1
|
Wei J, Zhu K, Wang T, Wang Z, Wu L, Yang K, Wang Z, Zong S, Cui Y. High-precision phenotyping of breast cancer exosomes based on washable magnetic microarrays and super-resolution tricolor fluorescence co-localization. Biosens Bioelectron 2025; 276:117253. [PMID: 39954519 DOI: 10.1016/j.bios.2025.117253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Exosome is a kind of membranous vesicles released from cells and carry a number of important signaling molecules, they play an important role in cellular communication, cell migration, angiogenesis as well as tumor cell growth. Exosome-based cancer diagnosis is usually achieved by detecting exosomal nucleic acids, lipids, and surface proteins, as they reflect tumor type and progression. Here, we proposed a method to rapidly prepare an array of washable magnetic nanoparticles (magnetic beads, MBs) by a magnetic field controlled system, which facilitate the analyzing of exosome phenotypes via super-resolution tricolor fluorescence co-localization (SR-TFC) and pixel counting (CFPP). Firstly, nanopore arrays were designed and prepared by 3D printing technology. MBs@SiO2@Au nanospheres synthesized by hydrothermal method were rapidly absorbed into the nanopore arrays using a magnetic field to prepare a washable magnetic microarray substrate (WMMS). Then, exosomes were specifically labeled with three specific proteins to obtain the 3D phenotypic information of various exosomes. This method avoids meaningless and repetitive substrate preparation work and further improve the utility of SR-TFC, which is a high precision phenotyping strategy that we have recently proposed. This work provides a reliable and efficient exosome-based tumor detection platform, which is conducive to advancing the clinical application of SR-TFC.
Collapse
Affiliation(s)
- Jinxiu Wei
- School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Kai Zhu
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 211189, Jiangsu, China
| | - Tingyu Wang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 211189, Jiangsu, China
| | - Zuyao Wang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 211189, Jiangsu, China
| | - Lei Wu
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 211189, Jiangsu, China
| | - Kuo Yang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 211189, Jiangsu, China
| | - Zhuyuan Wang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 211189, Jiangsu, China.
| | - Shenfei Zong
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 211189, Jiangsu, China.
| | - Yiping Cui
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 211189, Jiangsu, China
| |
Collapse
|
2
|
Li Y, Tang X, Wang B, Chen M, Zheng J, Chang K. Current landscape of exosomal non-coding RNAs in prostate cancer: Modulators and biomarkers. Noncoding RNA Res 2024; 9:1351-1362. [PMID: 39247145 PMCID: PMC11380467 DOI: 10.1016/j.ncrna.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/12/2024] [Accepted: 07/18/2024] [Indexed: 09/10/2024] Open
Abstract
Prostate cancer (PCa) has the highest frequency of diagnosis among solid tumors and ranks second as the primary cause of cancer-related deaths. Non-coding RNAs (ncRNAs), such as microRNAs, long non-coding RNAs and circular RNAs, frequently exhibit dysregulation and substantially impact the biological behavior of PCa. Compared with circulating ncRNAs, ncRNAs loaded into exosomes are more stable because of protection by the lipid bilayer. Furthermore, exosomal ncRNAs facilitate the intercellular transfer of molecules and information. Increasing evidence suggests that exosomal ncRNAs hold promising potential in the progression, diagnosis and prognosis of PCa. This review aims to discuss the functions of exosomal ncRNAs in PCa, evaluate their possible applications as clinical biomarkers and therapeutic targets, and provide a comprehensive overview of the ncRNAs regulatory network in PCa. We also identified ncRNAs that can be utilized as biomarkers for diagnosis, staging, grading and prognosis assessment in PCa. This review offers researchers a fresh perspective on the functions of exosomal ncRNAs in PCa and provides additional options for its diagnosis, progression monitoring, and prognostic prediction.
Collapse
Affiliation(s)
- Yongxing Li
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, PR China
- School of Medicine, Chongqing University, Chongqing, 400030, PR China
| | - Xiaoqi Tang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Binpan Wang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Ming Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, PR China
- School of Medicine, Chongqing University, Chongqing, 400030, PR China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Kai Chang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| |
Collapse
|
3
|
Hou Y, Meng X, Zhou X. Systematically Evaluating Cell-Free DNA Fragmentation Patterns for Cancer Diagnosis and Enhanced Cancer Detection via Integrating Multiple Fragmentation Patterns. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308243. [PMID: 38881520 PMCID: PMC11321639 DOI: 10.1002/advs.202308243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/12/2024] [Indexed: 06/18/2024]
Abstract
Cell-free DNA (cfDNA) fragmentation patterns have immense potential for early cancer detection. However, the definition of fragmentation varies, ranging from the entire genome to specific genomic regions. These patterns have not been systematically compared, impeding broader research and practical implementation. Here, 1382 plasma cfDNA sequencing samples from 8 cancer types are collected. Considering that cfDNA within open chromatin regions is more susceptible to fragmentation, 10 fragmentation patterns within open chromatin regions as features and employed machine learning techniques to evaluate their performance are examined. All fragmentation patterns demonstrated discernible classification capabilities, with the end motif showing the highest diagnostic value for cross-validation. Combining cross and independent validation results revealed that fragmentation patterns that incorporated both fragment length and coverage information exhibited robust predictive capacities. Despite their diagnostic potential, the predictive power of these fragmentation patterns is unstable. To address this limitation, an ensemble classifier via integrating all fragmentation patterns is developed, which demonstrated notable improvements in cancer detection and tissue-of-origin determination. Further functional bioinformatics investigations on significant feature intervals in the model revealed its impressive ability to identify critical regulatory regions involved in cancer pathogenesis.
