treating rare iron overload diseases. In addition, a combination therapy with Nrf2 activators and iron chelators is proposed for clinical reference, aiming to facilitate the clinical use of Nrf2 activators for more iron overload disorders.
Collapse
Affiliation(s)
- Yimin Dong
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Zheng
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weizhong Ding
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hanfeng Guan
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jun Xiao
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Feng Li
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Tkaczenko H, Kurhaluk N. Antioxidant-Rich Functional Foods and Exercise: Unlocking Metabolic Health Through Nrf2 and Related Pathways. Int J Mol Sci 2025; 26:1098. [PMID: 39940866 PMCID: PMC11817741 DOI: 10.3390/ijms26031098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
This article reviews the synergistic effects of antioxidant-enriched functional foods and exercise in improving metabolic health, focusing on the underlying molecular mechanisms. The review incorporates evidence from PubMed, SCOPUS, Web of Science, PsycINFO, and reference lists of relevant reviews up to 20 December 2024, highlighting the central role of the Nrf2 pathway. As a critical regulator of oxidative stress and metabolic adaptation, Nrf2 mediates the benefits of these interventions. This article presents an innovative approach to understanding the role of Nrf2 in the regulation of oxidative stress and inflammation, highlighting its potential in the prevention and treatment of various diseases, including cancer, neurodegenerative disorders, cardiovascular and pulmonary diseases, diabetes, inflammatory conditions, ageing, and infections such as COVID-19. The novelty of this study is to investigate the synergistic effects of bioactive compounds found in functional foods (such as polyphenols, flavonoids, and vitamins) and exercise-induced oxidative stress on the activation of the Nrf2 pathway. This combined approach reveals their potential to improve insulin sensitivity and lipid metabolism and reduce inflammation, offering a promising strategy for the management of chronic diseases. However, there are significant gaps in current research, particularly regarding the molecular mechanisms underlying the interaction between diet, physical activity, and Nrf2 activation, as well as their long-term effects in different populations, including those with chronic diseases. In addition, the interactions between Nrf2 and other critical signalling pathways, including AMPK, NF-κB, and PI3K/Akt, and their collective contributions to metabolic health are explored. Furthermore, novel biomarkers are presented to assess the impact of these synergistic strategies, such as the NAD+/NADH ratio, the GSH ratio, and markers of mitochondrial health. The findings provide valuable insights into how the integration of an antioxidant-rich diet and regular exercise can improve metabolic health by activating Nrf2 and related molecular pathways and represent promising strategies for the prevention and treatment of metabolic disorders. Further studies are needed to fully understand the therapeutic potential of these interventions in diseases related to oxidative stress, such as cardiovascular disease, neurodegenerative disease, diabetes, and cancer.
Collapse
Affiliation(s)
| | - Natalia Kurhaluk
- Institute of Biology, Pomeranian University in Słupsk, Arciszewski St. 22b, 76-200 Słupsk, Poland;
| |
Collapse
|
5
|
Jin X, Chen L, Yang Y, Tan R, Jiang C. Adverse Effects of Nrf2 in Different Organs and the Related Diseases. Antioxid Redox Signal 2024. [PMID: 39723588 DOI: 10.1089/ars.2024.0586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Significance: Under normal physiological conditions, Nrf2 undergoes ubiquitination and subsequent proteasome degradation to maintain its basal activity. Oxidative stress can trigger Nrf2 activation, prompting its translocation to the nucleus where it functions as a transcription factor, activating various antioxidant pathways, and conferring antioxidant properties. Recent Advances: While extensive research has shown Nrf2's protective role in various diseases, emerging evidence suggests that Nrf2 activation can also produce harmful effects. Critical Issues: This review examines the pathological contexts in which Nrf2 assumes different roles, emphasizing the mechanisms and conditions that result in adverse outcomes. Future Directions: Persistent Nrf2 activation may have deleterious consequences, necessitating further investigation into the specific conditions and mechanisms through which Nrf2 exerts its harmful effects. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Xuemei Jin
- Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
- Department of Preventive Medicine, School of Medicine, Yanbian University, Yanji, China
| | - Long Chen
- Department of Orthopedics, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Yuelan Yang
- Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
- Department of Nephrology, The First Clinical College of Guangdong Medical University, Zhanjiang, China
| | - Rongshao Tan
- Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Chunjie Jiang
- Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
6
|
Deng J, Li N, Hao L, Li S, Aiyu N, Zhang J, Hu X. Transcription factor NF-E2-related factor 2 plays a critical role in acute lung injury/acute respiratory distress syndrome (ALI/ARDS) by regulating ferroptosis. PeerJ 2024; 12:e17692. [PMID: 39670103 PMCID: PMC11637007 DOI: 10.7717/peerj.17692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/14/2024] [Indexed: 12/14/2024] Open
Abstract
NRF2 is an important transcription factor that regulates redox homeostasis in vivo and exerts its anti-oxidative stress and anti-inflammatory response by binding to the ARE to activate and regulate the transcription of downstream protective protein genes, reducing the release of reactive oxygen species. Ferroptosis is a novel iron-dependent, lipid peroxidation-driven cell death mode, and recent studies have shown that ferroptosis is closely associated with acute lung injury/acute respiratory distress syndrome (ALI/ARDS). NRF2 is able to regulate ferroptosis through the regulation of the transcription of its target genes to ameliorate ALI/ARDS. Therefore, This article focuses on how NRF2 plays a role in ALI/ARDS by regulating ferroptosis. We further reviewed the literature and deeply analyzed the signaling pathways related to ferroptosis which were regulated by NRF2. Additionally, we sorted out the chemical molecules targeting NRF2 that are effective for ALI/ARDS. This review provides a relevant theoretical basis for further research on this theory and the prevention and treatment of ALI/ARDS. The intended audience is clinicians and researchers in the field of respiratory disease.
