1
|
Hervey SD, vonHoldt BM, Romanski MC, Wheeldon TJ, Patterson BR, Brzeski KE. Development of a Noninvasive Genotyping-In-Thousands (GTseq) Panel for Long-Term Conservation of Western Great Lakes Gray Wolves ( Canis lupus). Ecol Evol 2025; 15:e71240. [PMID: 40260146 PMCID: PMC12011451 DOI: 10.1002/ece3.71240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 03/26/2025] [Indexed: 04/23/2025] Open
Abstract
The application of noninvasive genetic methods toward the field of conservation has increased our understanding of many wildlife populations that are difficult to sample, allowing for better management. In molecular ecology, the use of noninvasive sampling became widely feasible with the advent of microsatellites, a highly polymorphic, short-length marker that could be genotyped from low-quality DNA sources. Despite decades of use, many microsatellite panels continue to suffer from high genotyping error rates, allelic dropout, and limited reproducibility across laboratories. To address these issues, single nucleotide polymorphisms (SNPs) offer advantages such as lower genotyping error rates, avoidance of allelic dropout due to consistent allele length, and automated calling through bioinformatic pipelines, reducing human subjectivity and error. Given the advantages SNPs provide relative to microsatellites as a molecular marker, the use of SNP panels and specifically, the method of genotyping-in-thousands by sequencing (GTseq) has gained popularity. Here, we developed a GTseq panel for western Great Lakes canids comprised of 196 loci, capable of species identification, accurately inferring sex (97.2%), identifying unique individuals (probability of identity = 6.71e-41), assigning relationships (false positive rate = 9.34e-14), and assigning genotypes with low error (0.39%). In an attempt to improve genotyping success with low-quality samples, we found that while increasing the number of PCR cycles yielded a higher percentage of genotyped loci, it also increased on-target reads in negative PCR controls. We suggest approaching this manipulation with caution and emphasize the importance of including and reporting negative PCR controls. Further, quantitative PCR was a powerful method to estimate host-specific DNA concentrations, enabling conservative sample selection for library preparation with respect to GTseq affordability.
Collapse
Affiliation(s)
- Samuel D. Hervey
- College of Forest Resources and Environmental SciencesMichigan Technological UniversityHoughtonMichiganUSA
| | - Bridgett M. vonHoldt
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
| | - Mark C. Romanski
- Isle Royale National ParkNational Park ServiceHoughtonMichiganUSA
| | - Tyler J. Wheeldon
- Wildlife Research and Monitoring SectionOntario Ministry of Natural ResourcesPeterboroughOntarioUSA
| | - Brent R. Patterson
- Wildlife Research and Monitoring SectionOntario Ministry of Natural ResourcesPeterboroughOntarioUSA
| | - Kristin E. Brzeski
- College of Forest Resources and Environmental SciencesMichigan Technological UniversityHoughtonMichiganUSA
| |
Collapse
|
2
|
Wang X, Shang Y, Xing Y, Chen Y, Wu X, Zhang H. Captive environments reshape the compositions of carbohydrate active enzymes and virulence factors in wolf gut microbiome. BMC Microbiol 2025; 25:142. [PMID: 40087549 PMCID: PMC11909886 DOI: 10.1186/s12866-025-03863-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 03/04/2025] [Indexed: 03/17/2025] Open
Abstract
Species in the family Canidae occupy different spatial ecological niches, and some (e.g., wolf) can be kept in zoos. The gut microbiome may differ among various wild and captive canids. Therefore, we compared the gut microbiomes of wild canids (wolf, red fox, and corsac fox) in the Hulun Lake area, captive wolves, and domestic dogs in different regions using metagenomic data. A random forest analysis revealed significant enrichment for bacterial species producing short-chain fatty acids and the thermogenesis pathway (ko04714) in the gut microbiome of wild wolf, potentially providing sufficient energy for adaptation to a wide range of spatial ecological niches. The significantly enriched bacterial species and functional pathways in the gut microbiome of corsac foxes were related to physiological stability and adaptation to arid environments. Alpha diversity of carbohydrate-active enzymes in the gut microbiome was higher in the red fox than in the corsac fox and wild wolf, which may be related to the abundance of plant seeds (containing carbohydrates) in their diets (red foxes inhabit seed-rich willow bosk habitats). However, the influence of host genetic factors cannot be excluded, and further experimental studies are needed to verify the study results. In addition, captive environments drove similarity in carbohydrate-active enzymes (CAZymes) and virulence factors (VFs) in the gut microbiomes of captive wolf and domestic dog, and increased the diversity of CAZymes and VFs in the gut microbiome of captive wolf. Increased VFs diversity may increase the pathogenic potential of the gut microbiome in captive wolves. Therefore, it is necessary to continue monitoring the health status of captive wolves and develop appropriate management strategies.