Collapse
Affiliation(s)
- Yuying Hou
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of InformaticsHuazhong Agricultural UniversityWuhan430070China
| | - Xiang‐Yu Meng
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of InformaticsHuazhong Agricultural UniversityWuhan430070China
- Health Science CenterHubei Minzu UniversityEnshi445000China
- Hubei Provincial Clinical Medical Research Center for NephropathyHubei Minzu UniversityEnshi445000China
| | - Xionghui Zhou
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of InformaticsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Smart Farming for Agricultural AnimalsMinistry of Agriculture and Rural AffairsWuhan430070China
| |
Collapse
|
4
|
Rakshit I, Mandal S, Pal S, Bhattacharjee P. Advancements in bladder cancer detection: a comprehensive review on liquid biopsy and cell-free DNA analysis. THE NUCLEUS 2024. [DOI: 10.1007/s13237-024-00494-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/04/2024] [Indexed: 01/06/2025] Open
|
5
|
Huang Z, Fu Y, Yang H, Zhou Y, Shi M, Li Q, Liu W, Liang J, Zhu L, Qin S, Hong H, Liu Y. Liquid biopsy in T-cell lymphoma: biomarker detection techniques and clinical application. Mol Cancer 2024; 23:36. [PMID: 38365716 PMCID: PMC10874034 DOI: 10.1186/s12943-024-01947-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/25/2024] [Indexed: 02/18/2024] Open
Abstract
T-cell lymphoma is a highly invasive tumor with significant heterogeneity. Invasive tissue biopsy is the gold standard for acquiring molecular data and categorizing lymphoma patients into genetic subtypes. However, surgical intervention is unfeasible for patients who are critically ill, have unresectable tumors, or demonstrate low compliance, making tissue biopsies inaccessible to these patients. A critical need for a minimally invasive approach in T-cell lymphoma is evident, particularly in the areas of early diagnosis, prognostic monitoring, treatment response, and drug resistance. Therefore, the clinical application of liquid biopsy techniques has gained significant attention in T-cell lymphoma. Moreover, liquid biopsy requires fewer samples, exhibits good reproducibility, and enables real-time monitoring at molecular levels, thereby facilitating personalized health care. In this review, we provide a comprehensive overview of the current liquid biopsy biomarkers used for T-cell lymphoma, focusing on circulating cell-free DNA (cfDNA), circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), Epstein-Barr virus (EBV) DNA, antibodies, and cytokines. Additionally, we discuss their clinical application, detection methodologies, ongoing clinical trials, and the challenges faced in the field of liquid biopsy.
Collapse
Affiliation(s)
- Zongyao Huang
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yao Fu
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Hong Yang
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yehan Zhou
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Min Shi
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Qingyun Li
- Genecast Biotechnology Co., Ltd, Wuxi, 214104, China
| | - Weiping Liu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Junheng Liang
- Nanjing Geneseeq Technology Inc., Nanjing, 210032, Jiangsu, China
| | - Liuqing Zhu
- Nanjing Geneseeq Technology Inc., Nanjing, 210032, Jiangsu, China
| | - Sheng Qin
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Huangming Hong
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Yang Liu
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
6
|
Vijay J, Kumar BD, Murthy VS. Detection of Circulating Tumor Cells by Cell Block Technique in Malignant Tumors. J Cytol 2024; 41:41-46. [PMID: 38282811 PMCID: PMC10810080 DOI: 10.4103/joc.joc_123_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/05/2023] [Accepted: 11/20/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction Cancer is a leading cause of death worldwide and is a major cause of morbidity. To deal with this magnitude of cancers and their diagnostic and prognostics, a multitude of prognostic biomarkers for various cancers have been explored over the decades, with detection of circulating tumor cells (CTCs) in the peripheral blood being one of them. This study was undertaken to explore the routine procedure of cell block in the cytopathology lab to isolate and detect CTCs. Materials and Methods In this cross-sectional study, 112 peripheral blood samples sent for routine blood investigations of various cancer patients were utilized for the preparation of cell block. The sections from the cell block were stained routinely and evaluated for the presence of CTCs. The statistical analysis was done using Mac Statplus software version 8.0. Results The malignancies were tabulated as per the International Classification of Diseases for Oncology, third edition (ICD-O-3). The maximum number of cases were from C 50 (breast) - 41/112 (36.6%), followed by C15-C26 (Digestive organs) - 19/112 (16.9%), and C00-C14 (lip, oral cavity, and pharynx) - 18/112 (16.07%) cases. CTC was detected in six (5.35%) out of 112 cases, out of which three were from the breast and one each from category C6.9 (mouth), C32.0 (glottis), and C53.8 (cervix uteri). Conclusion Among various advanced and molecular techniques available for the detection of CTCs, the cell block technique proves to be one of the effective methods, especially in resource-limited settings as these can further be utilized for additional diagnostic techniques similar to the ones employed for routine paraffin blocks.
Collapse
Affiliation(s)
- Jahnvi Vijay
- Department of Pathology, ESIC Medical College and PGIMSR, Rajajinagar, Bengaluru, Karnataka, India
| | - B Deepak Kumar
- Department of Pathology, ESIC Medical College and PGIMSR, Rajajinagar, Bengaluru, Karnataka, India
| | - V Srinivasa Murthy
- Department of Pathology, ESIC Medical College and PGIMSR, Rajajinagar, Bengaluru, Karnataka, India
| |
Collapse
|
7
|
Liu Y, Liu R, Liu H, Lyu T, Chen K, Jin K, Tian Y. Breast tumor-on-chip: from the tumor microenvironment to medical applications. Analyst 2023; 148:5822-5842. [PMID: 37850340 DOI: 10.1039/d3an01295f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
With the development of microfluidic technology, tumor-on-chip models have gradually become a new tool for the study of breast cancer because they can simulate more key factors of the tumor microenvironment compared with traditional models in vitro. Here, we review up-to-date advancements in breast tumor-on-chip models. We summarize and analyze the breast tumor microenvironment (TME), preclinical breast cancer models for TME simulation, fabrication methods of tumor-on-chip models, tumor-on-chip models for TME reconstruction, and applications of breast tumor-on-chip models and provide a perspective on breast tumor-on-chip models. This review will contribute to the construction and design of microenvironments for breast tumor-on-chip models, even the development of the pharmaceutical field, personalized/precision therapy, and clinical medicine.
