1
|
Prasad B, Al-Majdoub ZM, Wegler C, Rostami-Hodjegan A, Achour B. Quantitative Proteomics for Translational Pharmacology and Precision Medicine: State of The Art and Future Outlook. Drug Metab Dispos 2024; 52:1208-1216. [PMID: 38821856 DOI: 10.1124/dmd.124.001600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/02/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024] Open
Abstract
Over the past 20 years, quantitative proteomics has contributed a wealth of protein expression data, which are currently used for a variety of systems pharmacology applications, as a complement or a surrogate for activity of the corresponding proteins. A symposium at the 25th North American International Society for the Study of Xenobiotics meeting, in Boston, in September 2023, was held to explore current and emerging applications of quantitative proteomics in translational pharmacology and strategies for improved integration into model-informed drug development based on practical experience of each of the presenters. A summary of the talks and discussions is presented in this perspective alongside future outlook that was outlined for future meetings. SIGNIFICANCE STATEMENT: This perspective explores current and emerging applications of quantitative proteomics in translational pharmacology and precision medicine and outlines the outlook for improved integration into model-informed drug development.
Collapse
Affiliation(s)
- Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (Z.M.A.-M., A.R.-H.); Department of Plant Physiology, Umeå University, Umeå, Sweden (C.W.); Certara UK, Sheffield, United Kingdom (A.R.-H.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Zubida M Al-Majdoub
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (Z.M.A.-M., A.R.-H.); Department of Plant Physiology, Umeå University, Umeå, Sweden (C.W.); Certara UK, Sheffield, United Kingdom (A.R.-H.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Christine Wegler
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (Z.M.A.-M., A.R.-H.); Department of Plant Physiology, Umeå University, Umeå, Sweden (C.W.); Certara UK, Sheffield, United Kingdom (A.R.-H.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Amin Rostami-Hodjegan
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (Z.M.A.-M., A.R.-H.); Department of Plant Physiology, Umeå University, Umeå, Sweden (C.W.); Certara UK, Sheffield, United Kingdom (A.R.-H.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Brahim Achour
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (Z.M.A.-M., A.R.-H.); Department of Plant Physiology, Umeå University, Umeå, Sweden (C.W.); Certara UK, Sheffield, United Kingdom (A.R.-H.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.)
| |
Collapse
|
2
|
Mahmoud M, Huang Y, Garimella K, Audano PA, Wan W, Prasad N, Handsaker RE, Hall S, Pionzio A, Schatz MC, Talkowski ME, Eichler EE, Levy SE, Sedlazeck FJ. Utility of long-read sequencing for All of Us. Nat Commun 2024; 15:837. [PMID: 38281971 PMCID: PMC10822842 DOI: 10.1038/s41467-024-44804-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/03/2024] [Indexed: 01/30/2024] Open
Abstract
The All of Us (AoU) initiative aims to sequence the genomes of over one million Americans from diverse ethnic backgrounds to improve personalized medical care. In a recent technical pilot, we compare the performance of traditional short-read sequencing with long-read sequencing in a small cohort of samples from the HapMap project and two AoU control samples representing eight datasets. Our analysis reveals substantial differences in the ability of these technologies to accurately sequence complex medically relevant genes, particularly in terms of gene coverage and pathogenic variant identification. We also consider the advantages and challenges of using low coverage sequencing to increase sample numbers in large cohort analysis. Our results show that HiFi reads produce the most accurate results for both small and large variants. Further, we present a cloud-based pipeline to optimize SNV, indel and SV calling at scale for long-reads analysis. These results lead to widespread improvements across AoU.
Collapse
Affiliation(s)
- M Mahmoud
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Y Huang
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, 02141, USA
| | - K Garimella
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, 02141, USA
| | - P A Audano
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - W Wan
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, 02141, USA
| | - N Prasad
- Discovery Life Sciences, Huntsville, AL, 35806, USA
| | - R E Handsaker
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02141, USA
| | - S Hall
- Discovery Life Sciences, Huntsville, AL, 35806, USA
| | - A Pionzio
- Discovery Life Sciences, Huntsville, AL, 35806, USA
| | - M C Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - M E Talkowski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02141, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - E E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - S E Levy
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - F J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Department of Computer Science, Rice University, Houston, TX, USA.