Collapse
Affiliation(s)
- JiaLi Deng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Na Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Liyuan Hao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shenghao Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Nie Aiyu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Junli Zhang
- Department of Infectious Disease, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - XiaoYu Hu
- Department of Infectious Disease, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Yi M, Toribio AJ, Salem YM, Alexander M, Ferrey A, Swentek L, Tantisattamo E, Ichii H. Nrf2 Signaling Pathway as a Key to Treatment for Diabetic Dyslipidemia and Atherosclerosis. Int J Mol Sci 2024; 25:5831. [PMID: 38892018 PMCID: PMC11172493 DOI: 10.3390/ijms25115831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/13/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Diabetes mellitus (DM) is a chronic endocrine disorder that affects more than 20 million people in the United States. DM-related complications affect multiple organ systems and are a significant cause of morbidity and mortality among people with DM. Of the numerous acute and chronic complications, atherosclerosis due to diabetic dyslipidemia is a condition that can lead to many life-threatening diseases, such as stroke, coronary artery disease, and myocardial infarction. The nuclear erythroid 2-related factor 2 (Nrf2) signaling pathway is an emerging antioxidative pathway and a promising target for the treatment of DM and its complications. This review aims to explore the Nrf2 pathway's role in combating diabetic dyslipidemia. We will explore risk factors for diabetic dyslipidemia at a cellular level and aim to elucidate how the Nrf2 pathway becomes a potential therapeutic target for DM-related atherosclerosis.
Collapse
Affiliation(s)
- Michelle Yi
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (A.J.T.); (Y.M.S.); (M.A.); (L.S.)
| | - Arvin John Toribio
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (A.J.T.); (Y.M.S.); (M.A.); (L.S.)
| | - Yusuf Muhammad Salem
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (A.J.T.); (Y.M.S.); (M.A.); (L.S.)
| | - Michael Alexander
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (A.J.T.); (Y.M.S.); (M.A.); (L.S.)
| | - Antoney Ferrey
- Department of Medicine, University of California Irvine, Irvine, CA 92697, USA; (A.F.); (E.T.)
| | - Lourdes Swentek
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (A.J.T.); (Y.M.S.); (M.A.); (L.S.)
| | - Ekamol Tantisattamo
- Department of Medicine, University of California Irvine, Irvine, CA 92697, USA; (A.F.); (E.T.)
| | - Hirohito Ichii
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (A.J.T.); (Y.M.S.); (M.A.); (L.S.)
| |
Collapse
|
8
|
Huang Y, Osouli A, Pham J, Mancino V, O'Grady C, Khan T, Chaudhuri B, Pastor-Soler NM, Hallows KR, Chung EJ. Investigation of Basolateral Targeting Micelles for Drug Delivery Applications in Polycystic Kidney Disease. Biomacromolecules 2024; 25:2749-2761. [PMID: 38652072 DOI: 10.1021/acs.biomac.3c01397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a complex disorder characterized by uncontrolled renal cyst growth, leading to kidney function decline. The multifaceted nature of ADPKD suggests that single-pathway interventions using individual small molecule drugs may not be optimally effective. As such, a strategy encompassing combination therapy that addresses multiple ADPKD-associated signaling pathways could offer synergistic therapeutic results. However, severe off-targeting side effects of small molecule drugs pose a major hurdle to their clinical transition. To address this, we identified four drug candidates from ADPKD clinical trials, bardoxolone methyl (Bar), octreotide (Oct), salsalate (Sal), and pravastatin (Pra), and incorporated them into peptide amphiphile micelles containing the RGD peptide (GRGDSP), which binds to the basolateral surface of renal tubules via integrin receptors on the extracellular matrix. We hypothesized that encapsulating drug combinations into RGD micelles would enable targeting to the basolateral side of renal tubules, which is the site of disease, via renal secretion, leading to superior therapeutic benefits compared to free drugs. To test this, we first evaluated the synergistic effect of drug combinations using the 20% inhibitory concentration for each drug (IC20) on renal proximal tubule cells derived from Pkd1flox/-:TSLargeT mice. Next, we synthesized and characterized the RGD micelles encapsulated with drug combinations and measured their in vitro therapeutic effects via a 3D PKD growth model. Upon both IV and IP injections in vivo, RGD micelles showed a significantly higher accumulation in the kidneys compared to NT micelles, and the renal access of RGD micelles was significantly reduced after the inhibition of renal secretion. Specifically, both Bar+Oct and Bar+Sal in the RGD micelle treatment showed enhanced therapeutic efficacy in ADPKD mice (Pkd1fl/fl;Pax8-rtTA;Tet-O-Cre) with a significantly lower KW/BW ratio and cyst index as compared to PBS and free drug-treated controls, while other combinations did not show a significant difference. Hence, we demonstrate that renal targeting through basolateral targeting micelles enhances the therapeutic potential of combination therapy in genetic kidney disease.
Collapse
Affiliation(s)
- Yi Huang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Ali Osouli
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Jessica Pham
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
- USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | - Valeria Mancino
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
- USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | - Colette O'Grady
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Taranatee Khan
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Baishali Chaudhuri
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Nuria M Pastor-Soler
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
- USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | - Kenneth R Hallows
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
- USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, California 90089, United States
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90033, United States
- Bridge Institute, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
9
|
Colombijn JM, Hooft L, Jun M, Webster AC, Bots ML, Verhaar MC, Vernooij RW. Antioxidants for adults with chronic kidney disease. Cochrane Database Syst Rev 2023; 11:CD008176. [PMID: 37916745 PMCID: PMC10621004 DOI: 10.1002/14651858.cd008176.pub3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
BACKGROUND Chronic kidney disease (CKD) is a significant risk factor for cardiovascular disease (CVD) and death. Increased oxidative stress in people with CKD has been implicated as a potential causative factor. Antioxidant therapy decreases oxidative stress and may consequently reduce cardiovascular morbidity and death in people with CKD. This is an update of a Cochrane review first published in 2012. OBJECTIVES To examine the benefits and harms of antioxidant therapy on death and cardiovascular and kidney endpoints in adults with CKD stages 3 to 5, patients undergoing dialysis, and kidney transplant recipients. SEARCH METHODS We searched the Cochrane Kidney and Transplant Register of Studies until 15 November 2022 using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Registry Platform (ICTRP) Search Portal, and ClinicalTrials.gov. SELECTION CRITERIA We included all randomised controlled trials investigating the use of antioxidants, compared with placebo, usual or standard care, no treatment, or other antioxidants, for adults with CKD on cardiovascular and kidney endpoints. DATA COLLECTION AND ANALYSIS Titles and abstracts were screened independently by two authors who also performed data extraction using standardised