Collapse
Affiliation(s)
- Yiying Liu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China.
- Foshan Graduate School of Innovation, Northeastern University, Foshan, 528300, China
| | - Ruonan Liu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China.
| | - He Liu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China.
| | - Tong Lyu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China.
| | - Kun Chen
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China.
| | - Kaiming Jin
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China.
| | - Ye Tian
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China.
- Foshan Graduate School of Innovation, Northeastern University, Foshan, 528300, China
| |
Collapse
|
8
|
Mao Y, Zhang M, Wang L, Lu Y, Hu X, Chen Z. Role of microRNA carried by small extracellular vesicles in urological tumors. Front Cell Dev Biol 2023; 11:1192937. [PMID: 37333986 PMCID: PMC10272383 DOI: 10.3389/fcell.2023.1192937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Small extracellular vesicles (sEVs) are minute vesicles secreted by various cells that are capable of transporting cargo, including microRNAs, between donor and recipient cells. MicroRNAs (miRNAs), small non-coding RNAs approximately 22 nucleotides in length, have been implicated in a wide array of biological processes, including those involved in tumorigenesis. Emerging evidence highlights the pivotal role of miRNAs encapsulated in sEVs in both the diagnosis and treatment of urological tumors, with potential implications in epithelial-mesenchymal transition, proliferation, metastasis, angiogenesis, tumor microenvironment and drug resistance. This review provides a brief overview of the biogenesis and functional mechanisms of sEVs and miRNAs, followed by a summarization of recent empirical findings on miRNAs encapsulated in sEVs from three archetypal urologic malignancies: prostate cancer, clear cell renal cell carcinoma, and bladder cancer. We conclude by underscoring the potential of sEV-enclosed miRNAs as both biomarkers and therapeutic targets, with a particular focus on their detection and analysis in biological fluids such as urine, plasma, and serum.
Collapse
Affiliation(s)
- Yiping Mao
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Mengting Zhang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Lanfeng Wang
- Department of Nephrology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yukang Lu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xinyi Hu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhiping Chen
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
9
|
Ho HL, Wang FY, Chiang CL, Tsai CM, Chiu CH, Chou TY. Dynamic Assessment of Tissue and Plasma EGFR-Activating and T790M Mutations with Droplet Digital PCR Assays for Monitoring Response and Resistance in Non-Small Cell Lung Cancers Treated with EGFR-TKIs. Int J Mol Sci 2022; 23:ijms231911353. [PMID: 36232650 PMCID: PMC9569685 DOI: 10.3390/ijms231911353] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Assessing tumor EGFR mutation status is necessary for the proper management of patients with advanced non–small cell lung cancer (NSCLC). We evaluated the impact of dynamic analyses of the plasma and tissue EGFR mutation using ultra-sensitive droplet digital PCR (ddPCR) assays to manage NSCLC patients treated with EGFR tyrosine kinase inhibitors (EGFR-TKIs). Paired tumor tissues and plasma samples from 137 EGFR-mutated lung adenocarcinoma patients prior to the first-line EGFR-TKIs treatment (at baseline) and at disease progression were subjected to EGFR mutation analysis using ddPCR, together with the analyses of the clinicopathological characteristics and treatment outcomes. Patients with EGFR-activating mutations detected in baseline plasma were associated with bone metastasis (p = 0.002) and had shorter progression-free survival (12.9 vs. 17.7 months, p = 0.02) and overall survival (24.0 vs. 39.4 months, p = 0.02) compared to those without. Pre-treatment EGFR T790M mutation found in baseline tumor tissues of 28 patients (20.4%; 28/137) was significantly associated with brain metastasis (p = 0.005) and a shorter brain metastasis-free survival (p = 0.001). The presence of EGFR T790M mutations in baseline tumor tissues did not correlate with the emergence of acquired EGFR T790M mutations detected at progression. At disease progression, acquired EGFR T790M mutations were detected in 26.6% (21/79) of the plasma samples and 42.9% (15/35) of the rebiopsy tissues, with a concordance rate of 71.4% (25/35). The dynamic monitoring of tissue and plasma EGFR mutation status at baseline and progression using ddPCR has a clinical impact on the evaluation of EGFR-TKIs treatment efficacy and patient outcomes, as well as the emergence of resistance in NSCLC.
Collapse
Affiliation(s)
- Hsiang-Ling Ho
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Correspondence: (H.-L.H.); (T.-Y.C.)
| | - Fang-Yu Wang
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Chi-Lu Chiang
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Chun-Ming Tsai
- Department of Oncology, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Chao-Hua Chiu
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Taipei Cancer Center and Taipei Medical University Hospital, Taipei Medical University, Taipei 110301, Taiwan
| | - Teh-Ying Chou
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Correspondence: (H.-L.H.); (T.-Y.C.)
| |
Collapse
|
10
|
Pan S, Li S, Zhan Y, Chen X, Sun M, Liu X, Wu B, Li Z, Liu B. Immune status for monitoring and treatment of bladder cancer. Front Immunol 2022; 13:963877. [PMID: 36159866 PMCID: PMC9492838 DOI: 10.3389/fimmu.2022.963877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
The high recurrence rate of non-muscle invasive bladder cancer (BC) and poor prognosis of advanced BC are therapeutic challenges that need to be solved. Bacillus Calmette-Guerin (BCG) perfusion was the pioneer immunotherapy for early BC, and the discovery of immune checkpoint inhibitors has created a new chapter in the treatment of advanced BC. The benefit of immunotherapy is highly anticipated, but its effectiveness still needs to be improved. In this review, we collated and analysed the currently available information and explored the mechaisms by which the internal immune imbalance of BC leads to tumour progression. The relationship between immunity and progression and the prognosis of BC has been explored through tests using body fluids such as blood and urine. These analytical tests have attempted to identify specific immuyne cells and cytokines to predict treatment outcomes and recurrence. The diversity and proportion of immune and matrix cells in BC determine the heterogeneity and immune status of tumours. The role and classification of immune cells have also been redefined, e.g., CD4 cells having recognised cytotoxicity in BC. Type 2 immunity, including that mediated by M2 macrophages, Th2 cells, and interleukin (IL)-13, plays an important role in the recurrence and progression of BC. Pathological fibrosis, activated by type 2 immunity and cancer cells, enhances the rate of cancer progression and irreversibility. Elucidating the immune status of BC and clarifying the mechanisms of action of different cells in the tumour microenvironment is the research direction to be explored in the future.
