1
|
Cornejo KM, Hutchinson L, O'Donnell P, Meng X, Tomaszewicz K, Shalin SC, Cassarino DS, Chan MP, Quinn TR, Googe PB, Nazarian RM. Molecular Profiling of Syringocystadenocarcinoma Papilliferum Reveals RAS-Activating Mutations. Arch Pathol Lab Med 2024; 148:215-222. [PMID: 37074845 DOI: 10.5858/arpa.2022-0474-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2023] [Indexed: 04/20/2023]
Abstract
CONTEXT.— Syringocystadenocarcinoma papilliferum (SCACP) is a rare adnexal carcinoma and the malignant counterpart of syringocystadenoma papilliferum (SCAP), which is commonly located on the head and neck and may arise in association with a nevus sebaceus. RAS mutations have been identified in both SCAP and nevus sebaceus. OBJECTIVE.— To evaluate the clinicopathologic and molecular features of SCACPs, which have not been previously explored. DESIGN.— We obtained 11 SCACPs from 6 institutions and reviewed the clinicopathologic features. We also performed molecular profiling using next-generation sequencing. RESULTS.— The cohort comprised 6 women and 5 men with ages ranging from 29 to 96 years (mean, 73.6 years). The neoplasms occurred on the head and neck (n = 8; 73%) and extremities (n = 3; 27%). Three tumors possibly arose in a nevus sebaceus. A total of 4 cases showed at least carcinoma in situ (adenocarcinoma, n = 3; squamous cell carcinoma [SCC], n = 1), and 7 cases were invasive (SCC, n = 5; mixed adenocarcinoma + SCC, n = 2). A total of 8 of 11 cases (73%) had hot spot mutations consisting of HRAS (n = 4), KRAS (n = 1), BRAF (n = 1), TP53 (n = 4), ATM (n = 2), FLT3 (n = 1), CDKN2A (n = 1), and PTEN (n = 1). All 4 cases with HRAS mutations occurred on the head and neck, whereas the KRAS mutation occurred on the extremity. CONCLUSIONS.— RAS-activating mutations were detected in 50% of the cases, of which most (80%) involved HRAS and occurred on the head and neck, which shows overlapping features with SCAP, supporting that a subset may arise as a result of malignant transformation and likely an early oncogenic event.
Collapse
Affiliation(s)
- Kristine M Cornejo
- From the Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts (Cornejo, Nazarian)
| | - Lloyd Hutchinson
- Department of Pathology, University of Massachusetts Memorial Medical Center, Worcester, Massachusetts (Hutchinson, O'Donnell, Meng, Tomaszewicz)
| | - Patrick O'Donnell
- Department of Pathology, University of Massachusetts Memorial Medical Center, Worcester, Massachusetts (Hutchinson, O'Donnell, Meng, Tomaszewicz)
| | - Xiuling Meng
- Department of Pathology, University of Massachusetts Memorial Medical Center, Worcester, Massachusetts (Hutchinson, O'Donnell, Meng, Tomaszewicz)
| | - Keith Tomaszewicz
- Department of Pathology, University of Massachusetts Memorial Medical Center, Worcester, Massachusetts (Hutchinson, O'Donnell, Meng, Tomaszewicz)
| | - Sara C Shalin
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas (Shalin)
| | - David S Cassarino
- Southern California Permanente Medical Group, Sunset Medical Center, Department of Pathology, Los Angeles, California (Cassarino)
| | - May P Chan
- Department of Pathology, University of Michigan Health System, Ann Arbor, Michigan (Chan)
| | - Timothy R Quinn
- Massachusetts General Physicians Organization Dermatopathology Associates, Newton, Massachusetts (Quinn)
| | - Paul B Googe
- the Department of Dermatology, University of North Carolina School of Medicine, Chapel Hill, North Carolina (Googe)
| | - Rosalynn M Nazarian
- From the Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts (Cornejo, Nazarian)
| |
Collapse
|
2
|
Recent Advances on Immunohistochemistry and Molecular Biology for the Diagnosis of Adnexal Sweat Gland Tumors. Cancers (Basel) 2022; 14:cancers14030476. [PMID: 35158743 PMCID: PMC8833812 DOI: 10.3390/cancers14030476] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Cutaneous sweat gland tumors form an extremely diverse and heterogeneous group of neoplasms that show histological differentiation to the sweat apparatus. Due to their rarity, wide diagnostic range, and significant morphological overlap between entities, their accurate diagnosis remains challenging for pathologists. Until recently, little was known about the molecular pathogenesis of adnexal tumors. Recent findings have revealed a wide range of gene fusions and other oncogenic factors that can be used for diagnostic purposes and, for some, can be detected by immunohistochemistry. Among other organs containing exocrine glands, such as salivary glands, breasts, and bronchi, most of these biomarkers have been reported in homologous neoplasms that share morphological features with their cutaneous counterparts. This review aims to describe these recent molecular and immunohistochemical biomarkers in the field of sweat gland tumors. Abstract Cutaneous sweat gland tumors are a subset of adnexal neoplasms that derive or differentiate into the sweat apparatus. Their great diversity, rarity, and complex terminology make their pathological diagnosis challenging. Recent findings have revealed a wide spectrum of oncogenic drivers, several of which are of diagnostic interest for pathologists. Most of these molecular alterations are represented by gene fusions, which are shared with other homologous neoplasms occurring in organs containing exocrine glands, such