1
|
Watson N, Nazeer S, Puthucheary Z. Which Outcomes Should We be Using in Critical Care Nutrition Trials? Crit Care Clin 2025; 41:363-378. [PMID: 40021285 DOI: 10.1016/j.ccc.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
Selecting appropriate outcome measures is a critical component of clinical trial design. Core outcome sets, which utilize stakeholder input to define the most important outcomes for a particular research question, are valuable in improving the consistency of research, such that conclusive recommendations can be made. Alongside these core outcomes, exploratory outcomes are keys to providing novel insights into disease pathophysiology and treatment response. Surrogate outcomes developed through exploratory methods may enable intervention at an earlier stage, with the potential for prevention rather than management of the sequalae of critical illness.
Collapse
Affiliation(s)
- Naomi Watson
- The William Harvey Research Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, London, UK.
| | - Saira Nazeer
- Critical Care and Peri-Operative Medicine Research Group, The William Harvey Research Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Zudin Puthucheary
- The William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Consultant in Intensive Care, Royal London Hospital, Barts Health NHS Trust, London, UK
| |
Collapse
|
2
|
Hu N, Gan J, Zhang H, Lu T, Tang Q, Chen Y, Yu M, Ou R, Huang S, Zhao H, He X. Association of 91 Inflammatory Factors and 1400 Metabolites with Sepsis: A Mendelian Randomization Analysis. J Intensive Care Med 2025; 40:270-283. [PMID: 40103304 DOI: 10.1177/08850666241280385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Objective: Observational studies suggest links between inflammatory factors, metabolites, and sepsis, yet their causality is uncertain. This study employs Mendelian Randomization (MR) to investigate the causality between these factors and sepsis, aiming to uncover the precise relationship and identify novel treatment approaches. Methods: We used summary data from genome-wide association studies (GWAS) involving 91 inflammatory factors, 1400 metabolites as exposure, and STREPTO SEPSIS as outcome. Inverse variance weighting (IVW) and MR-Egger were used to evaluate the causal effect between exposure and outcome. Sensitivity analyses were performed using Cochrane's Q test, MR-Egger intercept method, MR-PRESSO method and leave-one-out method. Results: Thymic stromal lymphopoietin levels (TSLP) (OR = 1.269; 95%CI = 1.016-1.585; P = .036) and Interleukin 15 receptor subunit alpha levels (IL-15Rα) (OR = 0.894; 95%CI = 0.801-0.998; P = .046) had a significant causal relationship with sepsis. Forty-four metabolites were associated with sepsis, including Spermidine to choline ratio (OR = 1.447; 95%CI = 1.104-1.977; P = .009), 4-hydroxyhippurate levels (OR = 1.448; 95%CI = 1.117-1.877; P = .005), and Sphingomyelin (d18:1/20:1, d18:2/20:0) levels (OR = 1.371; 95%CI = 1.139-1.651; P < .001). TSLP was associated with 19 metabolites, and IL-15Rα was associated with 30 metabolites. Conclusions: This study uncovers the causal link between sepsis and two inflammatory factors, TSLP and IL-15Rα, and suggests metabolites' potential in intervention. It also identifies 44 metabolites associated with sepsis, indicating possible biomarkers or therapeutic targets. The findings offer new perspectives on sepsis pathogenesis and could inform future treatment strategies.