Collapse
Affiliation(s)
- Shen Pan
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shijie Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yunhong Zhan
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaonan Chen
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ming Sun
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xuefeng Liu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bin Wu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhenhua Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bitian Liu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Bitian Liu, ;
| |
Collapse
|
11
|
Zhang Y, Fan J, Zhao J, Xu Z. A biochip based on shell-isolated Au@MnO2 nanoparticle array-enhanced fluorescence effect for simple and sensitive exosome assay. Biosens Bioelectron 2022; 216:114373. [DOI: 10.1016/j.bios.2022.114373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/02/2022] [Accepted: 05/11/2022] [Indexed: 11/24/2022]
|
12
|
Mizoshita N, Yamada Y, Murase M, Goto Y, Inagaki S. Nanoporous Substrates with Molecular-Level Perfluoroalkyl/Alkylamide Surface for Laser Desorption/Ionization Mass Spectrometry of Small Proteins. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3716-3725. [PMID: 34978407 DOI: 10.1021/acsami.1c19565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The rapid detection of biomolecules greatly contributes to health management, clinical diagnosis, and prevention of diseases. Mass spectrometry (MS) is effective for detecting and analyzing various molecules at high throughput. However, there are problems with the MS analysis of biological samples, including complicated separation operations and essential pretreatments. In this study, a nanostructured organosilica substrate for laser desorption/ionization mass spectrometry (LDI-MS) is designed and synthesized to detect peptides and small proteins efficiently and rapidly. The surface functionality of the substrate is tuned by perfluoroalkyl/alkylamide groups mixed at a molecular level. This contributes to both lowering the surface free energy and introducing weak anchoring sites for peptides and proteins. Analyte molecules applied onto the substrate are homogeneously distributed and readily desorbed by the laser irradiation. The organosilica substrate enables the efficient LDI of various compounds, including peptides, small proteins, phospholipids, and drugs. An amyloid β protein fragment, which is known as a biomarker for Alzheimer's disease, is detectable at 0.05 fmol μL-1. The detection of the amyloid β at 0.2 fmol μL-1 is also confirmed in the presence of blood components. Nanostructured organosilica substrates incorporating a molecular-level surface design have the potential to enable easy detection of a wide range of biomolecules.
Collapse
Affiliation(s)
| | - Yuri Yamada
- Toyota Central R&D Laboratories., Inc., Nagakute, Aichi 480-1192, Japan
| | - Masakazu Murase
- Toyota Central R&D Laboratories., Inc., Nagakute, Aichi 480-1192, Japan
| | - Yasutomo Goto
- Toyota Central R&D Laboratories., Inc., Nagakute, Aichi 480-1192, Japan
| | - Shinji Inagaki
- Toyota Central R&D Laboratories., Inc., Nagakute, Aichi 480-1192, Japan
| |
Collapse
|
13
|
Marvaso G, Volpe S, Pepa M, Zaffaroni M, Corrao G, Augugliaro M, Nolè F, De Cobelli O, Jereczek-Fossa BA. Recent Advances in the Management of Hormone-Sensitive Oligometastatic Prostate Cancer. Cancer Manag Res 2022; 14:89-101. [PMID: 35023972 PMCID: PMC8747627 DOI: 10.2147/cmar.s321136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022] Open
Abstract
After primary treatment for prostate cancer with either radical prostatectomy or radiotherapy, a significant proportion of patients are at risk of developing metastases. In recent years, a deeper understanding of the underlying biology together with improved imaging techniques and the advent of new therapeutic options including metastases-directed therapies and new drugs have revolutionized the management of low-burden metastatic disease, also known as oligometastatic state. The purpose of this narrative review is to report the recent developments in the management of hormone-sensitive oligometastatic prostate cancer patients.
Collapse
Affiliation(s)
- Giulia Marvaso
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Stefania Volpe
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Matteo Pepa
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Mattia Zaffaroni
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Giulia Corrao
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Matteo Augugliaro
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Franco Nolè
- Medical Oncology Division of Urogenital & Head & Neck Tumors, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Ottavio De Cobelli
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Department of Urology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Barbara Alicja Jereczek-Fossa
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
14
|
Janjua KA, Shahzad R, Shehzad A. Development of Novel Cancer Biomarkers for Diagnosis and Prognosis. CANCER BIOMARKERS IN DIAGNOSIS AND THERAPEUTICS 2022:277-343. [DOI: 10.1007/978-981-16-5759-7_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Pfeiferova L, Safarikova M, Ulrych J, Krska Z, Frankova V, Zima T, Kalousova M. Circulating Cell-Free DNA Extraction from Liquid Biopsy for Cancer Research. Folia Biol (Praha) 2022; 68:153-157. [PMID: 36871171 DOI: 10.14712/fb2022068040153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
As the number of cancer patients globally increases, a need for reliable biomarkers including circulating tumour DNA from liquid biopsy for diagnosis, prognosis and monitoring of the disease is rising. Currently, mainly tissue samples from biopsy are used, but there are certain limitations: firstly, it is an invasive technique, and secondly, in some cases it is almost impossible to obtain an acceptable tissue sample. This could be changed by using circulating cell-free DNA from liquid biopsy, which also gives the possibility of repeated examination. Here, we focus on the options of isolating circulating cell-free DNA from plasma samples using two isolation techniques: precision manual QIAamp Circulating Nucleic Acid Kit and automatic MagNA Pure Compact (MPC) using Nucleic Acid Isolation Kit I. Manual extraction gave significantly better yields of circulating tumour DNA (P < 0.05). This DNA also had less contaminants (organic compounds or proteins). DNA obtained by both tested methods of isolation is suitable for subsequent molecular genetic methods.