| |
Collapse
|
3
|
Lauschke VM, Zhou Y, Ingelman-Sundberg M. Pharmacogenomics Beyond Single Common Genetic Variants: The Way Forward. Annu Rev Pharmacol Toxicol 2024; 64:33-51. [PMID: 37506333 DOI: 10.1146/annurev-pharmtox-051921-091209] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Interindividual variability in genes encoding drug-metabolizing enzymes, transporters, receptors, and human leukocyte antigens has a major impact on a patient's response to drugs with regard to efficacy and safety. Enabled by both technological and conceptual advances, the field of pharmacogenomics is developing rapidly. Major progress in omics profiling methods has enabled novel genotypic and phenotypic characterization of patients and biobanks. These developments are paralleled by advances in machine learning, which have allowed us to parse the immense wealth of data and establish novel genetic markers and polygenic models for drug selection and dosing. Pharmacogenomics has recently become more widespread in clinical practice to personalize treatment and to develop new drugs tailored to specific patient populations. In this review, we provide an overview of the latest developments in the field and discuss the way forward, including how to address the missing heritability, develop novel polygenic models, and further improve the clinical implementation of pharmacogenomics.
Collapse
Affiliation(s)
- Volker M Lauschke
- Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, Stuttgart, Germany
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden;
- Tübingen University, Tübingen, Germany
| | - Yitian Zhou
- Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, Stuttgart, Germany
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden;
- Tübingen University, Tübingen, Germany
| | | |
Collapse
|
4
|
Chenoweth MJ, Lerman C, Knight J, Tyndale RF. Influence of CYP2A6 Genetic Variation, Nicotine Dependence Severity, and Treatment on Smoking Cessation Success. Nicotine Tob Res 2023; 25:1207-1211. [PMID: 36789481 PMCID: PMC10202625 DOI: 10.1093/ntr/ntac268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/07/2022] [Accepted: 11/21/2022] [Indexed: 02/16/2023]
Abstract
INTRODUCTION Genetic variation in Cytochrome P450 2A6 (CYP2A6), the major nicotine metabolizing enzyme, is associated with nicotine dependence and smoking cessation. Nicotine dependence severity also predicts smoking cessation. Our goals were to determine how CYP2A6 variation and nicotine dependence alter smoking cessation, and whether dependence could refine CYP2A6-based treatment recommendations. AIMS AND METHODS Adult smokers treated for 12 weeks with placebo, nicotine patch, or varenicline (NCT01314001) were grouped as CYP2A6 normal (n = 567) or slow (n = 432) nicotine metabolizers based on a CYP2A6 weighted genetic risk score. Fagerström test for nicotine dependence scores were measured at baseline and biochemically verified smoking cessation was assessed at end of treatment. RESULTS Dependence neither mediated nor moderated an association between CYP2A6 variation and smoking cessation overall, within any treatment arm, or after stratifying by ancestry (n = 591 European, n = 408 African ancestry) or sex (n = 444 women, n = 555 men). In within-treatment analyses, the mediation effect odds ratio (OR) ranged from 0.95 to 1.00 and the bias-corrected 95% confidence interval contained 1. Moderation (i.e. interaction) effect ORs ranged from 0.88 to 1.61 (p = .397-.828). For CYP2A6 normal metabolizers, quit rates on varenicline were similar for those with high (41.1%) and low (43.4%) dependence, while quit rates were lower for those with high versus low dependence on both patch (16.5 vs. 29.7%) and placebo (8.9 vs. 18.5%). CYP2A6 slow metabolizers with high versus low dependence had lower quit rates in all three treatment arms. CONCLUSIONS Although nicotine dependence severity neither mediated nor moderated CYP2A6 associations with smoking cessation, incorporating information on dependence may optimize the choice of smoking cessation treatment aid in CYP2A6 normal and slow metabolizers. IMPLICATIONS Variation in CYP2A6 and nicotine dependence severity alter smoking cessation success. Our findings suggest that while nicotine dependence severity is unlikely to mediate or moderate CYP2A6 associations with cessation, incorporating patient information on both CYP2A6 and nicotine dependence severity may lead to improved smoking cessation strategies.