Collapse
Affiliation(s)
- Xibao Wang
- College of Life Sciences, Qufu Normal University, 57 Jingxuan West Road, Qufu, Shandong Province, China
| | - Yongquan Shang
- College of Life Sciences, Qufu Normal University, 57 Jingxuan West Road, Qufu, Shandong Province, China
| | - Yamin Xing
- College of Life Sciences, Qufu Normal University, 57 Jingxuan West Road, Qufu, Shandong Province, China
| | - Yao Chen
- College of Life Sciences, Qufu Normal University, 57 Jingxuan West Road, Qufu, Shandong Province, China
| | - Xiaoyang Wu
- College of Life Sciences, Qufu Normal University, 57 Jingxuan West Road, Qufu, Shandong Province, China
| | - Honghai Zhang
- College of Life Sciences, Qufu Normal University, 57 Jingxuan West Road, Qufu, Shandong Province, China.
| |
Collapse
|
3
|
Farnitano MC, Karoly K, Sweigart AL. Fluctuating reproductive isolation and stable ancestry structure in a fine-scaled mosaic of hybridizing Mimulus monkeyflowers. PLoS Genet 2025; 21:e1011624. [PMID: 40163522 PMCID: PMC11978108 DOI: 10.1371/journal.pgen.1011624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 04/08/2025] [Accepted: 02/16/2025] [Indexed: 04/02/2025] Open
Abstract
Hybridization among taxa impacts a variety of evolutionary processes from adaptation to extinction. We seek to understand both patterns of hybridization across taxa and the evolutionary and ecological forces driving those patterns. To this end, we use whole-genome low-coverage sequencing of 458 wild-grown and 1565 offspring individuals to characterize the structure, stability, and mating dynamics of admixed populations of Mimulus guttatus and Mimulus nasutus across a decade of sampling. In three streams, admixed genomes are common and a M. nasutus organellar haplotype is fixed in M. guttatus, but new hybridization events are rare. Admixture is strongly unidirectional, but each stream has a unique distribution of ancestry proportions. In one stream, three distinct cohorts of admixed ancestry are spatially structured at ~20-50m resolution and stable across years. Mating system provides almost complete isolation of M. nasutus from both M. guttatus and admixed cohorts, and is a partial barrier between admixed and M. guttatus cohorts. Isolation due to phenology is near-complete between M. guttatus and M. nasutus. Phenological isolation is a strong barrier in some years between admixed and M. guttatus cohorts, but a much weaker barrier in other years, providing a potential bridge for gene flow. These fluctuations are associated with differences in water availability across years, supporting a role for climate in mediating the strength of reproductive isolation. Together, mating system and phenology accurately predict fluctuations in assortative mating across years, which we estimate directly using paired maternal and offspring genotypes. Climate-driven fluctuations in reproductive isolation may promote the longer-term stability of a complex mosaic of hybrid ancestry, preventing either complete isolation or complete collapse of species barriers.