Collapse
Affiliation(s)
- L Pfeiferova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - M Safarikova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - J Ulrych
- 1st Department of Surgery - Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Z Krska
- 1st Department of Surgery - Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - V Frankova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - T Zima
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - M Kalousova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| |
Collapse
|
16
|
Gupta S, Dey P. Diagnostic challenges in the gray-zone lesions of fine-needle aspiration cytology. Cytojournal 2021; 18:23. [PMID: 34754322 PMCID: PMC8571265 DOI: 10.25259/cytojournal_66_2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 05/31/2021] [Indexed: 11/10/2022] Open
Abstract
Fine-needle aspiration cytology (FNAC) is an excellent technique for rapid diagnosis due to its speed, accuracy, and cost-effectiveness. However, there are many gray-zone areas in cytology that needs attention. These lesions in the aspiration cytology can be overcome by applying the selective use of the series of tests. This review discusses the diagnostic challenges in the gray-zone areas in FNAC. It emphasizes the use of selective ancillary techniques to solve the problems in this area.
Collapse
Affiliation(s)
- Shruti Gupta
- Department of Cytology and Gynaecological Pathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Pranab Dey
- Department of Cytology and Gynaecological Pathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
17
|
Uguen A. Digital Pathology Slides-based Measurement of Tumor Cells and Lymphocytes Within Cytology Samples Supports the Relevance of the Separation by Size of Nonhematological Tumor and Hematological Nontumor Cells in Liquid Biopsies. Appl Immunohistochem Mol Morphol 2021; 29:494-498. [PMID: 33710122 DOI: 10.1097/pai.0000000000000931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/12/2021] [Indexed: 11/25/2022]
Abstract
Filtration by size is one method used to study circulating tumor cells in blood samples. Filtration-migration ability is highly dependent of the size of cell nucleus. This implies to search for the appropriate nucleus size able to separate between hematological nucleated and nonhematological nucleated blood cells to maximize circulating tumor cell isolation. Digitalized cytology slides [May-Grünwald Giemsa (MGG) stained and immunocytochemistry (ICC) slides] from various cancer metastases served for manual measurements of nuclei about tumor cells and adjacent lymphocytes to determine the diameters the more able to separate between tumor cells and lymphocytes. Among 2022 cells analyzed (1067 tumor cells and 955 lymphocytes) on MGG stained slides, the mean diameter of tumor cells nuclei was 14.77 µm whereas the mean diameter of lymphocytic nuclei was 6.47 µm (P<0.001). In ICC slides, about 6583 cells (4753 tumor cells and 1830 lymphocytes), the mean diameter of tumor cells nuclei was 9.28 µm whereas the mean diameter of lymphocytic nuclei was 4.95 µm (P<0.001). Areas under the receiver operating characteristic curves analyses concluded that diameters of 9.37 µm and 6 µm separated the best between tumor cells and lymphocytes in MGG and ICC slides, respectively. Measuring manually the diameters of the smallest tumor cells in ICC slides, we established more than 99% of tumor cells had diameters superior to 8 µm. The sizes differences between tumor cells and lymphocytes support the relevance of the filtration by size to isolate blood circulating nonhematological tumor cells. The existence of small tumor cells with sizes overlapping with those of lymphocytes is worth to optimize the threshold to separate between tumor cells and hematological cells.
Collapse
Affiliation(s)
- Arnaud Uguen
- Department of Pathology, CHRU Brest
- Inserm U1227 LBAI, Brest, France
| |
Collapse
|
18
|
Corrao G, Zaffaroni M, Bergamaschi L, Augugliaro M, Volpe S, Pepa M, Bonizzi G, Pece S, Amodio N, Mistretta FA, Luzzago S, Musi G, Alessi S, La Fauci FM, Tordonato C, Tosoni D, Cattani F, Gandini S, Petralia G, Pravettoni G, De Cobelli O, Viale G, Orecchia R, Marvaso G, Jereczek-Fossa BA. Exploring miRNA Signature and Other Potential Biomarkers for Oligometastatic Prostate Cancer Characterization: The Biological Challenge behind Clinical Practice. A Narrative Review. Cancers (Basel) 2021; 13:cancers13133278. [PMID: 34208918 PMCID: PMC8267686 DOI: 10.3390/cancers13133278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/16/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The oligometastatic prostate cancer state is defined as the presence of a number of lesions ≤ 5 and has been significantly correlated with better survival if compared to a number of metastases > 5. In particular, patients in an oligometastatic setting could benefit from a metastates directed therapy, which could control the disease delaying the start of systemic therapies. For this reason, the selection of true-oligometastatic patients who could benefit from such approach is particularly important in this setting. The aim of the present narrative review is to report the current state of the art on the liquid biopsy-derived analytes and their reliability as biomarkers in the clinics for the identification of true-oligometastatic patients. This kind of molecular profiling could refine current developments in the era of precision oncology allowing patients’ stratification and leading to more refined therapeutic strategies. Abstract In recent years, a growing interest has been directed towards oligometastatic prostate cancer (OMPC), as patients with three to five metastatic lesions have shown a significantly better survival as compared with those harboring a higher number of lesions. The efficacy of local ablative treatments directed on metastatic lesions (metastases-directed treatments) was extensively investigated, with the aim of preventing further disease progression and delaying the start of systemic androgen deprivation therapies. Definitive diagnosis of prostate cancer is traditionally based on histopathological analysis. Nevertheless, a bioptic sample—static in nature—inevitably fails to reflect the dynamics of the tumor and its biological response due to the dynamic selective pressure of cancer therapies, which can profoundly influence spatio-temporal heterogeneity. Furthermore, even with new imaging technologies allowing an increasingly early detection, the diagnosis of oligometastasis is currently based exclusively on radiological investigations. Given these premises, the development of minimally-invasive liquid biopsies was recently promoted and implemented as predictive biomarkers both for clinical decision-making at pre-treatment (baseline assessment) and for monitoring treatment response during the clinical course of the disease. Through liquid biopsy, different biomarkers, commonly extracted from blood, urine or saliva, can be characterized and implemented in clinical routine to select targeted therapies and assess treatment response. Moreover, this approach has the potential to act as a tissue substitute and to accelerate the identification of novel and consistent predictive analytes cost-efficiently. However, the utility of tumor profiling is currently limited in OMPC due to the lack of clinically validated predictive biomarkers. In this scenario, different ongoing trials, such as the RADIOSA trial, might provide additional insights into the biology of the oligometastatic state and on the identification of novel biomarkers for the outlining of true oligometastatic patients, paving the way towards a wider ideal approach of personalized medicine. The aim of the present narrative review is to report the current state of the art on the solidity of liquid biopsy-related analytes such as CTCs, cfDNA, miRNA and epi-miRNA, and to provide a benchmark for their further clinical implementation. Arguably, this kind of molecular profiling could refine current developments in the era of precision oncology and lead to more refined therapeutic strategies in this subset of oligometastatic patients.