Collapse
Affiliation(s)
- Naiqiang Hu
- Department of Critical Care Medicine, Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi, PR China
- Graduate School of Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi, PR China
| | - Junhong Gan
- Graduate School of Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi, PR China
| | - Huanchu Zhang
- Department of Critical Care Medicine, Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi, PR China
| | - Tongxing Lu
- Department of Critical Care Medicine, Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi, PR China
| | - Qiulian Tang
- Department of Critical Care Medicine, Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi, PR China
| | - Yufang Chen
- Department of Critical Care Medicine, Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi, PR China
| | - Meiping Yu
- Department of Critical Care Medicine, Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi, PR China
| | - Riying Ou
- Department of Critical Care Medicine, Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi, PR China
| | - Shenghai Huang
- Department of Critical Care Medicine, Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi, PR China
| | - Haiyan Zhao
- Department of Internal Medicine II, Yongning District Hospital of Traditional Chinese Medicine, Nanning, Guangxi, PR China
| | - Xueming He
- Department of Critical Care Medicine, Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi, PR China
| |
Collapse
|
3
|
Simpson CE, Ledford JG, Liu G. Application of Metabolomics across the Spectrum of Pulmonary and Critical Care Medicine. Am J Respir Cell Mol Biol 2024; 71:1-9. [PMID: 38547373 PMCID: PMC11225873 DOI: 10.1165/rcmb.2024-0080ps] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/28/2024] [Indexed: 07/02/2024] Open
Abstract
In recent years, metabolomics, the systematic study of small-molecule metabolites in biological samples, has yielded fresh insights into the molecular determinants of pulmonary diseases and critical illness. The purpose of this article is to orient the reader to this emerging field by discussing the fundamental tenets underlying metabolomics research, the tools and techniques that serve as foundational methodologies, and the various statistical approaches to analysis of metabolomics datasets. We present several examples of metabolomics applied to pulmonary and critical care medicine to illustrate the potential of this avenue of research to deepen our understanding of pathophysiology. We conclude by reviewing recent advances in the field and future research directions that stand to further the goal of personalizing medicine to improve patient care.
Collapse
Affiliation(s)
- Catherine E. Simpson
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Julie G. Ledford
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona; and
| | - Gang Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
4
|
Abstract
Sepsis syndromes have been recognized since antiquity yet still pose significant challenges to modern medicine. One of the biggest challenges lies in the heterogeneity of triggers and its protean clinical manifestations, as well as its rapidly progressive and lethal nature. Thus, there is a critical need for biomarkers that can quickly and accurately detect sepsis onset and predict treatment response. In this review, we will briefly describe the current consensus definitions of sepsis and the ideal features of a biomarker. We will then delve into currently available and in-development markers of pathogens, hosts, and their interactions that together comprise the sepsis syndrome.
Collapse
Affiliation(s)
- Maya Cohen
- Division of Pulmonary, Critical Care, and Sleep Medicine, Alpert/Brown Medical School, Providence, RI, USA
| | - Debasree Banerjee
- Division of Pulmonary, Critical Care, and Sleep Medicine, Alpert/Brown Medical School, Providence, RI, USA
| |
Collapse
|
5
|
De Backer D, Deutschman CS, Hellman J, Myatra SN, Ostermann M, Prescott HC, Talmor D, Antonelli M, Pontes Azevedo LC, Bauer SR, Kissoon N, Loeches IM, Nunnally M, Tissieres P, Vieillard-Baron A, Coopersmith CM. Surviving Sepsis Campaign Research Priorities 2023. Crit Care Med 2024; 52:268-296. [PMID: 38240508 DOI: 10.1097/ccm.0000000000006135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
OBJECTIVES To identify research priorities in the management, epidemiology, outcome, and pathophysiology of sepsis and septic shock. DESIGN Shortly after publication of the most recent Surviving Sepsis Campaign Guidelines, the Surviving Sepsis Research Committee, a multiprofessional group of 16 international experts representing the European Society of Intensive Care Medicine and the Society of Critical Care Medicine, convened virtually and iteratively developed the article and recommendations, which represents an update from the 2018 Surviving Sepsis Campaign Research Priorities. METHODS Each task force member submitted five research questions on any sepsis-related subject. Committee members then independently ranked their top three priorities from the list generated. The highest rated clinical and basic science questions were developed into the current article. RESULTS A total of 81 questions were submitted. After merging similar questions, there were 34 clinical and ten basic science research questions submitted for voting. The five top clinical priorities were as follows: 1) what is the best strategy for screening and identification of patients with sepsis, and can predictive modeling assist in real-time recognition of sepsis? 2) what causes organ injury and dysfunction in sepsis, how should it be defined, and how can it be detected? 3) how should fluid resuscitation be individualized initially and beyond? 4) what is the best vasopressor approach for treating the different phases of septic shock? and 5) can a personalized/precision medicine approach identify optimal therapies to improve patient outcomes? The five top basic science priorities were as follows: 1) How can we improve animal models so that they more closely resemble sepsis in humans? 2) What outcome variables maximize correlations between human sepsis and animal models and are therefore most appropriate to use in both? 3) How does sepsis affect the brain, and how do sepsis-induced brain alterations contribute to organ dysfunction? How does sepsis affect interactions between neural, endocrine, and immune systems? 4) How does the microbiome affect sepsis pathobiology? 5) How do genetics and epigenetics influence the development of sepsis, the course of sepsis and the response to treatments for sepsis? CONCLUSIONS Knowledge advances in multiple clinical domains have been incorporated in progressive iterations of the Surviving Sepsis Campaign guidelines, allowing for evidence-based recommendations for short- and long-term management of sepsis. However, the strength of existing evidence is modest with significant knowledge gaps and mortality from sepsis remains high. The priorities identified represent a roadmap for research in sepsis and septic shock.