forms. Results were pooled using random effects models and expressed as risk ratios (RR) or mean difference (MD) with 95% confidence intervals (CI). Confidence in the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. MAIN RESULTS We included 95 studies (10,468 randomised patients) that evaluated antioxidant therapy in adults with non-dialysis-dependent CKD (31 studies, 5342 patients), dialysis-dependent CKD (41 studies, 3444 patients) and kidney transplant recipients (21 studies, 1529 patients). Two studies enrolled dialysis and non-dialysis patients (153 patients). Twenty-one studies assessed the effects of vitamin antioxidants, and 74 assessed the effects of non-vitamin antioxidants. Overall, the quality of included studies was moderate to low or very low due to unclear or high risk of bias for randomisation, allocation concealment, blinding, and loss to follow-up. Compared with placebo, usual care, or no treatment, antioxidant therapy may have little or no effect on cardiovascular death (8 studies, 3813 patients: RR 0.94, 95% CI 0.64 to 1.40; I² = 33%; low certainty of evidence) and probably has little to no effect on death (any cause) (45 studies, 7530 patients: RR 0.95, 95% CI 0.82 to 1.11; I² = 0%; moderate certainty of evidence), CVD (16 studies, 4768 patients: RR 0.79, 95% CI 0.63 to 0.99; I² = 23%; moderate certainty of evidence), or loss of kidney transplant (graft loss) (11 studies, 1053 patients: RR 0.88, 95% CI 0.67 to 1.17; I² = 0%; moderate certainty of evidence). Compared with placebo, usual care, or no treatment, antioxidants had little to no effect on the slope of urinary albumin/creatinine ratio (change in UACR) (7 studies, 1286 patients: MD -0.04 mg/mmol, 95% CI -0.55 to 0.47; I² = 37%; very low certainty of evidence) but the evidence is very uncertain. Antioxidants probably reduced the progression to kidney failure (10 studies, 3201 patients: RR 0.65, 95% CI 0.41 to 1.02; I² = 41%; moderate certainty of evidence), may improve the slope of estimated glomerular filtration rate (change in eGFR) (28 studies, 4128 patients: MD 3.65 mL/min/1.73 m², 95% CI 2.81 to 4.50; I² = 99%; low certainty of evidence), but had uncertain effects on the slope of serum creatinine (change in SCr) (16 studies, 3180 patients: MD -13.35 µmol/L, 95% CI -23.49 to -3.23; I² = 98%; very low certainty of evidence). Possible safety concerns are an observed increase in the risk of infection (14 studies, 3697 patients: RR 1.30, 95% CI 1.14 to 1.50; I² = 3%; moderate certainty of evidence) and heart failure (6 studies, 3733 patients: RR 1.40, 95% CI 1.11 to 1.75; I² = 0; moderate certainty of evidence) among antioxidant users. Results of studies with a low risk of bias or longer follow-ups generally were comparable to the main analyses. AUTHORS' CONCLUSIONS We found no evidence that antioxidants reduced death or improved kidney transplant outcomes or proteinuria in patients with CKD. Antioxidants likely reduce cardiovascular events and progression to kidney failure and may improve kidney function. Possible concerns are an increased risk of infections and heart failure among antioxidant users. However, most studies were of suboptimal quality and had limited follow-up, and few included people undergoing dialysis or kidney transplant recipients. Furthermore, the large heterogeneity in interventions hampers drawing conclusions on the efficacy and safety of individual agents.
Collapse
Affiliation(s)
- Julia Mt Colombijn
- Department of Nephrology and Hypertension, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| | - Lotty Hooft
- Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Min Jun
- The George Institute for Global Health, UNSW, Sydney, Australia
| | - Angela C Webster
- Sydney School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Westmead Applied Research Centre, The University of Sydney at Westmead, Westmead, Australia
- NHMRC Clinical Trials Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Department of Transplant and Renal Medicine, Westmead Hospital, Westmead, Australia
| | - Michiel L Bots
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University of Utrecht, Utrecht, Netherlands
| | - Robin Wm Vernooij
- Department of Nephrology and Hypertension, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
10
|
Fontana RJ, Bjornsson ES, Reddy R, Andrade RJ. The Evolving Profile of Idiosyncratic Drug-Induced Liver Injury. Clin Gastroenterol Hepatol 2023; 21:2088-2099. [PMID: 36868489 DOI: 10.1016/j.cgh.2022.12.040] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/02/2022] [Accepted: 12/19/2022] [Indexed: 03/05/2023]
Abstract
Idiosyncratic drug-induced liver injury (DILI) is an infrequent but important cause of liver disease. Newly identified causes of DILI include the COVID vaccines, turmeric, green tea extract, and immune checkpoint inhibitors. DILI is largely a clinical diagnosis of exclusion that requires evaluation for more common causes of liver injury and a compatible temporal association with the suspect drug. Recent progress in DILI causality assessment includes the development of the semi-automated revised electronic causality assessment method (RECAM) instrument. In addition, several drug-specific HLA associations have been identified that can help with the confirmation or exclusion of DILI in individual patients. Various prognostic models can help identify the 5%-10% of patients at highest risk of death. Following suspect drug cessation, 80% of patients with DILI fully recover, whereas 10%-15% have persistently abnormal laboratory studies at 6 months of follow-up. Hospitalized patients with DILI with an elevated international normalized ratio or mental status changes should be considered for N-acetylcysteine therapy and urgent liver transplant evaluation. Selected patients with moderate to severe drug reaction with eosinophilia and systemic symptoms or autoimmune features on liver biopsy may benefit from short-term corticosteroids. However, prospective studies are needed to determine the optimal patients and dose and duration of steroids to use. LiverTox is a comprehensive, freely accessible Web site with important information regarding the hepatotoxicity profile of more than 1000 approved medications and 60 herbal and dietary supplement products. It is hoped that ongoing "omics" studies will lead to additional insight into DILI pathogenesis, improved diagnostic and prognostic biomarkers, and mechanism-based treatments.
Collapse
Affiliation(s)
- Robert J Fontana
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan.
| | - Einar S Bjornsson
- Deparment of Internal Medicine, Landspitali University Hospital, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Rajender Reddy
- Division of Gastroenterology and Hepatology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Raul J Andrade
- Division of Gastroenterology and Hepatology, University Hospital-IBIMA Platform BIONAND, University of Malaga, CIBERehd, Spain
| |
Collapse
|
11
|
Dinkova-Kostova AT, Copple IM. Advances and challenges in therapeutic targeting of NRF2. Trends Pharmacol Sci 2023; 44:137-149. [PMID: 36628798 DOI: 10.1016/j.tips.2022.12.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023]
Abstract
Activation of the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) is emerging as an attractive therapeutic approach to counteract oxidative stress, inflammation, and metabolic imbalances. These processes underpin many chronic pathologies with unmet therapeutic needs, including neurodegenerative disorders and metabolic diseases. As the NRF2 field transitions into the clinical phase of its evolution, the need for an understanding of the factors influencing NRF2 pharmacology has never been greater. In this opinion article we describe the rationale for targeting NRF2, summarise the recent advances in drug development of NRF2 modulators, and reflect on the remaining challenges in realising the full clinical potential of NRF2 as a therapeutic target.