Collapse
Affiliation(s)
- Giulia Corrao
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (G.C.); (M.Z.); (L.B.); (S.V.); (M.P.); (G.M.); (B.A.J.-F.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (S.P.); (G.M.); (C.T.); (G.P.); (G.P.); (O.D.C.); (G.V.)
| | - Mattia Zaffaroni
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (G.C.); (M.Z.); (L.B.); (S.V.); (M.P.); (G.M.); (B.A.J.-F.)
| | - Luca Bergamaschi
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (G.C.); (M.Z.); (L.B.); (S.V.); (M.P.); (G.M.); (B.A.J.-F.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (S.P.); (G.M.); (C.T.); (G.P.); (G.P.); (O.D.C.); (G.V.)
| | - Matteo Augugliaro
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (G.C.); (M.Z.); (L.B.); (S.V.); (M.P.); (G.M.); (B.A.J.-F.)
- Correspondence:
| | - Stefania Volpe
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (G.C.); (M.Z.); (L.B.); (S.V.); (M.P.); (G.M.); (B.A.J.-F.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (S.P.); (G.M.); (C.T.); (G.P.); (G.P.); (O.D.C.); (G.V.)
| | - Matteo Pepa
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (G.C.); (M.Z.); (L.B.); (S.V.); (M.P.); (G.M.); (B.A.J.-F.)
| | - Giuseppina Bonizzi
- Department of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Salvatore Pece
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (S.P.); (G.M.); (C.T.); (G.P.); (G.P.); (O.D.C.); (G.V.)
- Novel Diagnostics Program, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy;
| | | | - Stefano Luzzago
- Department of Urology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (F.A.M.); (S.L.)
| | - Gennaro Musi
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (S.P.); (G.M.); (C.T.); (G.P.); (G.P.); (O.D.C.); (G.V.)
- Department of Urology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (F.A.M.); (S.L.)
| | - Sarah Alessi
- Division of Radiology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Francesco Maria La Fauci
- Unit of Medical Physics IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (F.M.L.F.); (F.C.)
| | - Chiara Tordonato
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (S.P.); (G.M.); (C.T.); (G.P.); (G.P.); (O.D.C.); (G.V.)
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Daniela Tosoni
- Novel Diagnostics Program, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Federica Cattani
- Unit of Medical Physics IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (F.M.L.F.); (F.C.)
| | - Sara Gandini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Giuseppe Petralia
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (S.P.); (G.M.); (C.T.); (G.P.); (G.P.); (O.D.C.); (G.V.)
- Division of Radiology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Gabriella Pravettoni
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (S.P.); (G.M.); (C.T.); (G.P.); (G.P.); (O.D.C.); (G.V.)
- Applied Research Division for Cognitive and Psychological Science, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Ottavio De Cobelli
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (S.P.); (G.M.); (C.T.); (G.P.); (G.P.); (O.D.C.); (G.V.)
- Department of Urology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (F.A.M.); (S.L.)
| | - Giuseppe Viale
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (S.P.); (G.M.); (C.T.); (G.P.); (G.P.); (O.D.C.); (G.V.)
- Department of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Roberto Orecchia
- Scientific Direction, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Giulia Marvaso
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (G.C.); (M.Z.); (L.B.); (S.V.); (M.P.); (G.M.); (B.A.J.-F.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (S.P.); (G.M.); (C.T.); (G.P.); (G.P.); (O.D.C.); (G.V.)
| | - Barbara Alicja Jereczek-Fossa
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (G.C.); (M.Z.); (L.B.); (S.V.); (M.P.); (G.M.); (B.A.J.-F.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (S.P.); (G.M.); (C.T.); (G.P.); (G.P.); (O.D.C.); (G.V.)