Collapse
Affiliation(s)
- Matthew C. Farnitano
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Keith Karoly
- Department of Biology, Reed College, Portland, Oregon, United States of America
| | - Andrea L. Sweigart
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
4
|
Responte MA, Wu CY, Elias NU, Brown RM, Dai CY, Su YC. Recent Range Expansion and Genomic Admixture in a Kleptoparasitic Spider, Argyrodes lanyuensis: A Case of Adaptive Introgression on Small, Isolated Islands of the Taiwan-Philippine Transition Zone? Mol Ecol 2025; 34:e17630. [PMID: 39688644 DOI: 10.1111/mec.17630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 10/17/2024] [Accepted: 11/04/2024] [Indexed: 12/18/2024]
Abstract
Adaptive introgression involves the acquisition of advantageous genetic variants through hybridisation, which are subsequently favoured by natural selection due to their association with beneficial traits. Here, we analysed speciation patterns of the kleptoparasitic spider, Argyrodes lanyuensis, through genomic analyses and tested for possible genetic evidence of adaptive introgression at the Taiwan-Philippines transition zone. Our study used highly polymorphic SNPs to demonstrate that speciation occurred when the Hualien (on Taiwan Island + Green Island) and Orchid Island + Philippine lineages separated during the early to mid-Pleistocene. The best colonisation model suggested by approximate Bayesian computation and random forests and biogeographical analyses supported an inference of a bottleneck during speciation, an interpretation reinforced by observation of lower FST values and reduced genetic diversity of the Orchid Island + Philippines lineage. We also found the highest support for the occurrence of introgression on the youngest island (Green Island) of the Taiwan-Philippines transition zone based on the ABBA-BABA test. Our study highlights the inference of two noteworthy species (Hualien + Green Island and Orchid Island + Philippines) based on our species delimitation tests, with gene flow between Green Island and Orchid Island that indicates introgression. The potential adaptive alleles in Green Island population, which are under balancing selection, provide initial evidence of possible rare case of adaptive introgression. This could represent an evolutionary response to a newly formed niche (or novel geographical context) lying between the tropical climate of the Philippines and the subtropical climate of Hualien, Taiwan.
Collapse
Affiliation(s)
- Mae A Responte
- Graduate Institute Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biological Sciences and Environmental Studies, College of Science and Mathematics, University of the Philippines Mindanao, Davao City, Philippines
| | - Cheng-Yu Wu
- Department of Biomedical Science and Environmental Biology, College of Life Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Noraya U Elias
- Department of Biomedical Science and Environmental Biology, College of Life Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
- Mindanao State University-Malabang Community High School, Malabang, Lanao del Sur, Philippines
| | - Rafe M Brown
- Department of Ecology and Evolutionary Biology, Biodiversity Institute, University of Kansas, Lawrence, Kansas, USA
| | - Chia-Yen Dai
- Graduate Institute Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yong-Chao Su
- Department of Biomedical Science and Environmental Biology, College of Life Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
5
|
Tensen L, Fischer K. Evaluating hybrid speciation and swamping in wild carnivores with a decision-tree approach. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14197. [PMID: 37811741 DOI: 10.1111/cobi.14197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/12/2023] [Accepted: 06/28/2023] [Indexed: 10/10/2023]
Abstract
Hybridization is an important evolutionary force with a principal role in the origin of new species, known as hybrid speciation. However, ongoing hybridization can create hybrid swamping, in which parental genomes are completely lost. This can become a biodiversity threat if it involves species that have adapted to certain environmental conditions and occur nowhere else. Because conservation scientists commonly have a negative attitude toward hybrids, it is important to improve understanding of the influence of interspecific gene flow on the persistence of species. We reviewed the literature on species hybridization to build a list of all known cases in the order Carnivora. To examine the relative impact, we also noted level of introgression, whether fertile offspring were produced, and whether there was mention of negative or positive evolutionary effects (hybrid speciation and swamping). To evaluate the conservation implications of hybrids, we developed a decision-making tree with which to determine which actions should be taken to manage hybrid species. We found 53 hybrids involving 68 unique taxa, which is roughly 23% of all carnivore species. They mainly involved monophyletic (83%) and sympatric species (75%). For 2 species, the outcome of the assessment was to eliminate or restrict the hybrids: Ethiopian wolf (Canis simensis) and Scottish wildcat (Felis silvestris silvestris). Both species hybridize with their domestic conspecifics. For all other cases, we suggest hybrids be protected in the same manner as native species. We found no evidence of genomic extinction in Carnivora. To the contrary, some species appear to be of hybrid origin, such as the Asiatic black bear (Ursus thibetanus) and African golden wolf (Canis lupaster). Other positive outcomes of hybridization are novel genetic diversity, adaptation to extreme environments, and increased reproductive fitness. These outcomes are particularly valuable for counterbalancing genetic drift and enabling adaptive introgression in a human-dominated world.