Collapse
Affiliation(s)
- Albena T Dinkova-Kostova
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Ian M Copple
- Department of Pharmacology & Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, L69 3GE, UK.
| |
Collapse
|
12
|
Jiang K, Huang Y, Chung EJ. Combining Metformin and Drug-Loaded Kidney-Targeting Micelles for Polycystic Kidney Disease. Cell Mol Bioeng 2023; 16:55-67. [PMID: 36660586 PMCID: PMC9842834 DOI: 10.1007/s12195-022-00753-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease that leads to eventual renal failure. Metformin (MET), an AMP-activated protein kinase (AMPK) activator already approved for type 2 diabetes, is currently investigated for ADPKD treatment. However, despite high tolerability, MET showed varying therapeutic efficacy in preclinical ADPKD studies. Thus, newer strategies have combined MET with other ADPKD small molecule drug candidates, thereby targeting multiple ADPKD-associated signaling pathways to enhance therapeutic outcomes through potential drug synergy. Unfortunately, the off-target side effects caused by these additional drug candidates pose a major hurdle. To address this, our group has previously developed kidney-targeting peptide amphiphile micelles (KMs), which displayed significant kidney accumulation in vivo, for delivering drugs to the site of the disease. Methods To mitigate the adverse effects of ADPKD drugs and evaluate their therapeutic potential in combination with MET, herein, we loaded KMs with ADPKD drug candidates including salsalate, octreotide, bardoxolone methyl, rapamycin, tolvaptan, and pioglitazone, and tested their in vitro therapeutic efficacy when combined with free MET. Specifically, after determining the 40% inhibitory concentration for each drug (IC40), the size, morphology, and surface charge of drug-loaded KMs were characterized. Next, drug-loaded KMs were applied in combination with MET to treat renal proximal tubule cells derived from Pkd1flox/-:TSLargeT mice in 2D proliferation and 3D cyst model. Results MET combined with all drug-loaded KMs demonstrated significantly enhanced efficacy as compared to free drugs in inhibiting cell proliferation and cyst growth. Notably, synergistic effects were found for MET and KMs loaded with either salsalate or rapamycin as determined by Bliss synergy scores. Conclusion Together, we show drug synergy using drug-loaded nanoparticles and free MET for the first time and present a novel nanomedicine-based combinatorial therapeutic approach for ADPKD with enhanced efficacy. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-022-00753-9.
Collapse
Affiliation(s)
- Kairui Jiang
- Department of Biomedical Engineering, University of Southern California, 1002 Childs Way, MCB 357, Los Angeles, CA 90089 USA
| | - Yi Huang
- Department of Biomedical Engineering, University of Southern California, 1002 Childs Way, MCB 357, Los Angeles, CA 90089 USA
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, 1002 Childs Way, MCB 357, Los Angeles, CA 90089 USA
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA USA
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA USA
- Bridge Institute, University of Southern California, Los Angeles, CA USA
| |
Collapse
|
13
|
Warady BA, Pergola PE, Agarwal R, Andreoli S, Appel GB, Bangalore S, Block GA, Chapman AB, Chin MP, Gibson KL, Goldsberry A, Iijima K, Inker LA, Kashtan CE, Knebelmann B, Mariani LH, Meyer CJ, Nozu K, O’Grady M, Rheault MN, Silva AL, Stenvinkel P, Torra R, Chertow GM. Effects of Bardoxolone Methyl in Alport Syndrome. Clin J Am Soc Nephrol 2022; 17:1763-1774. [PMID: 36411058 PMCID: PMC9718021 DOI: 10.2215/cjn.02400222] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 10/19/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVES Alport syndrome is an inherited disease characterized by progressive loss of kidney function. We aimed to evaluate the safety and efficacy of bardoxolone methyl in patients with Alport syndrome. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We randomly assigned patients with Alport syndrome, ages 12-70 years and eGFR 30-90 ml/min per 1.73 m2, to bardoxolone methyl (n=77) or placebo (n=80). Primary efficacy end points were change from baseline in eGFR at weeks 48 and 100. Key secondary efficacy end points were change from baseline in eGFR at weeks 52 and 104, after an intended 4 weeks off treatment. Safety was assessed by monitoring for adverse events and change from baseline in vital signs, 12-lead electrocardiograms, laboratory measurements (including, but not limited to, aminotransferases, urinary albumin-creatinine ratio, magnesium, and B-type natriuretic peptide), and body weight. RESULTS Patients randomized to bardoxolone methyl experienced preservation in eGFR relative to placebo at 48 and 100 weeks (between-group differences: 9.2 [97.5% confidence interval, 5.1 to 13.4; P<0.001] and 7.4 [95% confidence interval, 3.1 to 11.7; P=0.0008] ml/min per 1.73 m2, respectively). After a 4-week off-treatment period, corresponding mean differences in eGFR were 5.4 (97.5% confidence interval, 1.8 to 9.1; P<0.001) and 4.4 (95% confidence interval, 0.7 to 8.1; P=0.02) ml/min per 1.73 m2 at 52 and 104 weeks, respectively. In a post hoc analysis with no imputation of missing eGFR data, the difference at week 104 was not statistically significant (1.5 [95% confidence interval, -1.9 to 4.9] ml/min per 1.73 m2). Discontinuations from treatment were more frequent among patients randomized to bardoxolone methyl; most discontinuations were due to protocol-specified criteria being met for increases in serum transaminases. Serious adverse events were more frequent among patients randomized to placebo. Three patients in each group developed kidney failure. CONCLUSIONS In adolescent and adult patients with Alport syndrome receiving standard of care, treatment with bardoxolone methyl resulted in preservation in eGFR relative to placebo after a 2-year study period; off-treatment results using all available data were not significantly different. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER A Phase 2/3 Trial of the Efficacy and Safety of Bardoxolone Methyl in Patients with Alport Syndrome - CARDINAL (CARDINAL), NCT03019185.