| |
Collapse
|
19
|
Chan KM, Gleadle J, Li J, Michl TD, Vasilev K, MacGregor M. Improving hexaminolevulinate enabled cancer cell detection in liquid biopsy immunosensors. Sci Rep 2021; 11:7283. [PMID: 33790357 PMCID: PMC8012578 DOI: 10.1038/s41598-021-86649-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/16/2021] [Indexed: 12/17/2022] Open
Abstract
Hexaminolevulinate (HAL) induced Protoporphyrin IX (PpIX) fluorescence is commonly used to differentiate cancer cells from normal cells in vivo, as for instance in blue light cystoscopy for bladder cancer diagnosis. A detailed approach is here provided to use this diagnostic principle ex vivo in an immunosensor device, towards enabling non-invasive cancer diagnostic from body fluids, such as urine. Several factors susceptible to affect the applicability of HAL-assisted diagnosis in body fluids were tested. These included the cell viability and its impact on PpIX fluorescence, the storage condition and shelf life of HAL premix reagent, light exposure (360–450 nm wavelengths) and its corresponding effect on both intensity and bleaching of the PpIX fluorescence as a function of the microscopy imaging conditions. There was no significant decrease in the viability of bladder cancer cells after 6 h at 4 °C (student’s t-test: p > 0.05). The cellular PpIX fluorescence decreased in a time-dependent manner when cancer cells were kept at 4 °C for extended period of time, though this didn’t significantly reduce the fluorescence intensity contrast between cancer and non-cancer cells kept in the same condition for 6 h. HAL premix reagent kept in long term storage at 4 °C induced stronger PpIX fluorescence than reagent kept in the − 20 °C freezer. The PpIX fluorescence was negatively affected by repeated light exposure but increased with illumination intensity and exposure time. Though this applied to both healthy and cancer cell lines, and therefore did not statistically improved the differentiation between cell types. This study revealed important experimental settings that need to be carefully considered to benefit from the analytical potential of HAL induced fluorescence when used in technologies for the diagnosis of cancer from body fluids.
Collapse
Affiliation(s)
- Kit Man Chan
- Department of Engineering, UniSA STEM, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Jonathan Gleadle
- Department of Renal Medicine, Flinders Medical Centre, Bedford Park, SA, 5042, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Jordan Li
- Department of Renal Medicine, Flinders Medical Centre, Bedford Park, SA, 5042, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Thomas Danny Michl
- Department of Engineering, UniSA STEM, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Krasimir Vasilev
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Melanie MacGregor
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes, SA, 5095, Australia.
| |
Collapse
|
20
|
Hirschfeld M, Rücker G, Weiß D, Berner K, Ritter A, Jäger M, Erbes T. Urinary Exosomal MicroRNAs as Potential Non-invasive Biomarkers in Breast Cancer Detection. Mol Diagn Ther 2021; 24:215-232. [PMID: 32112368 DOI: 10.1007/s40291-020-00453-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Breast cancer (BC) is the most frequent malignant disease in women worldwide and is therefore challenging for the healthcare system. Early BC detection remains a leading factor that improves overall outcome and disease management. Aside from established screening procedures, there is a constant demand for additional BC detection methods. Routine BC screening via non-invasive liquid biopsy biomarkers is one auspicious approach to either complete or even replace the current state-of-the-art diagnostics. The study explores the diagnostic potential of urinary exosomal microRNAs with specific BC biomarker characteristics to initiate the potential prospective application of non-invasive BC screening as routine practice. METHODS Based on a case-control study (69 BC vs. 40 healthy controls), expression level quantification and subsequent biostatistical computation of 13 urine-derived microRNAs were performed to evaluate their diagnostic relevance in BC. RESULTS Multilateral statistical assessment determined and repeatedly confirmed a specific panel of four urinary microRNA types (miR-424, miR-423, miR-660, and let7-i) as a highly specific combinatory biomarker tool discriminating BC patients from healthy controls, with 98.6% sensitivity and 100% specificity. DISCUSSION Urine-based BC diagnosis may be achieved through the analysis of distinct microRNA panels with proven biomarker abilities. Subject to further validation, the implementation of urinary BC detection in routine screening offers a promising non-invasive alternative in women's healthcare.
Collapse
Affiliation(s)
- Marc Hirschfeld
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute of Veterinary Medicine, Georg-August-University Goettingen, Goettingen, Germany
| | - Gerta Rücker
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute of Medical Biometry and Statistics, Medical Center, University of Freiburg, Freiburg, Germany
| | - Daniela Weiß
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kai Berner
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andrea Ritter
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Markus Jäger
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thalia Erbes
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany. .,Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
21
|
Zhang Y, Jiao J, Wei Y, Wang D, Yang C, Xu Z. Plasmonic Colorimetric Biosensor for Sensitive Exosome Detection via Enzyme-Induced Etching of Gold Nanobipyramid@MnO2 Nanosheet Nanostructures. Anal Chem 2020; 92:15244-15252. [DOI: 10.1021/acs.analchem.0c04136] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yingzhi Zhang
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Junye Jiao
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Yunyun Wei
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Danni Wang
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Chunguang Yang
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Zhangrun Xu
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, P. R. China
| |
Collapse
|
22
|
Chu T, Shaw P, McClain L, Simhan H, Peters D. High-resolution epigenomic liquid biopsy for noninvasive phenotyping in pregnancy. Prenat Diagn 2020; 41:61-69. [PMID: 33002217 DOI: 10.1002/pd.5833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 11/10/2022]
Abstract
OBJECTIVE We explored the potential of genome-wide epigenomic liquid biopsy for the comprehensive analysis of cell-free DNA (cfDNA) methylation signatures in maternal plasma in early gestation. METHOD We used solution phase hybridization for targeted region capture of bisulfite-converted DNA obtained from plasma of pregnant women in early gestation and nonpregnant female controls. RESULTS Targeted sequencing of ~80.5 Mb of the plasma methylome generated an average read depth across all 17 plasma samples of ~42x. We used these data to explore the pregnancy-specific characteristics of cfDNA methylation in plasma and found that pregnancy resulted in clearly detectable global alterations in DNA methylation patterns that were influenced by genomic location. We analyzed similar, previously published, data from first-trimester maternal leukocyte populations and gestational age-matched chorionic villus (CV) and confirmed that tissue-specific DNA methylation signatures in these samples had a significant influence on global and gene-specific methylation in the plasma of pregnant women. CONCLUSION We describe an approach for targeted epigenomic liquid biopsy in pregnancy and discuss our findings in the context of noninvasive prenatal testing with respect to phenotypic pregnancy monitoring and the early detection of complex gestational phenotypes such as preeclampsia and preterm birth.