Collapse
Affiliation(s)
- Laura Tensen
- Institute for Integrated Natural Sciences, Department of Zoology, University of Koblenz, Koblenz, Germany
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Johannesburg, South Africa
| | - Klaus Fischer
- Institute for Integrated Natural Sciences, Department of Zoology, University of Koblenz, Koblenz, Germany
| |
Collapse
|
6
|
Hinton JW, West KM, Sullivan DJ, Frair JL, Chamberlain MJ. The natural history and ecology of melanism in red wolf and coyote populations of the southeastern United States – evidence for Gloger’s rule. BMC ZOOL 2022; 7:33. [PMID: 37170305 PMCID: PMC10127370 DOI: 10.1186/s40850-022-00138-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 06/09/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Gloger’s rule postulates that animals should be darker colored in warm and humid regions where dense vegetation and dark environments are common. Although rare in Canis populations, melanism in wolves is more common in North America than other regions globally and is believed to follow Gloger’s rule. In the temperate forests of the southeastern United States, historical records of red wolf (Canis rufus) and coyote (Canis latrans) populations document a consistent presence of melanism. Today, the melanistic phenotype is extinct in red wolves while occurring in coyotes and red wolf-coyote hybrids who occupy the red wolf's historical range. To assess if Gloger’s rule could explain the occurrence and maintenance of melanistic phenotypes in Canis taxa, we investigated differences in morphology, habitat selection, and survival associated with pelage color using body measurements, GPS tracking data, and long-term capture-mark-recapture and radio-telemetry data collected on coyotes and hybrids across the southeastern United States.
Results
We found no correlation between morphometrics and pelage color for Canis taxa. However, we observed that melanistic coyotes and hybrids experienced greater annual survival than did their gray conspecifics. Furthermore, we observed that melanistic coyotes maintained larger home ranges and exhibited greater selection for areas with dense canopy cover and wetlands than did gray coyotes.
Conclusions
In the southeastern United States, pelage color influenced habitat selection by coyotes and annual survival of coyotes and hybrids providing evidence that Gloger’s rule is applicable to canids inhabiting regions with dense canopy cover and wetlands. Greater annual survival rates observed in melanistic Canis may be attributed to better concealment in areas with dense canopy cover such as coastal bottomland forests. We suggest that the larger home range sizes of melanistic coyotes may reflect the trade-off of reduced foraging efficiency in lower quality wetland habitat for improved survival. Larger home ranges and differential use of land cover by melanistic coyotes may facilitate weak assortative mating in eastern coyote populations, in which melanistic animals may have lower success of finding compatible mates in comparison to gray conspecifics. We offer that our observations provide a partial explanation for why melanism is relatively low (< 10%) but consistent within coyote populations throughout southeastern parts of their range.
Collapse
|
7
|
Quintero Melecio E, Rico Y, Lira Noriega A, González Rodríguez A. Molecular evidence and ecological niche modeling reveal an extensive hybrid zone among three Bursera species (section Bullockia). PLoS One 2021; 16:e0260382. [PMID: 34797901 PMCID: PMC8604287 DOI: 10.1371/journal.pone.0260382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/08/2021] [Indexed: 12/27/2022] Open
Abstract
The genus Bursera, includes ~100 shrub and trees species in tropical dry forests with its center of diversification and endemism in Mexico. Morphologically intermediate individuals have commonly been observed in Mexican Bursera in areas where closely related species coexist. These individuals are assumed to result from interspecific hybridization, but no molecular evidence has supported their hybrid origins. This study aimed to investigate the existence of interspecific hybridization among three Mexican Bursera species (Bullockia section: B. cuneata, B. palmeri and B. bipinnata) from nine populations based on DNA sequences (three nuclear and four chloroplast regions) and ecological niche modeling for three past and two future scenario projections. Results from the only two polymorphic nuclear regions (PEPC, ETS) supported the hybrid origin of morphologically intermediate individuals and revealed that B. cuneata and B. bipinnata are the parental species that are genetically closer to the putative hybrids. Ecological niche modeling accurately predicted the occurrence of putative hybrid populations and showed a potential hybrid zone extending in a larger area (74,000 km2) than previously thought. Paleo-reconstructions showed a potential hybrid zone existing from the Last Glacial Maximum (~ 21 kya) that has increased since the late Holocene to the present. Future ecological niche projections show an increment of suitability of the potential hybrid zone for 2050 and 2070 relative to the present. Hybrid zone changes responded mostly to an increase in elevational ranges. Our study provides the first insight of an extensive hybrid zone among three Mexican Bursera species based on molecular data and ecological niche modeling.