Collapse
Affiliation(s)
- Bradley A. Warady
- Division of Nephrology, Department of Pediatrics, Children’s Mercy Kansas City, Kansas City, Missouri
| | | | - Rajiv Agarwal
- Department of Medicine, Indiana University School of Medicine and Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, Indiana
| | - Sharon Andreoli
- Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, Indiana
| | - Gerald B. Appel
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | - Sripal Bangalore
- Cardiovascular Clinical Research Center, New York University School of Medicine, New York, New York
| | - Geoffrey A. Block
- Department of Clinical Research and Medical Affairs, US Renal Care, Inc., Plano, Texas
| | | | | | - Keisha L. Gibson
- University of North Carolina Kidney Center at Chapel Hill, Chapel Hill, North Carolina
| | | | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Lesley A. Inker
- Division of Nephrology, Tufts Medical Center, Boston, Massachusetts
| | - Clifford E. Kashtan
- Division of Pediatric Nephrology, Department of Pediatrics, Alport Syndrome Treatments and Outcomes Registry, University of Minnesota Medical School and Masonic Children’s Hospital, Minneapolis, Minnesota
| | - Bertrand Knebelmann
- Department of Nephrology, Necker Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris Citè, Paris, France
| | - Laura H. Mariani
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | | | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | - Michelle N. Rheault
- Division of Pediatric Nephrology, Department of Pediatrics, Alport Syndrome Treatments and Outcomes Registry, University of Minnesota Medical School and Masonic Children’s Hospital, Minneapolis, Minnesota
| | | | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Roser Torra
- Inherited Kidney Disorders, Nephrology Department, Fundacio Puigvert, IIB Sant Pau, REDINREN (Instituto de Investigacion Carlos III), Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Glenn M. Chertow
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Palo Alto, California
| |
Collapse
|
14
|
Yang YH, Dai SY, Deng FH, Peng LH, Li C, Pei YH. Recent advances in medicinal chemistry of oleanolic acid derivatives. PHYTOCHEMISTRY 2022; 203:113397. [PMID: 36029846 DOI: 10.1016/j.phytochem.2022.113397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Oleanolic acid (OA), a ubiquitous pentacyclic oleanane-type triterpene isolated from edible and medicinal plants, exhibits a wide spectrum of pharmacological activities and tremendous therapeutic potential. However, the undesirable pharmacokinetic properties limit its application and development. Numerous researches on structural modifications of OA have been carried out to overcome this limitation and improve its pharmacokinetic and therapeutic properties. This review aims to compile and summarize the recent progresses in the medicinal chemistry of OA derivatives, especially on structure-activity relationship in the last few years (2010-2021). It gives insights into the rational design of bioactive derivatives from OA scaffold as promising therapeutic agents.
Collapse
Affiliation(s)
- Yi-Hui Yang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Si-Yang Dai
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Fu-Hua Deng
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Li-Huan Peng
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Chang Li
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China.
| | - Yue-Hu Pei
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China.
| |
Collapse
|
15
|
Lewis JH, Khaldoyanidi SK, Britten CD, Wei AH, Subklewe M. Clinical Significance of Transient Asymptomatic Elevations in Aminotransferase (TAEAT) in Oncology. Am J Clin Oncol 2022; 45:352-365. [PMID: 35848749 PMCID: PMC9311471 DOI: 10.1097/coc.0000000000000932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Monitoring for liver injury remains an important aspect of drug safety assessment, including for oncotherapeutics. When present, drug-induced liver injury may limit the use or result in the discontinuation of these agents. Drug-induced liver injury can exhibit with a wide spectrum of clinical and biochemical manifestations, ranging from transient asymptomatic elevations in aminotransferases (TAEAT) to acute liver failure. Numerous oncotherapeutics have been associated with TAEAT, with published reports indicating a phenomenon in which patients may be asymptomatic without overt liver injury despite the presence of grade ≥3 aminotransferase elevations. In this review, we discuss the occurrence of TAEAT in the context of oncology clinical trials and clinical practice, as well as the clinical relevance of this phenomenon as an adverse event in response to oncotherapeutics and the related cellular and molecular mechanisms that may underlie its occurrence. We also identify several gaps in knowledge relevant to the diagnosis and the management of TAEAT in patients receiving oncotherapeutics, and identify areas warranting further study to enable the future development of consensus guidelines to support clinical decision-making.
Collapse
Affiliation(s)
| | | | | | - Andrew H. Wei
- The Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| | - Marion Subklewe
- University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
16
|
Sadrkhanloo M, Entezari M, Orouei S, Zabolian A, Mirzaie A, Maghsoudloo A, Raesi R, Asadi N, Hashemi M, Zarrabi A, Khan H, Mirzaei S, Samarghandian S. Targeting Nrf2 in ischemia-reperfusion alleviation: From signaling networks to therapeutic targeting. Life Sci 2022; 300:120561. [PMID: 35460707 DOI: 10.1016/j.lfs.2022.120561] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/28/2022] [Accepted: 04/13/2022] [Indexed: 12/15/2022]
Abstract
The nuclear factor erythroid 2-related factor 2 (Nrf2) is a master regulator of redox balance and it responds to various cell stresses that oxidative stress is the most well-known one. The Nrf2 should undergo nuclear translocation to exert its protective impacts and decrease ROS production. On the other hand, ischemic/reperfusion (I/R) injury is a pathological event resulting from low blood flow to an organ and followed by reperfusion. The I/R induces cell injury and organ dysfunction. The present review focuses on Nrf2 function in alleviation of I/R injury. Stimulating of Nrf2 signaling ameliorates I/R injury in various organs including lung, liver, brain, testis and heart. The Nrf2 enhances activity of antioxidant enzymes to reduce ROS production and prevent oxidative stress-mediated cell death. Besides, Nrf2 reduces inflammation via decreasing levels of pro-inflammatory factors including IL-6, IL-1β and TNF-α. Nrf2 signaling is beneficial in preventing apoptosis and increasing cell viability. Nrf2 induces autophagy to prevent apoptosis during I/R injury. Furthermore, it can interact with other molecular pathways including PI3K/Akt, NF-κB, miRNAs, lncRNAs and GSK-3β among others, to ameliorate I/R injury. The therapeutic agents, most of them are phytochemicals such as resveratrol, berberine and curcumin, induce Nrf2 signaling in I/R injury alleviation.