Collapse
Affiliation(s)
- Daniel De Backer
- Department of Intensive Care, CHIREC Hospitals, Université Libre de Bruxelles, Brussels, Belgium
| | - Clifford S Deutschman
- Department of Pediatrics, Cohen Children's Medical Center, Northwell Health, New Hyde Park, NY
- Sepsis Research Lab, the Feinstein Institutes for Medical Research, Manhasset, NY
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA
| | - Sheila Nainan Myatra
- Department of Anaesthesiology, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Marlies Ostermann
- Department of Critical Care, King's College London, Guy's & St Thomas' Hospital, London, United Kingdom
| | - Hallie C Prescott
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Daniel Talmor
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Massimo Antonelli
- Department of Intensive Care, Emergency Medicine and Anesthesiology, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Seth R Bauer
- Department of Pharmacy, Cleveland Clinic, Cleveland, OH
| | - Niranjan Kissoon
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Ignacio-Martin Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St James's Hospital, Leinster, Dublin, Ireland
| | | | - Pierre Tissieres
- Pediatric Intensive Care, Neonatal Medicine and Pediatric Emergency, AP-HP Paris Saclay University, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Antoine Vieillard-Baron
- Service de Medecine Intensive Reanimation, Hopital Ambroise Pare, Universite Paris-Saclay, Le Kremlin-Bicêtre, France
| | | |
Collapse
|
6
|
Jennaro TS, Puskarich MA, Flott TL, McLellan LA, Jones AE, Pai MP, Stringer KA. Kidney function as a key driver of the pharmacokinetic response to high-dose L-carnitine in septic shock. Pharmacotherapy 2023; 43:1240-1250. [PMID: 37775945 PMCID: PMC10841498 DOI: 10.1002/phar.2882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 10/01/2023]
Abstract
STUDY OBJECTIVE Levocarnitine (L-carnitine) has shown promise as a metabolic-therapeutic for septic shock, where mortality approaches 40%. However, high-dose (≥ 6 grams) intravenous supplementation results in a broad range of serum concentrations. We sought to describe the population pharmacokinetics (PK) of high-dose L-carnitine, test various estimates of kidney function, and assess the correlation of PK parameters with pre-treatment metabolites in describing drug response for patients with septic shock. DESIGN Population PK analysis was done with baseline normalized concentrations using nonlinear mixed effect models in the modeling platform Monolix. Various estimates of kidney function, patient demographics, dose received, and organ dysfunction were tested as population covariates. DATA SOURCE We leveraged serum samples and metabolomics data from a phase II trial of L-carnitine in vasopressor-dependent septic shock. Serum was collected at baseline (T0); end-of-infusion (T12); and 24, 48, and 72 h after treatment initiation. PATIENTS AND INTERVENTION Patients were adaptively randomized to receive intravenous L-carnitine (6 grams, 12 grams, or 18 grams) or placebo. MEASUREMENTS AND MAIN RESULTS The final dataset included 542 serum samples from 130 patients randomized to L-carnitine. A two-compartment model with linear elimination and a fixed volume of distribution (17.1 liters) best described the data and served as a base structural model. Kidney function estimates as a covariate on the elimination rate constant (k) reliably improved model fit. Estimated glomerular filtration rate (eGFR), based on the 2021 Chronic Kidney Disease Epidemiology collaboration (CKD-EPI) equation with creatinine and cystatin C, outperformed creatinine clearance (Cockcroft-Gault) and older CKD-EPI equations that use an adjustment for self-identified race. CONCLUSIONS High-dose L-carnitine supplementation is well-described by a two-compartment population PK model in patients with septic shock. Kidney function estimates that leverage cystatin C provided superior model fit. Future investigations into high-dose L-carnitine supplementation should consider baseline metabolic status and dose adjustments based on renal function over a fixed or weight-based dosing paradigm.