Collapse
Affiliation(s)
- Meghan J Chenoweth
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Caryn Lerman
- Department of Psychiatry and USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Jo Knight
- Data Science Institute, Lancaster University Medical School, Lancaster, UK
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Rachel F Tyndale
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Ding X, Zhang W, Yu W, Li Y, Shao G, Zhang L, Zhao RC, Li X. Recurrent CYP2A6 gene mutation in biphasic hyalinizing psammomatous renal cell carcinoma: Additional support of three cases. Pathol Res Pract 2023; 245:154468. [PMID: 37104959 DOI: 10.1016/j.prp.2023.154468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/07/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023]
Abstract
Biphasic hyalinizing psammomatous renal cell carcinoma (BHP RCC) with NF2 gene mutations is a newly described provisional category of renal cell carcinoma (RCC). Here we described three additional cases of BHP RCC with CYP2A6 gene mutation besides NF2 gene. The carcinomas were predominantly unencapsulated, and two of them had a rounded, nodular interface with the native kidney while one had perirenal adipose tissue invasion. Histopathologically, all neoplasms had a characteristic biphasic appearance of smaller cells clustering around basement membrane material within larger acini, forming pseudorosettes or a glomeruloid pattern. The smaller cells were focally spindle-shaped in two carcinomas. Psammoma bodies were shown in two carcinomas. Cellular necrosis and perineural invasion was identified in one case. Immunohistochemically, Vimentin, EMA, P504s were extensively expressed while RCC and CD10 were only expressed in larger cells. CK7 was positive in one tumor. CYP2A6 gene mutation (CYP2A6 NM_000762.6: exon4:c.A580G:p.K194E) was revealed in three tumors by Whole-genome exome sequencing, which was further confirmed by Sanger sequencing. Only one case harbored a somatic termination mutation in NF2 gene. NF2 promoter methylation was observed in the other two cases. Clinically, one patient died of disease with widespread bone metastases confirmed by biopsy at the ninth month after surgery but the other two patients had no evidence of recurrence or metastases (follow-up period 9-90 months). Our findings validated previously described clinicopathological features and NF2 gene mutation or promoter methylation of BHP RCC. In addition, we reported different IHC pattern of BHP RCC and further revealed the recurrent CYP2A6 genetic alteration.
Collapse
Affiliation(s)
- Xiaoyan Ding
- School of Basic Medicine, Institute of Stem Cell and Regenerative Medicine, Qingdao University, Ningxia Road Number 308, Qingdao, China
| | - Wei Zhang
- Department of Pathology, No. 971 Hospital of The People's Liberation Army Navy, Minjiang Road Number 22, Qingdao, China
| | - Wenjuan Yu
- Department of Pathology, The Affiliated Hospital of Qingdao University, Jiangsu Road Number 16, Qingdao, China
| | - Yujun Li
- Department of Pathology, The Affiliated Hospital of Qingdao University, Jiangsu Road Number 16, Qingdao, China
| | - Guanglong Shao
- School of Basic Medicine, Institute of Stem Cell and Regenerative Medicine, Qingdao University, Ningxia Road Number 308, Qingdao, China
| | - Longxiao Zhang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Jiangsu Road Number 16, Qingdao, China
| | - Robert Chunhua Zhao
- School of Basic Medicine, Institute of Stem Cell and Regenerative Medicine, Qingdao University, Ningxia Road Number 308, Qingdao, China
| | - Xiaoxia Li
- School of Basic Medicine, Institute of Stem Cell and Regenerative Medicine, Qingdao University, Ningxia Road Number 308, Qingdao, China.
| |
Collapse
|
6
|
Zhou Y, Lauschke VM. The genetic landscape of major drug metabolizing cytochrome P450 genes-an updated analysis of population-scale sequencing data. THE PHARMACOGENOMICS JOURNAL 2022; 22:284-293. [PMID: 36068297 PMCID: PMC9674520 DOI: 10.1038/s41397-022-00288-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/05/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Genes encoding cytochrome P450 enzymes (CYPs) are extremely polymorphic and multiple CYP variants constitute clinically relevant biomarkers for the guidance of drug selection and dosing. We previously reported the distribution of the most relevant CYP alleles using population-scale sequencing data. Here, we update these findings by making use of the increasing wealth of data, incorporating whole exome and whole genome sequencing data from 141,614 unrelated individuals across 12 human populations. We furthermore extend our previous studies by systematically considering also uncharacterized rare alleles and reveal that they contribute between 1.5% and 17.5% to the overall genetically encoded functional variability. By using established guidelines, we aggregate and translate the available sequencing data into population-specific patterns of metabolizer phenotypes. Combined, the presented data refine the worldwide landscape of ethnogeographic variability in CYP genes and aspire to provide a relevant resource for the optimization of population-specific genotyping strategies and precision public health.