as salivary and breast glands, which show similarities to the sweat apparatus. This review aims to provide a synthesis of the most recent immunohistochemical and molecular markers used for the diagnosis of sweat gland tumors and to highlight their relationship with similar tumors in other organs. It will cover adenoid cystic carcinoma (NFIB, MYB, and MYBL1 fusion), cutaneous mixed tumor (PLAG1 fusion), cylindroma and spiradenoma and their carcinomas thereof (NF-κB activation through CYLD inactivation or ALKP1 hotspot mutation), hidradenoma and hidradenocarcinoma (MAML2 fusion), myoepithelioma (EWSR1 and FUS fusion), poroma and porocarcinoma (YAP1, MAML2, and NUTM1 fusion), secretory carcinoma (ETV6, NTRK3 fusion), tubular adenoma and syringo-cystadenoma papilliferum (HRAS and BRAF activating mutations). Sweat gland tumors for which there are no known molecular abnormalities will also be briefly discussed, as well as potential future developments.
Collapse
|
3
|
Plotzke JM, Adams DJ, Harms PW. Molecular pathology of skin adnexal tumours. Histopathology 2022; 80:166-183. [PMID: 34197659 DOI: 10.1111/his.14441] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 11/28/2022]
Abstract
AIMS Tumours of the cutaneous adnexa arise from, or differentiate towards, structures in normal skin such as hair follicles, sweat ducts/glands, sebaceous glands or a combination of these elements. This class of neoplasms includes benign tumours and highly aggressive carcinomas. Adnexal tumours often present as solitary sporadic lesions, but can herald the presence of an inherited tumour syndrome such as Muir-Torre syndrome, Cowden syndrome or CYLD cutaneous syndrome. In contrast to squamous cell carcinoma and basal cell carcinoma, molecular changes in adnexal neoplasia have been poorly characterised and there are few published reviews on the current state of knowledge. METHODS AND RESULTS We reviewed findings in peer-reviewed literature on molecular investigations of cutaneous adnexal tumours published to June 2021. CONCLUSIONS Recent discoveries have revealed diverse oncogenic drivers and tumour suppressor alterations in this class of tumours, implicating pathways including Ras/MAPK, PI3K, YAP/TAZ, beta-catenin and nuclear factor kappa B (NF-κB). These observations have identified novel markers, such as NUT for poroma and porocarcinoma and PLAG1 for mixed tumours. Here, we provide a comprehensive overview and update of the molecular findings associated with adnexal tumours of the skin.
Collapse
Affiliation(s)
- Jaclyn M Plotzke
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Paul W Harms
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Aggarwal D, Chatterjee D, Keshavamurthy V, Chhikara K, Saikia UN, Radotra BD, De D, Singh MP. Contiguous squamous proliferations in syringocystadenoma papilliferum: A retrospective study of 14 cases. Indian J Dermatol Venereol Leprol 2021; 89:266-273. [PMID: 34623039 DOI: 10.25259/ijdvl_845_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 05/01/2021] [Indexed: 11/04/2022]
Abstract
BACKGROUND Syringocystadenoma papilliferum is a benign adnexal neoplasm. Contiguous squamous proliferation has been rarely described in syringocystadenoma papilliferum. AIMS This study aimed to evaluate the spectrum and pathogenesis of contiguous squamous proliferation in syringocystadenoma papilliferum. MATERIALS AND METHODS All cases of syringocystadenoma papilliferum diagnosed over the past 12 years were screened for contiguous squamous proliferation. Cases with associated nevus sebaceous were excluded from the study. Immunohistochemistry for GATA3, CK7, BRAFV600E and p16 was performed. PCR for human papilloma virus, type 16 and 18, was carried out. RESULTS Of a total of 30 cases, 14 cases showed associated contiguous squamous proliferation which included four cases of verrucous hyperplasia, six cases with papillomatosis, two cases with mild squamous hyperplasia and one case each of Bowen's disease and squamous cell carcinoma. In the cases with non-neoplastic contiguous squamous proliferations, the squamous component did not express CK7 or GATA3. However, the squamous component of premalignant and malignant lesions expressed CK7 and GATA3 concordant with the adenomatous component. BRAF was positive in adenomatous component in five cases while the contiguous squamous proliferation component was negative for BRAF in all but one case. p16 was negative in both components of all cases and PCR for human papilloma virus was negative in all cases. LIMITATIONS Due to the rarity of disease, the sample size of our study was relatively small with two cases in the 2nd group, that is, syringocystadenoma papilliferum with malignant contiguous squamous proliferation. Detailed molecular studies such as gene sequencing were not performed. CONCLUSION Syringocystadenoma papilliferum with contiguous squamous proliferation is underreported, and most commonly displays verrucous hyperplasia. The premalignant and malignant contiguous squamous proliferations likely arise from syringocystadenoma papilliferum while the hyperplastic contiguous squamous proliferations likely arise from the adjacent epidermis. Relationship with high-risk human papilloma virus is unlikely. However, further molecular analysis of larger number of cases is required to establish the pathogenesis.