Collapse
Affiliation(s)
- Theodore S. Jennaro
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael A. Puskarich
- Department of Emergency Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Emergency Medicine, Hennepin County Medical Center, Minneapolis, Minnesota, USA
| | - Thomas L. Flott
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Laura A. McLellan
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Alan E. Jones
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Manjunath P. Pai
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Kathleen A. Stringer
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
- The Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, Michigan, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
7
|
Jian J, He D, Gao S, Tao X, Dong X. Pharmacokinetics in Pharmacometabolomics: Towards Personalized Medication. Pharmaceuticals (Basel) 2023; 16:1568. [PMID: 38004434 PMCID: PMC10675232 DOI: 10.3390/ph16111568] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Indiscriminate drug administration may lead to drug therapy results with varying effects on patients, and the proposal of personalized medication can help patients to receive effective drug therapy. Conventional ways of personalized medication, such as pharmacogenomics and therapeutic drug monitoring (TDM), can only be implemented from a single perspective. The development of pharmacometabolomics provides a research method for the realization of precise drug administration, which integrates the environmental and genetic factors, and applies metabolomics technology to study how to predict different drug therapeutic responses of organisms based on baseline metabolic levels. The published research on pharmacometabolomics has achieved satisfactory results in predicting the pharmacokinetics, pharmacodynamics, and the discovery of biomarkers of drugs. Among them, the pharmacokinetics related to pharmacometabolomics are used to explore individual variability in drug metabolism from the level of metabolism of the drugs in vivo and the level of endogenous metabolite changes. By searching for relevant literature with the keyword "pharmacometabolomics" on the two major literature retrieval websites, PubMed and Web of Science, from 2006 to 2023, we reviewed articles in the field of pharmacometabolomics that incorporated pharmacokinetics into their research. This review explains the therapeutic effects of drugs on the body from the perspective of endogenous metabolites and pharmacokinetic principles, and reports the latest advances in pharmacometabolomics related to pharmacokinetics to provide research ideas and methods for advancing the implementation of personalized medication.
Collapse
Affiliation(s)
- Jingai Jian
- School of Medicine, Shanghai University, Shanghai 200444, China; (J.J.); (D.H.)
| | - Donglin He
- School of Medicine, Shanghai University, Shanghai 200444, China; (J.J.); (D.H.)
| | - Songyan Gao
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China;
| | - Xia Tao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Xin Dong
- School of Medicine, Shanghai University, Shanghai 200444, China; (J.J.); (D.H.)
| |
Collapse
|
8
|
Zakharova N, Luo C, Aringazina R, Samusenkov V. The efficacy of L-carnitine in patients with nonalcoholic steatohepatitis and concomitant obesity. Lipids Health Dis 2023; 22:101. [PMID: 37438785 DOI: 10.1186/s12944-023-01867-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND In light of the high prevalence of nonalcoholic fatty liver disease and obesity, treatment options for nonalcoholic steatohepatitis are of particular interest. The purpose of the study is to assess the efficacy of L-carnitine and its effects on the functional state of the liver, as well as on lipid and carbohydrate metabolism in patients with nonalcoholic steatohepatitis and concomitant obesity. METHODS People in the control group followed a hypocaloric diet and received 1 tablet of simvastatin 20 mg once a day and 2 capsules of essential phospholipids 600 mg three times a day for 90 days. People in the experimental group followed a hypocaloric diet and received 1 tablet of simvastatin 20 mg once a day and L-carnitine 10 mL orally two times a day for 90 days. RESULTS L-carnitine normalized the blood lipid profile of subjects, as demonstrated by a significant decrease in the blood levels of total cholesterol, triglycerides, low-density lipoproteins, atherogenic index, and insulin resistance. The use of L-carnitine in patients with nonalcoholic steatohepatitis and concomitant obesity contributes to the steady reduction of the main clinical and biochemical symptoms of nonalcoholic steatohepatitis. CONCLUSIONS L-carnitine produces positive effects on the blood lipid profile and carbohydrate metabolism.