Collapse
Affiliation(s)
- Tianjiao Chu
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
| | - Patricia Shaw
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
| | - Lora McClain
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hyagriv Simhan
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
| | - David Peters
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA.,Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
23
|
Negahdaripour M, Owji H, Eskandari S, Zamani M, Vakili B, Nezafat N. Small extracellular vesicles (sEVs): discovery, functions, applications, detection methods and various engineered forms. Expert Opin Biol Ther 2020; 21:371-394. [PMID: 32945228 DOI: 10.1080/14712598.2021.1825677] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Extracellular vesicles (EVs) are cell-created delivery systems of proteins, lipids, or nucleic acids, and means of extracellular communication. Though sEVs were initially considered to be the waste disposal mechanism, today they are at the forefront of research with different biological and pathological functions. Such EVs play a key role in the immunoregulation, CNS development, nervous system physiology, mammary gland development, induction of immunosuppression in pregnancy, the developmental signaling pathways, regeneration of different tissues, inflammation, angiogenesis, coagulation, apoptosis, stem cell differentiation, and extracellular matrix turnover. AREAS COVERED SEVs contribute to the pathogenesis of different cancers and the progression of various neurodegenerative diseases, infections, as well as metabolic and cardiovascular diseases. Expert Opinion: There is no exact classification for EVs; however, according to size, density, morphological features, content, and biogenesis, they can be categorized into three major classes: microvesicles (ectosomes or microparticles), apoptotic bodies, and sEVs. SEVs, as an important class of EVs, have a crucial role in distinct biological functions. Moreover, shedding light on different structural and molecular aspects of sEV has led to their application in various therapeutic, diagnostic, and drug delivery fields. In this review, we have endeavored to elaborate on different aspects of EVs, especially sEVs.
Collapse
Affiliation(s)
- Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Hajar Owji
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Sedigheh Eskandari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Mozhdeh Zamani
- Colorectal Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahareh Vakili
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Navid Nezafat
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| |
Collapse
|
24
|
Wang J, Ni J, Beretov J, Thompson J, Graham P, Li Y. Exosomal microRNAs as liquid biopsy biomarkers in prostate cancer. Crit Rev Oncol Hematol 2019; 145:102860. [PMID: 31874447 DOI: 10.1016/j.critrevonc.2019.102860] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 12/21/2022] Open
Abstract
Prostate cancer (PCa) is the most commonly diagnosed solid-organ cancer in males. The PSA testing may cause overdiagnosis and overtreatment for PCa patients. There is an urgent need for new biomarkers with greater discriminative precision for diagnosis and risk-stratification, to select for prostate biopsy and treatment of PCa. Liquid biopsy is a promising field with the potential to provide comprehensive information on the genetic landscape at diagnosis and to track genomic evolution over time in order to tailor the therapeutic choices at all stages of PCa. Exosomes, containing RNAs, DNAs and proteins, have been shown to be involved in tumour progression and a rich potential source of tumour biomarkers, especially for profiling analysis of their miRNAs content. In this review, we summarise the exosomal miRNAs in PCa diagnosis, prognosis and management, and further discuss their possible technical challenges associated with isolating PCa-specific exosomes.
Collapse
Affiliation(s)
- Jingpu Wang
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia
| | - Jie Ni
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia
| | - Julia Beretov
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia; Anatomical Pathology, NSW Health Pathology, St. George Hospital, Kogarah, NSW, Australia
| | - James Thompson
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia; Department of Urology, St. George Hospital, Kogarah, NSW, Australia; Prostate Clinical Research Group, Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
| | - Peter Graham
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia
| | - Yong Li
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia; School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
25
|
Abstract
Next generation sequencing (NGS) represents several powerful platforms that have revolutionized RNA and DNA analysis. The parallel sequencing of millions of DNA molecules can provide mechanistic insights into toxicology and provide new avenues for biomarker discovery with growing relevance for risk assessment. The evolution of NGS technologies has improved over the last decade with increased sensitivity and accuracy to foster new biomarker assays from tissue, blood and other biofluids. NGS sequencing technologies can identify transcriptional changes and genomic targets with base pair precision in response to chemical exposure. Further, there are several exciting movements within the toxicology community that incorporate NGS platforms into new strategies for more rapid toxicological characterizations. These include the Tox21 in vitro high throughput transcriptomic screening program, development of organotypic spheroids, alternative animal models, mining archival tissues, liquid biopsy and epigenomics. This review will describe NGS-based technologies, demonstrate how they can be used as tools for target discovery in tissue and blood, and suggest how they might be applied for risk assessment.
Collapse
Affiliation(s)
- B Alex Merrick
- Molecular and Genomic Toxicology Group, Biomolecular Screening Branch, Division National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, Ph: 919-541-1531,
| |
Collapse
|
26
|
Ghorbanpour E, Lillicrap D. Innovative Molecular Testing Strategies for Adjunctive Investigations in Hemostasis and Thrombosis. Semin Thromb Hemost 2019; 45:751-756. [PMID: 31404933 PMCID: PMC7594468 DOI: 10.1055/s-0039-1692977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Clinicians and scientists in the fields of hemostasis and thrombosis have been among those first to integrate new molecular strategies for the purpose of enhancing disease diagnosis and treatment. The molecular diagnosis and introduction of gene therapy approaches for hemophilia are obvious examples of this tendency. In this review, the authors summarize information concerning three molecular technologies that have reached various stages of translational potential for their incorporation into the clinical management of disorders of hemostasis. Chromatin conformation assays are now being used to capture structural knowledge of long-range genomic interactions that can alter patterns of gene expression and contribute to quantitative trait pathogenesis. Liquid biopsies in various forms are providing opportunities for early cancer detection, and in the context of tumor-educated platelets, as described here, can also characterize tumor type and the extent of tumor progression. This technology is already being trialed in patients with unprovoked venous thrombosis to assess the potential for occult malignancies. Lastly, advances in single cell transcriptome analysis, provide opportunities to definitively determine molecular events in rare cells, such as antigen-specific regulatory T cells, within the context of heterogeneous cell populations.
Collapse
Affiliation(s)
- Elham Ghorbanpour
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - David Lillicrap
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|