Collapse
Affiliation(s)
- Divya Aggarwal
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Debajyoti Chatterjee
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Vinay Keshavamurthy
- Department of Dermatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Komal Chhikara
- Department of Virology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Uma Nahar Saikia
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Bishan D Radotra
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Dipankar De
- Department of Dermatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Mini P Singh
- Department of Virology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
5
|
Hile G, Harms PW. Update on Molecular Genetic Alterations of Cutaneous Adnexal Neoplasms. Surg Pathol Clin 2021; 14:251-272. [PMID: 34023104 DOI: 10.1016/j.path.2021.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cutaneous adnexal tumors recapitulate follicular, sweat gland, and/or sebaceous epithelia, and range from benign tumors to aggressive carcinomas. Adnexal tumors can be hallmarks for inherited tumor syndromes. Oncogenic drivers of adnexal neoplasms modulate intracellular pathways including mitogen-activated protein kinase, phosphoinositide-3-kinase, Wnt/β-catenin, Hedgehog, nuclear factor κB, and Hippo intracellular signaling pathways, representing potential therapeutic targets. Malignant progression can be associated with tumor suppressor loss, especially TP53. Molecular alterations drive expression of specific diagnostic markers, such as CDX2 and LEF1 in pilomatricomas/pilomatrical carcinomas, and NUT in poromas/porocarcinomas. In these ways, improved understanding of molecular alterations promises to advance diagnostic, prognostic, and therapeutic possibilities for adnexal tumors.
Collapse
Affiliation(s)
- Grace Hile
- Department of Dermatology, University of Michigan, 1910 Taubman Center, 1500 East Medical Center Drive, Ann Arbor, MI 48109-5314, USA
| | - Paul W Harms
- Department of Dermatology, University of Michigan, 1910 Taubman Center, 1500 East Medical Center Drive, Ann Arbor, MI 48109-5314, USA; Department of Pathology, University of Michigan, 2800 Plymouth Road, Building 35, Ann Arbor, MI 48109 - 2800, USA.
| |
Collapse
|
6
|
Current Diagnosis and Treatment Options for Cutaneous Adnexal Neoplasms with Apocrine and Eccrine Differentiation. Int J Mol Sci 2021; 22:ijms22105077. [PMID: 34064849 PMCID: PMC8151110 DOI: 10.3390/ijms22105077] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/15/2021] [Accepted: 05/02/2021] [Indexed: 12/16/2022] Open
Abstract
Adnexal tumors of the skin are a rare group of benign and malignant neoplasms that exhibit morphological differentiation toward one or more of the adnexal epithelium types present in normal skin. Tumors deriving from apocrine or eccrine glands are highly heterogeneous and represent various histological entities. Macroscopic and dermatoscopic features of these tumors are unspecific; therefore, a specialized pathological examination is required to correctly diagnose patients. Limited treatment guidelines of adnexal tumor cases are available; thus, therapy is still challenging. Patients should be referred to high-volume skin cancer centers to receive an appropriate multidisciplinary treatment, affecting their outcome. The purpose of this review is to summarize currently available data on pathogenesis, diagnosis, and treatment approach for apocrine and eccrine tumors.
Collapse
|
7
|
McNaught A, Lamparelli M. Rare combination of verrucous carcinoma and syringocystadenoma papilliferum in anterior perineal sinus: recognizing the absence of normality. ANZ J Surg 2021; 91:E749-E750. [PMID: 33792154 DOI: 10.1111/ans.16793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/14/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Alexa McNaught
- Department of Surgery, Rockhampton Base Hospital, Rockhampton, Queensland, Australia
| | - Michael Lamparelli
- Department of Surgery, Rockhampton Base Hospital, Rockhampton, Queensland, Australia
| |
Collapse
|