Collapse
Affiliation(s)
- Natalia Zakharova
- Department of Chemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University, Trubetskaya str., 8-2, Moscow, 119991, Russian Federation
| | - Chenguang Luo
- Department of Hospital Therapy named after Academician G.I. Storozhakov of the Medical Faculty, Pirogov Russian National Research Medical University, Ostrovityanova str., 1 , Moscow, 117997, Russian Federation
| | - Raisa Aringazina
- Department of Internal Diseases № 1, Non-Commercial Joint-Stock Society "West Kazakhstan Marat Ospanov Medical University", Aleksey Maresyev str, Aktobe, 030019, Kazakhstan.
| | - Vadim Samusenkov
- Department of Prosthetic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya str., 8-2, Moscow, 119991, Russian Federation
| |
Collapse
|
9
|
Jennaro TS, Puskarich MA, Evans CR, Karnovsky A, Flott TL, McLellan LA, Jones AE, Stringer KA. Sustained Perturbation of Metabolism and Metabolic Subphenotypes Are Associated With Mortality and Protein Markers of the Host Response. Crit Care Explor 2023; 5:e0881. [PMID: 36998529 PMCID: PMC10047616 DOI: 10.1097/cce.0000000000000881] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Perturbed host metabolism is increasingly recognized as a pillar of sepsis pathogenesis, yet the dynamic alterations in metabolism and its relationship to other components of the host response remain incompletely understood. We sought to identify the early host-metabolic response in patients with septic shock and to explore biophysiological phenotyping and differences in clinical outcomes among metabolic subgroups. DESIGN We measured serum metabolites and proteins reflective of the host-immune and endothelial response in patients with septic shock. SETTING We considered patients from the placebo arm of a completed phase II, randomized controlled trial conducted at 16 U.S. medical centers. Serum was collected at baseline (within 24 hr of the identification of septic shock), 24-hour, and 48-hour postenrollment. Linear mixed models were built to assess the early trajectory of protein analytes and metabolites stratified by 28-day mortality status. Unsupervised clustering of baseline metabolomics data was conducted to identify subgroups of patients. PATIENTS Patients with vasopressor-dependent septic shock and moderate organ dysfunction that were enrolled in the placebo arm of a clinical trial. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Fifty-one metabolites and 10 protein analytes were measured longitudinally in 72 patients with septic shock. In the 30 patients (41.7%) who died prior to 28 days, systemic concentrations of acylcarnitines and interleukin (IL)-8 were elevated at baseline and persisted at T24 and T48 throughout early resuscitation. Concentrations of pyruvate, IL-6, tumor necrosis factor-α, and angiopoietin-2 decreased at a slower rate in patients who died. Two groups emerged from clustering of baseline metabolites. Group 1 was characterized by higher levels of acylcarnitines, greater organ dysfunction at baseline and postresuscitation (p < 0.05), and greater mortality over 1 year (p < 0.001). CONCLUSIONS Among patients with septic shock, nonsurvivors exhibited a more profound and persistent dysregulation in protein analytes attributable to neutrophil activation and disruption of mitochondrial-related metabolism than survivors.