Collapse
Affiliation(s)
- Eduardo Quintero Melecio
- Red de Diversidad Biológica del Occidente Mexicano, Centro Regional del Bajío, Instituto de Ecología, A.C., Pátzcuaro, Michoacán, Mexico
| | - Yessica Rico
- Red de Diversidad Biológica del Occidente Mexicano, Centro Regional del Bajío, Instituto de Ecología, A.C., Pátzcuaro, Michoacán, Mexico
- * E-mail:
| | - Andrés Lira Noriega
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Xalapa, Veracruz, Mexico
- CONACyT, Ciudad de México, Mexico
| | - Antonio González Rodríguez
- Laboratorio de Genética de la Conservación, Instituto de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México, Morelia, Michoacán, Mexico
| |
Collapse
|
8
|
Sartor CC, Cushman SA, Wan HY, Kretschmer R, Pereira JA, Bou N, Cosse M, González S, Eizirik E, de Freitas TRO, Trigo TC. The role of the environment in the spatial dynamics of an extensive hybrid zone between two neotropical cats. J Evol Biol 2021; 34:614-627. [PMID: 33484012 DOI: 10.1111/jeb.13761] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/08/2020] [Accepted: 12/21/2020] [Indexed: 01/17/2023]
Abstract
Identifying factors that create and maintain a hybrid zone is of great interest to ecology, evolution and, more recently, conservation biology. Here, we investigated the role of environmental features in shaping the spatial dynamics of a hybrid zone between the southern tigrina, Leopardus guttulus, and Geoffroy's cat, L. geoffroyi, testing for exogenous selection as the main force acting on its maintenance. These Neotropical felid species are mainly allopatric, with a restricted area of sympatry in the ecotone between the Atlantic Forest and Pampa biomes. As both biomes have experienced high rates of anthropogenic habitat alteration, we also analysed the influence of habitat conversion on the hybrid zone structure. To do this, we used 13 microsatellite loci to identify potential hybrids and generated ecological niche models for them and their parental species. We compared the influence of variables on parental species and hybrid occurrence and calculated the amount of niche overlap among them. Parental species showed different habitat requirements and predicted co-occurrence was restricted to the forest-grassland mosaic of the ecotone. However, hybrids were found beyond this area, mainly in the range of L. geoffroyi. Hybrids demonstrated higher tolerance to habitat alteration than parental types, with a probability of occurrence that was positively related with mosaics of cropland areas and remnants of natural vegetation. These results indicate that exogenous selection alone does not drive the dynamics of the hybrid zone, and that habitat conversion influences its structure, potentially favouring hybrids over parental species.