Collapse
Affiliation(s)
- Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden.
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.
- University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
7
|
Langlois AW, El-Boraie A, Fukunaga K, Mushiroda T, Kubo M, Lerman C, Knight J, Scherer SE, Chenoweth MJ, Tyndale RF. Accuracy and applications of sequencing and genotyping approaches for CYP2A6 and homologous genes. Pharmacogenet Genomics 2022; 32:159-172. [PMID: 35190513 PMCID: PMC9081136 DOI: 10.1097/fpc.0000000000000466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES We evaluated multiple genotyping/sequencing approaches in a homologous region of chromosome 19, and investigated associations of two common 3'-UTR CYP2A6 variants with activity in vivo. METHODS Individuals (n = 1704) of European and African ancestry were phenotyped for the nicotine metabolite ratio (NMR), an index of CYP2A6 activity, and genotyped/sequenced using deep amplicon exon sequencing, SNP array, genotype imputation and targeted capture sequencing. Amplicon exon sequencing was the gold standard to which other methods were compared within-individual for CYP2A6, CYP2A7, CYP2A13, and CYP2B6 exons to identify highly discordant positions. Linear regression models evaluated the association of CYP2A6*1B and rs8192733 genotypes (coded additively) with logNMR. RESULTS All approaches were ≤2.6% discordant with the gold standard; discordant calls were concentrated at few positions. Fifteen positions were discordant in >10% of individuals, with 12 appearing in regions of high identity between homologous genes (e.g. CYP2A6 and CYP2A7). For six, allele frequencies in our study and online databases were discrepant, suggesting errors in online sources. In the European-ancestry group (n = 935), CYP2A6*1B and rs8192733 were associated with logNMR (P < 0.001). A combined model found main effects of both variants on increasing logNMR. Similar trends were found in those of African ancestry (n = 506). CONCLUSION Multiple genotyping/sequencing approaches used in this chromosome 19 region contain genotyping/sequencing errors, as do online databases. Gene-specific primers and SNP array probes must consider gene homology; short-read sequencing of related genes in a single reaction should be avoided. Using improved sequencing approaches, we characterized two gain-of-function 3'-UTR variants, including the relatively understudied rs8192733.
Collapse
Affiliation(s)
- Alec W.R. Langlois
- Department of Pharmacology & Toxicology, University of Toronto; 1 King’s College Circle, Toronto, ON, M5S 1A8, Canada. Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health 100 Stokes Street, Toronto, ON, M6J 1H4, Canada
| | - Ahmed El-Boraie
- Department of Pharmacology & Toxicology, University of Toronto; 1 King’s College Circle, Toronto, ON, M5S 1A8, Canada. Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health 100 Stokes Street, Toronto, ON, M6J 1H4, Canada
| | - Koya Fukunaga
- Center for Integrative Medical Sciences, RIKEN; 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Taisei Mushiroda
- Center for Integrative Medical Sciences, RIKEN; 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Michiaki Kubo
- Center for Integrative Medical Sciences, RIKEN; 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Caryn Lerman
- Department of Psychiatry and USC Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Avenue, Cancer Center, Los Angeles, CA, 90089, United States
| | - Jo Knight
- Data Science Institute and Lancaster University Medical School, Lancaster, UK
- Department of Psychiatry, University of Toronto; 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - Steven E. Scherer
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Meghan J. Chenoweth
- Department of Pharmacology & Toxicology, University of Toronto; 1 King’s College Circle, Toronto, ON, M5S 1A8, Canada. Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health 100 Stokes Street, Toronto, ON, M6J 1H4, Canada
| | - Rachel F. Tyndale
- Department of Pharmacology & Toxicology, University of Toronto; 1 King’s College Circle, Toronto, ON, M5S 1A8, Canada. Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health 100 Stokes Street, Toronto, ON, M6J 1H4, Canada
- Department of Psychiatry, University of Toronto; 250 College Street, Toronto, ON, M5T 1R8, Canada
| |
Collapse
|