Collapse
Affiliation(s)
- Theodore S Jennaro
- The NMR Metabolomics Laboratory and the Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI
| | - Michael A Puskarich
- Department of Emergency Medicine, University of Minnesota, Minneapolis, MN
- Department of Emergency Medicine, Hennepin County Medical Center, Minneapolis, MN
| | - Charles R Evans
- Department of Emergency Medicine and the Weil Institute of Critical Care Medicine, School of Medicine, University of Michigan, Ann Arbor, MI
- Michigan Regional Comprehensive Metabolomics Resource Core ([MRC]), Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, School of Medicine, University of Michigan, Ann Arbor, MI
| | - Alla Karnovsky
- Michigan Regional Comprehensive Metabolomics Resource Core ([MRC]), Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, School of Medicine, University of Michigan, Ann Arbor, MI
- Department of Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, Ann Arbor, MI
| | - Thomas L Flott
- The NMR Metabolomics Laboratory and the Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI
| | - Laura A McLellan
- The NMR Metabolomics Laboratory and the Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI
| | - Alan E Jones
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, MS
| | - Kathleen A Stringer
- The NMR Metabolomics Laboratory and the Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI
- Department of Emergency Medicine and the Weil Institute of Critical Care Medicine, School of Medicine, University of Michigan, Ann Arbor, MI
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, School of Medicine, University of Michigan, Ann Arbor, MI
| |
Collapse
|
10
|
Pacheco-Navarro AE, Rogers AJ. The Metabolomics of Critical Illness. Handb Exp Pharmacol 2023; 277:367-384. [PMID: 36376705 PMCID: PMC10031764 DOI: 10.1007/164_2022_622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Critical illness is associated with dramatic changes in metabolism driven by immune, endocrine, and adrenergic mediators. These changes involve early activation of catabolic processes leading to increased energetic substrate availability; later on, they are followed by a hypometabolic phase characterized by deranged mitochondrial function. In sepsis and ARDS, these rapid clinical changes are reflected in metabolomic profiles of plasma and other fluids, suggesting that metabolomics could one day be used to assist in the diagnosis and prognostication of these syndromes. Some metabolites, such as lactate, are already in clinical use and define patients with septic shock, a high-mortality subtype of sepsis. Larger-scale metabolomic profiling may ultimately offer a tool to identify subgroups of critically ill patients who may respond to therapy, but further work is needed before this type of precision medicine is readily employed in the clinical setting.
Collapse
Affiliation(s)
- Ana E Pacheco-Navarro
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Angela J Rogers
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
11
|
Jennaro TS, Viglianti EM, Ingraham NE, Jones AE, Stringer KA, Puskarich MA. Serum Levels of Acylcarnitines and Amino Acids Are Associated with Liberation from Organ Support in Patients with Septic Shock. J Clin Med 2022; 11:jcm11030627. [PMID: 35160078 PMCID: PMC8836990 DOI: 10.3390/jcm11030627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/12/2022] [Accepted: 01/24/2022] [Indexed: 12/23/2022] Open
Abstract
Sepsis-induced metabolic dysfunction is associated with mortality, but the signatures that differentiate variable clinical outcomes among survivors are unknown. Our aim was to determine the relationship between host metabolism and chronic critical illness (CCI) in patients with septic shock. We analyzed metabolomics data from mechanically ventilated patients with vasopressor-dependent septic shock from the placebo arm of a recently completed clinical trial. Baseline serum metabolites were measured by liquid chromatography-mass spectrometry and 1H-nuclear magnetic resonance. We conducted a time-to-event analysis censored at 28 days. Specifically, we determined the relationship between metabolites and time to extubation and freedom from vasopressors using a competing risk survival model, with death as a competing risk. We also compared metabolite concentrations between CCI patients, defined as intensive care unit level of care ≥ 14 days, and those with rapid recovery. Elevations in two acylcarnitines and four amino acids were related to the freedom from organ support (subdistributional hazard ratio < 1 and false discovery rate < 0.05). Proline, glycine, glutamine, and methionine were also elevated in patients who developed CCI. Our work highlights the need for further testing of metabolomics to identify patients at risk of CCI and to elucidate potential mechanisms that contribute to its etiology.
Collapse
Affiliation(s)
- Theodore S. Jennaro
- Department of Clinical Pharmacy and the NMR Metabolomics Laboratory, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA; (T.S.J.); (K.A.S.)
| | - Elizabeth M. Viglianti
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Nicholas E. Ingraham
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Internal Medicine, School of Medicine, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Alan E. Jones
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA;
| | - Kathleen A. Stringer
- Department of Clinical Pharmacy and the NMR Metabolomics Laboratory, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA; (T.S.J.); (K.A.S.)
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
- Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael A. Puskarich
- Department of Emergency Medicine, School of Medicine, University of Minnesota, Minneapolis, MN 55415, USA
- Department of Emergency Medicine, Hennepin County Medical Center, Minneapolis, MN 55415, USA
- Correspondence:
| |
Collapse
|