Collapse
Affiliation(s)
- Caroline Charão Sartor
- Programa de Pós-Graduação em Ecologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Ho Yi Wan
- Department of Wildlife, Humboldt State University, Arcata, CA, USA
| | - Rafael Kretschmer
- Programa de Pós-graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Javier A Pereira
- CONICET, Grupo de Genética y Ecología en Conservación y Biodiversidad, Mastozoología, Museo Argentino de Ciencias Naturales 'Bernardino Rivadavia', Buenos Aires, Argentina
| | - Nadia Bou
- Departamento de Biodiversidad y Genética, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - Mariana Cosse
- Departamento de Biodiversidad y Genética, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - Susana González
- Departamento de Biodiversidad y Genética, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - Eduardo Eizirik
- Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Instituto Pró-Carnívoros, Atibaia, São Paulo, Brazil
| | | | - Tatiane Campos Trigo
- Instituto Pró-Carnívoros, Atibaia, São Paulo, Brazil.,Setor de Mastozoologia, Museu de Ciências Naturais do Rio Grande do Sul, Secretaria do Meio Ambiente e Infraestrutura, Porto Alegre, Brazil
| |
Collapse
|
9
|
Mills PB, Hossie TJ, Murray DL. Niche determinants in a salamander complex: Does hybridism or reproductive parasitism explain patterns of distribution? Ecosphere 2020. [DOI: 10.1002/ecs2.3265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Peter B. Mills
- Department of Biology Trent University 1600 West Bank Drive Peterborough Ontario Canada
| | - Thomas J. Hossie
- Department of Biology Trent University 1600 West Bank Drive Peterborough Ontario Canada
| | - Dennis L. Murray
- Department of Biology Trent University 1600 West Bank Drive Peterborough Ontario Canada
| |
Collapse
|
10
|
Hinton JW, Heppenheimer E, West KM, Caudill D, Karlin ML, Kilgo JC, Mayer JJ, Miller KV, Walch M, vonHoldt B, Chamberlain MJ. Geographic patterns in morphometric and genetic variation for coyote populations with emphasis on southeastern coyotes. Ecol Evol 2019; 9:3389-3404. [PMID: 30962900 PMCID: PMC6434562 DOI: 10.1002/ece3.4966] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 12/02/2018] [Accepted: 12/20/2018] [Indexed: 12/31/2022] Open
Abstract
Prior to 1900, coyotes (Canis latrans) were restricted to the western and central regions of North America, but by the early 2000s, coyotes became ubiquitous throughout the eastern United States. Information regarding morphological and genetic structure of coyote populations in the southeastern United States is limited, and where data exist, they are rarely compared to those from other regions of North America. We assessed geographic patterns in morphology and genetics of coyotes with special consideration of coyotes in the southeastern United States. Mean body mass of coyote populations increased along a west-to-east gradient, with southeastern coyotes being intermediate to western and northeastern coyotes. Similarly, principal component analysis of body mass and linear body measurements suggested that southeastern coyotes were intermediate to western and northeastern coyotes in body size but exhibited shorter tails and ears from other populations. Genetic analyses indicated that southeastern coyotes represented a distinct genetic cluster that differentiated strongly from western and northeastern coyotes. We postulate that southeastern coyotes experienced lower immigration from western populations than did northeastern coyotes, and over time, genetically diverged from both western and northeastern populations. Coyotes colonizing eastern North America experienced different selective pressures than did stable populations in the core range, and we offer that the larger body size of eastern coyotes reflects an adaptation that improved dispersal capabilities of individuals in the expanding range.
Collapse
Affiliation(s)
- Joseph W. Hinton
- Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAthensGeorgia
| | | | | | - Danny Caudill
- Florida Fish and Wildlife Conservation CommissionGainesvilleFlorida
- Present address:
Alaska Department of Fish and GameFairbanksAlaska
| | - Melissa L. Karlin
- Department of Physics and Environmental SciencesSt. Mary's UniversitySan AntonioTexas
| | - John C. Kilgo
- United States Department of AgricultureForest Service Southern Research StationNew EllentonSouth Carolina
| | - John Joseph Mayer
- United States Department of Energy, Environmental Sciences, and BiotechnologySavannah River National LaboratoryAikenSouth Carolina
| | - Karl V. Miller
- Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAthensGeorgia
| | | | - Bridgett vonHoldt
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew Jersey
| | | |
Collapse
|
11
|
Waples RS, Kays R, Fredrickson RJ, Pacifici K, Mills LS. Is the Red Wolf a Listable Unit Under the US Endangered Species Act? J Hered 2018; 109:585-597. [PMID: 29889268 PMCID: PMC6022562 DOI: 10.1093/jhered/esy020] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 05/08/2018] [Indexed: 11/12/2022] Open
Abstract
Defining units that can be afforded legal protection is a crucial, albeit challenging, step in conservation planning. As we illustrate with a case study of the red wolf (Canis rufus) from the southeastern United States, this step is especially complex when the evolutionary history of the focal taxon is uncertain. The US Endangered Species Act (ESA) allows listing of species, subspecies, or Distinct Population Segments (DPSs) of vertebrates. Red wolves were listed as an endangered species in 1973, and their status remains precarious. However, some recent genetic studies suggest that red wolves are part of a small wolf species (C. lycaon) specialized for heavily forested habitats of eastern North America, whereas other authors suggest that red wolves arose, perhaps within the last ~400 years, through hybridization between gray wolves (C. lupus) and coyotes (C. latrans). Using published genetic, morphological, behavioral, and ecological data, we evaluated whether each evolutionary hypothesis would lead to a listable unit for red wolves. Although the potential hybrid origin of red wolves, combined with abundant evidence for recent hybridization with coyotes, raises questions about status as a separate species or subspecies, we conclude that under any proposed evolutionary scenario red wolves meet both criteria to be considered a DPS: they are Discrete compared with other conspecific populations, and they are Significant to the taxon to which they belong. As population-level units can qualify for legal protection under endangered-species legislation in many countries throughout the world, this general approach could potentially be applied more broadly.