Collapse
Affiliation(s)
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Sima Orouei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amirhossein Zabolian
- Resident of Orthopedics, Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Golestan, Iran.
| | - Amirreza Mirzaie
- Young Researchers and Elite Club, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Amin Maghsoudloo
- Young Researchers and Elite Club, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Rasoul Raesi
- Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Asadi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Turkey.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
17
|
Aranda-Rivera AK, Cruz-Gregorio A, Pedraza-Chaverri J, Scholze A. Nrf2 Activation in Chronic Kidney Disease: Promises and Pitfalls. Antioxidants (Basel) 2022; 11:antiox11061112. [PMID: 35740009 PMCID: PMC9220138 DOI: 10.3390/antiox11061112] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 11/16/2022] Open
Abstract
The nuclear factor erythroid 2-related factor 2 (Nrf2) protects the cell against oxidative damage. The Nrf2 system comprises a complex network that functions to ensure adequate responses to redox perturbations, but also metabolic demands and cellular stresses. It must be kept within a physiologic activity range. Oxidative stress and alterations in Nrf2-system activity are central for chronic-kidney-disease (CKD) progression and CKD-related morbidity. Activation of the Nrf2 system in CKD is in multiple ways related to inflammation, kidney fibrosis, and mitochondrial and metabolic effects. In human CKD, both endogenous Nrf2 activation and repression exist. The state of the Nrf2 system varies with the cause of kidney disease, comorbidities, stage of CKD, and severity of uremic toxin accumulation and inflammation. An earlier CKD stage, rapid progression of kidney disease, and inflammatory processes are associated with more robust Nrf2-system activation. Advanced CKD is associated with stronger Nrf2-system repression. Nrf2 activation is related to oxidative stress and moderate uremic toxin and nuclear factor kappa B (NF-κB) elevations. Nrf2 repression relates to high uremic toxin and NF-κB concentrations, and may be related to Kelch-like ECH-associated protein 1 (Keap1)-independent Nrf2 degradation. Furthermore, we review the effects of pharmacological Nrf2 activation by bardoxolone methyl, curcumin, and resveratrol in human CKD and outline strategies for how to adapt future Nrf2-targeted therapies to the requirements of patients with CKD.
Collapse
Affiliation(s)
- Ana Karina Aranda-Rivera
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.K.A.-R.); (A.C.-G.); (J.P.-C.)
| | - Alfredo Cruz-Gregorio
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.K.A.-R.); (A.C.-G.); (J.P.-C.)
| | - José Pedraza-Chaverri
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.K.A.-R.); (A.C.-G.); (J.P.-C.)
| | - Alexandra Scholze
- Department of Nephrology, Odense University Hospital, 5000 Odense C, Denmark
- Institute of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
- Correspondence:
| |
Collapse
|
18
|
Hurtado-Navarro L, Angosto-Bazarra D, Pelegrín P, Baroja-Mazo A, Cuevas S. NLRP3 Inflammasome and Pyroptosis in Liver Pathophysiology: The Emerging Relevance of Nrf2 Inducers. Antioxidants (Basel) 2022; 11:antiox11050870. [PMID: 35624734 PMCID: PMC9137763 DOI: 10.3390/antiox11050870] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/24/2022] [Accepted: 04/24/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammasomes, particularly the nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 3 (NLRP3) inflammasome, apparently serve as crucial regulators of the inflammatory response through the activation of Caspase-1 and induction of pro-inflammatory cytokines and pyroptotic cell death. Pyroptosis is a type of programmed cell death mediated by Caspase-1 cleavage of Gasdermin D and the insertion of its N-terminal fragment into the plasma membrane, where it forms pores, enabling the release of different pro-inflammatory mediators. Pyroptosis is considered not only a pro-inflammatory pathway involved in liver pathophysiology but also an important pro-fibrotic mediator. Diverse molecular mechanisms linking oxidative stress, inflammasome activation, pyroptosis, and the progression of liver pathologies have been documented. Numerous studies have indicated the protective effects of several antioxidants, with the ability to induce nuclear factor erythroid 2-related factor 2 (Nrf2) activity on liver inflammation and fibrosis. In this review, we have summarised recent studies addressing the role of the NLRP3 inflammasome and pyroptosis in the pathogenesis of various hepatic diseases, highlighting the potential application of Nrf2 inducers in the prevention of pyroptosis as liver protective compounds.
Collapse
Affiliation(s)
- Laura Hurtado-Navarro
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain; (L.H.-N.); (D.A.-B.); (P.P.)
| | - Diego Angosto-Bazarra
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain; (L.H.-N.); (D.A.-B.); (P.P.)
| | - Pablo Pelegrín
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain; (L.H.-N.); (D.A.-B.); (P.P.)
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain
| | - Alberto Baroja-Mazo
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain; (L.H.-N.); (D.A.-B.); (P.P.)
- Correspondence: (A.B.-M.); (S.C.); Tel.: +34-868-885-039 (A.B.-M.); +34-868-885-031 (S.C.)
| | - Santiago Cuevas
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain; (L.H.-N.); (D.A.-B.); (P.P.)
- Correspondence: (A.B.-M.); (S.C.); Tel.: +34-868-885-039 (A.B.-M.); +34-868-885-031 (S.C.)
| |
Collapse
|
19
|
Maiocchi S, Cartaya A, Thai S, Akerman A, Bahnson E. Antioxidant Response Activating nanoParticles (ARAPas) localize to atherosclerotic plaque and locally activate the Nrf2 pathway. Biomater Sci 2022; 10:1231-1247. [PMID: 35076645 PMCID: PMC9181183 DOI: 10.1039/d1bm01421h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Atherosclerotic disease is the leading cause of death world-wide with few novel therapies available despite the ongoing health burden. Redox dysfunction is a well-established driver of atherosclerotic progression; however, the clinical translation of redox-based therapies is lacking. One of the challenges facing redox-based therapies is their targeted delivery to cellular domains of redox dysregulation. In the current study, we sought to develop Antioxidant Response Activating nanoParticles (ARAPas), encapsulating redox-based interventions, that exploit macrophage biology and the dysfunctional endothelium in order to selectively accumulate in atherosclerotic plaque. We employed flash nanoprecipitation (FNP) to synthesize bio-compatible polymeric nanoparticles encapsulating the hydrophobic Nrf2 activator drug, CDDO-Methyl (CDDOMe-ARAPas). Nuclear factor erythroid 2-related factor 2 (Nrf2)-activators are a promising class of redox-active drug molecules whereby activation of Nrf2 results in the expression of several antioxidant and cyto-protective enzymes that can be athero-protective. In this study, we characterize the physicochemical properties of CDDOMe-ARAPas as well as confirm their in vitro internalization by murine macrophages. Drug release of CDDOMe was determined by Nrf2-driven GFP fluorescence. Moreover, we show that these CDDOMe-ARAPas exert anti-inflammatory effects in classically activated macrophages. Finally, we show that CDDOMe-ARAPas selectively accumulate in atherosclerotic plaque of two widely-used murine models of atherosclerosis: ApoE-/- and LDLr-/- mice, and are capable of increasing gene expression of Nrf2-transcriptional targets in the atherosclerotic aortic arch. Future work will assess the therapeutic efficacy of intra-plaque Nrf2 activation with CDDOMe-ARAPas to inhibit atherosclerotic plaque progression. Overall, our present studies underline that targeting of atherosclerotic plaque is an effective means to enhance delivery of redox-based interventions.
Collapse
Affiliation(s)
- Sophie Maiocchi
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, NC 27599, USA. .,Curriculum of Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, NC 27599, USA.,Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, NC 27599, USA.,McAllister Heart Institute, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Ana Cartaya
- Center for Nanotechnology in Drug Delivery. University of North Carolina at Chapel Hill, NC 27599,McAllister Heart Institute. University of North Carolina at Chapel Hill, NC 27599.,Department of Pharmacology. University of North Carolina at Chapel Hill, NC 27599
| | - Sydney Thai
- Department of Surgery. University of North Carolina at Chapel Hill, NC 27599
| | - Adam Akerman
- Department of Surgery. University of North Carolina at Chapel Hill, NC 27599
| | - Edward Bahnson
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, NC 27599, USA. .,Curriculum of Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, NC 27599, USA.,Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, NC 27599, USA.,McAllister Heart Institute, University of North Carolina at Chapel Hill, NC 27599, USA.,Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| |
Collapse
|
20
|
Oboh M, Govender L, Siwela M, Mkhwanazi BN. Anti-Diabetic Potential of Plant-Based Pentacyclic Triterpene Derivatives: Progress Made to Improve Efficacy and Bioavailability. Molecules 2021; 26:7243. [PMID: 34885816 PMCID: PMC8659003 DOI: 10.3390/molecules26237243] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/18/2021] [Accepted: 11/24/2021] [Indexed: 11/29/2022] Open
Abstract
Diabetes mellitus (DM) results from the inability of the pancreas to produce sufficient insulin or weakened cellular response to the insulin produced, which leads to hyperglycemia. Current treatments of DM focus on the use of oral hypoglycemic drugs such as acarbose, alpha-glucose inhibitors, sulphonylureas, thiazolidinediones, and biguanides to control blood glucose levels. However, these medications are known to have various side effects in addition to their bioavailability, efficacy, and safety concerns. These drawbacks have increased interest in the anti-diabetic potential of plant-derived bioactive compounds such as oleanolic and maslinic acids. Although their efficacy in ameliorating blood glucose levels has been reported in several studies, their bioavailability and efficacy remain of concern. The current review examines the anti-diabetic effects of oleanolic, maslinic, asiatic, ursolic, and corosolic acids and their derivatives, as well as the progress made thus far to enhance their bioavailability and efficacy. The literature for the current review was gathered from leading academic databases-including Google Scholar and PubMed-the key words listed below were used. The literature was searched as widely and comprehensively as possible without a defined range of dates.
Collapse
Affiliation(s)
| | | | | | - Blessing Nkazimulo Mkhwanazi
- Dietetics and Human Nutrition, School of Agricultural, Earth and Environmental Sciences, University of Kwazulu-Natal, Private Bag X01, Scottsville 3209, Pietermaritzburg 3201, South Africa; (M.O.); (L.G.); (M.S.)
| |
Collapse
|
21
|
Maeda T. Alterations of hepatic gluconeogenesis and amino acid metabolism in CTRP3-deficient mice. Mol Biol Rep 2021; 49:1617-1622. [PMID: 34811637 DOI: 10.1007/s11033-021-06969-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/17/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Adipose tissue secretes various adipocytokines that play important roles in lipid and glucose metabolism. C1q and tumor necrosis factor-related protein 3 (CTRP3) is a paralog of adiponectin, which has been extensively studied. Previously, we showed that epididymal white adipose tissue size is decreased in high fat diet-fed Ctrp3 knockout (KO) mice. Here, I examined metabolic roles of CTRP3 in non-obese mice under starvation conditions. METHODS AND RESULTS Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were increased in 20-h-fasted standard chow-fed Ctrp3 KO mice compared with wild-type (WT) controls. RT-qPCR analysis revealed that ALT1, AST2, and glucose-6-phosphatase mRNA expressions were increased in the liver of Ctrp3 KO mice after a 20-h fast. Upon intraperitoneal alanine administration, Ctrp3 KO mice showed a modest but significant increase in the conversion of alanine to glucose. To characterize hepatic metabolism in fasted Ctrp3 KO mice, I further analyzed metabolomic profiles in the liver. Unexpectedly, metabolome analysis of the liver of 20-h-fasted Ctrp3 KO mice revealed that the relative concentrations of 10 of the 20 amino acids were lower than in WT controls. The relative concentrations of ornithine and argininosuccinate, which are urea cycle intermediates, were also decreased in the Ctrp3 KO liver. CONCLUSIONS Taken together, my results indicate that CTRP3 has novel roles in regulating both gluconeogenesis and amino acid metabolism in the liver during starvation.
Collapse
Affiliation(s)
- Takashi Maeda
- Department of Anatomy and Cell Biology, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
22
|
Clinton JW, Kiparizoska S, Aggarwal S, Woo S, Davis W, Lewis JH. Drug-Induced Liver Injury: Highlights and Controversies in the Recent Literature. Drug Saf 2021; 44:1125-1149. [PMID: 34533782 PMCID: PMC8447115 DOI: 10.1007/s40264-021-01109-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 12/13/2022]
Abstract
Drug-induced liver injury (DILI) remains an important, yet challenging diagnosis for physicians. Each year, additional drugs are implicated in DILI and this year was no different, with more than 1400 articles published on the subject. This review examines some of the most significant highlights and controversies in DILI-related research over the past year and their implications for clinical practice. Several new drugs were approved by the US Food and Drug Administration including a number of drugs implicated in causing DILI, particularly among the chemotherapeutic classes. The COVID-19 pandemic was also a major focus of attention in 2020 and we discuss some of the notable aspects of COVID-19-related liver injury and its implications for diagnosing DILI. Updates in diagnostic and causality assessments related to DILI such as the Roussel Uclaf Causality Assessment Method are included, mindful that there is still no single biomarker or diagnostic tool to unequivocally diagnose DILI. Glutamate dehydrogenase received renewed attention as being more specific than alanine aminotransferase. There were a few new reports of previously unrecognized hepatotoxins, including immune modulators and novel gene therapy drugs that we highlight. Updates and new developments of previously described hepatotoxins, such as immune checkpoint inhibitors and anti-tuberculosis drugs are reviewed. Finally, novel technologies such as organoid culture systems to better predict DILI preclinically may be coming of age and determinants of hepatocyte loss, such as calculating PALT are poised to improve our current means of estimating DILI severity and the risk of acute liver failure.