Collapse
Affiliation(s)
- Robin S Waples
- NOAA Fisheries, Northwest Fisheries Science Center, Seattle, WA
| | - Roland Kays
- Department of Forestry & Environmental Resources, North Carolina State University, Raleigh, NC
- North Carolina Museum of Natural Sciences, Raleigh, NC
| | | | - Krishna Pacifici
- Department of Forestry & Environmental Resources, North Carolina State University, Raleigh, NC
| | - L Scott Mills
- Wildlife Biology Program and the Office of Research and Creative Scholarship, University of Montana, Missoula, MT
| |
Collapse
|
12
|
Kabir M, Hameed S, Ali H, Bosso L, Din JU, Bischof R, Redpath S, Nawaz MA. Habitat suitability and movement corridors of grey wolf (Canis lupus) in Northern Pakistan. PLoS One 2017; 12:e0187027. [PMID: 29121089 PMCID: PMC5679527 DOI: 10.1371/journal.pone.0187027] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 10/12/2017] [Indexed: 11/24/2022] Open
Abstract
Habitat suitability models are useful to understand species distribution and to guide management and conservation strategies. The grey wolf (Canis lupus) has been extirpated from most of its historic range in Pakistan primarily due to its impact on livestock and livelihoods. We used non-invasive survey data from camera traps and genetic sampling to develop a habitat suitability model for C. lupus in northern Pakistan and to explore the extent of connectivity among populations. We detected suitable habitat of grey wolf using a maximum entropy approach (Maxent ver. 3.4.0) and identified suitable movement corridors using the Circuitscape 4.0 tool. Our model showed high levels of predictive performances, as seen from the values of area under curve (0.971±0.002) and true skill statistics (0.886±0.021). The main predictors for habitat suitability for C. lupus were distances to road, mean temperature of the wettest quarter and distance to river. The model predicted ca. 23,129 km2 of suitable areas for wolf in Pakistan, with much of suitable habitat in remote and inaccessible areas that appeared to be well connected through vulnerable movement corridors. These movement corridors suggest that potentially the wolf range can expand in Pakistan's Northern Areas. However, managing protected areas with stringent restrictions is challenging in northern Pakistan, in part due to heavy dependence of people on natural resources. The habitat suitability map provided by this study can inform future management strategies by helping authorities to identify key conservation areas.
Collapse
Affiliation(s)
- Muhammad Kabir
- Carnivore Conservation Lab, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Shoaib Hameed
- Carnivore Conservation Lab, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hussain Ali
- Carnivore Conservation Lab, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Luciano Bosso
- Wildlife Research Unit, Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Universita n. 100, Portici, Napoli, Italy
| | - Jaffar Ud Din
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- Snow Leopard Trust, Seattle, WA, United States of America
| | - Richard Bischof
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Steve Redpath
- School of Biological Sciences, University of Aberdeen, Scotland, United Kingdom
| | - Muhammad Ali Nawaz
- Carnivore Conservation Lab, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Snow Leopard Trust, Seattle, WA, United States of America
| |
Collapse
|