Collapse
Affiliation(s)
- Joseph William Clinton
- Department of Internal Medicine, Medstar Georgetown University Hospital, Washington, DC, USA.
| | - Sara Kiparizoska
- Department of Internal Medicine, Medstar Georgetown University Hospital, Washington, DC, USA
| | - Soorya Aggarwal
- Division of Gastroenterology and Hepatology, Medstar Georgetown University Hospital, Washington, DC, USA
| | - Stephanie Woo
- Department of Internal Medicine, Medstar Georgetown University Hospital, Washington, DC, USA
| | - William Davis
- Department of Internal Medicine, Medstar Georgetown University Hospital, Washington, DC, USA
| | - James H Lewis
- Division of Gastroenterology and Hepatology, Medstar Georgetown University Hospital, Washington, DC, USA
| |
Collapse
|
23
|
Lynch DR, Chin MP, Delatycki MB, Subramony SH, Corti M, Hoyle JC, Boesch S, Nachbauer W, Mariotti C, Mathews KD, Giunti P, Wilmot G, Zesiewicz T, Perlman S, Goldsberry A, O'Grady M, Meyer CJ. Safety and Efficacy of Omaveloxolone in Friedreich Ataxia (MOXIe Study). Ann Neurol 2021; 89:212-225. [PMID: 33068037 PMCID: PMC7894504 DOI: 10.1002/ana.25934] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Friedreich ataxia (FA) is a progressive genetic neurodegenerative disorder with no approved treatment. Omaveloxolone, an Nrf2 activator, improves mitochondrial function, restores redox balance, and reduces inflammation in models of FA. We investigated the safety and efficacy of omaveloxolone in patients with FA. METHODS We conducted an international, double-blind, randomized, placebo-controlled, parallel-group, registrational phase 2 trial at 11 institutions in the United States, Europe, and Australia (NCT02255435, EudraCT2015-002762-23). Eligible patients, 16 to 40 years of age with genetically confirmed FA and baseline modified Friedreich's Ataxia Rating Scale (mFARS) scores between 20 and 80, were randomized 1:1 to placebo or 150mg per day of omaveloxolone. The primary outcome was change from baseline in the mFARS score in those treated with omaveloxolone compared with those on placebo at 48 weeks. RESULTS One hundred fifty-five patients were screened, and 103 were randomly assigned to receive omaveloxolone (n = 51) or placebo (n = 52), with 40 omaveloxolone patients and 42 placebo patients analyzed in the full analysis set. Changes from baseline in mFARS scores in omaveloxolone (-1.55 ± 0.69) and placebo (0.85 ± 0.64) patients showed a difference between treatment groups of -2.40 ± 0.96 (p = 0.014). Transient reversible increases in aminotransferase levels were observed with omaveloxolone without increases in total bilirubin or other signs of liver injury. Headache, nausea, and fatigue were also more common among patients receiving omaveloxolone. INTERPRETATION In the MOXIe trial, omaveloxolone significantly improved neurological function compared to placebo and was generally safe and well tolerated. It represents a potential therapeutic agent in FA. ANN NEUROL 2021;89:212-225.
Collapse
Affiliation(s)
- David R. Lynch
- Division of NeurologyChildren's Hospital of PhiladelphiaPhiladelphiaPAUSA
| | | | - Martin B. Delatycki
- Victorian Clinical Genetics Services, Murdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - S. H. Subramony
- Department of NeurologyMcKnight Brain Institute, University of Florida Health SystemGainesvilleFLUSA
| | - Manuela Corti
- Department of PediatricsUniversity of Florida Health SystemGainesvilleFLUSA
| | - J. Chad Hoyle
- Department of NeurologyOhio State University College of MedicineColumbusOHUSA
| | - Sylvia Boesch
- Department of NeurologyMedical University InnsbruckInnsbruckAustria
| | | | - Caterina Mariotti
- Istituto di Ricovero e Cura a Carattere Scientifico–Carlo Besta Neurological InstituteMilanItaly
| | - Katherine D. Mathews
- Department of NeurologyUniversity of Iowa Carver College of MedicineIowa CityIAUSA
| | - Paola Giunti
- University College London HospitalLondonUnited Kingdom
| | - George Wilmot
- Department of NeurologyEmory University School of MedicineAtlantaGAUSA
| | - Theresa Zesiewicz
- Department of NeurologyUniversity of South Florida Ataxia Research CenterTampaFLUSA
| | - Susan Perlman
- Department of NeurologyUniversity of California, Los AngelesLos AngelesCAUSA
| | | | | | | |
Collapse
|
24
|
Lynch DR, Johnson J. Omaveloxolone: potential new agent for Friedreich ataxia. Neurodegener Dis Manag 2021; 11:91-98. [PMID: 33430645 DOI: 10.2217/nmt-2020-0057] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Friedreich ataxia is a slowly progressive neurodegenerative disorder leading to ataxia, dyscoordination, dysarthria and in many individuals vision and hearing loss. It is associated with cardiomyopathy, the leading cause of death in Friedreich ataxia (FRDA), diabetes and scoliosis. There are no approved therapies, but elucidation of the pathophysiology of FRDA suggest that agents that increase the activity of the transcription factor Nrf2 may provide a mechanism for ameliorating disease progression or severity. In this work, we review the evidence for use of omaveloxolone in FRDA from recent clinical trials. Though not at present approved for any indication, the present data suggest that this agent acting though increases in Nrf2 activity may provide a novel therapy for FRDA.
Collapse
Affiliation(s)
- David R Lynch
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Neurology & Pediatrics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph Johnson
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Systems Pharmacology & Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|