1
|
Turco T, Voirin L, Attia J, Beninati V, Higgs DM, Cagnant M, Médoc V. Acoustic playback is better than food to trap one of the worst invasive fishes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123555. [PMID: 39662441 DOI: 10.1016/j.jenvman.2024.123555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/13/2024] [Accepted: 11/30/2024] [Indexed: 12/13/2024]
Abstract
With the number of invasive alien species increasing globally, the management of invaded areas is constantly seeking innovative and effective solutions. Thanks to recent technological advances, acoustic signals are increasingly used in species management, either as an indicator of the presence of species or as a stimulus to repel species from risky areas or attract species for monitoring or eradication purposes. However, acoustic-based solutions are still rarely used by freshwater managers. In the present study, we explored the potential of acoustic playback to trap the round goby Neogobius melanostomus, a highly invasive aquatic species. We equipped traps with specifically-designed cost-effective, easy-to-deploy underwater speakers to broadcast resynthesized reproductive calls and tested four conditions by crossing the presence or absence of acoustic and food. The traps were deployed in Lake Sainte-Croix and Lake Brunet: two French lakes where round goby invasion is ongoing. Consistent with a previous test of acoustic trapping conducted on round gobies from the Great Lakes, broadcasting reproductive calls overall improved trapping success. Acoustic alone was the best trap configuration with a tendency to have more round gobies in the traps. By contrast, food increased the proportion of bycatch and was particularly attractive to crayfish, which reduced the probability of finding round gobies in the traps. Contrary to our expectation, the proportion of reproductive gobies in the traps was not increased by acoustic signals. Our results provide support for the inclusion of acoustic approaches in the toolbox of freshwater managers.
Collapse
Affiliation(s)
- Théophile Turco
- ENES, CRNL, Université Jean Monnet - Saint-Etienne, CNRS, Inserm, Saint-Etienne, France.
| | - Lucas Voirin
- ENES, CRNL, Université Jean Monnet - Saint-Etienne, CNRS, Inserm, Saint-Etienne, France; Office Français de La Biodiversité, Direction Inter-régionale PACA Corse, Aix-en-Provence, France.
| | - Joël Attia
- ENES, CRNL, Université Jean Monnet - Saint-Etienne, CNRS, Inserm, Saint-Etienne, France.
| | - Valentine Beninati
- ENES, CRNL, Université Jean Monnet - Saint-Etienne, CNRS, Inserm, Saint-Etienne, France; Department of Integrative Biology, University of Windsor, Windsor, Ontario, Canada.
| | - Dennis M Higgs
- Department of Integrative Biology, University of Windsor, Windsor, Ontario, Canada.
| | - Michaël Cagnant
- Office Français de La Biodiversité, Direction Inter-régionale PACA Corse, Aix-en-Provence, France.
| | - Vincent Médoc
- ENES, CRNL, Université Jean Monnet - Saint-Etienne, CNRS, Inserm, Saint-Etienne, France.
| |
Collapse
|
2
|
Klarl M, Pander J, Geist J. Characterization of the reproductive strategy of invasive Round Goby ( Neogobius melanostomus) in the Upper Danube River. Ecol Evol 2024; 14:e70349. [PMID: 39360126 PMCID: PMC11445448 DOI: 10.1002/ece3.70349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/22/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024] Open
Abstract
Originating from the Black and Caspian seas, the Round Goby (Neogobius melanostomus) has become one of the most successful invaders of freshwater ecosystems. In this study, we provide a characterization of the reproductive strategy of an established population of Round Gobies in the Upper Danube river including sex ratio, fluctuations of gonadosomatic index (GSI), analysis of timing of spawning as well as of clutch and egg size. We compare these results to other studies from the native and invaded range. In the Danube, the Round Goby population was found to be female dominated, however fluctuations in magnitude of female bias were observed between months. Monitoring of the population across 1.5 years revealed that GSI was highest from April to June, while lowest values were observed in August and September. Using time-series analysis, a delayed effect of temperature on GSI was found for females and males, while a quicker response of GSI levels to photoperiod and discharge was observed for females. GSI increased with body size for females and eggs were found to be significantly larger in May, however clutch sizes did not differ between months. Results of a literature review revealed great differences in timing and length of spawning season as well as sex ratio between populations throughout the distribution range, which can probably be explained by climatic and photoperiodic conditions together with the time since invasion and the high plasticity of Round Gobies.
Collapse
Affiliation(s)
- Melina Klarl
- Aquatic Systems Biology Unit, TUM School of Life Sciences Technical University of Munich Freising Germany
| | - Joachim Pander
- Aquatic Systems Biology Unit, TUM School of Life Sciences Technical University of Munich Freising Germany
| | - Juergen Geist
- Aquatic Systems Biology Unit, TUM School of Life Sciences Technical University of Munich Freising Germany
| |
Collapse
|
3
|
Szydłowska NZ, Franta P, Let M, Mikšovská V, Buřič M, Drozd B. Risk Perception: Chemical Stimuli in Predator Detection and Feeding Behaviour of the Invasive Round Goby Neogobius melanostomus. BIOLOGY 2024; 13:406. [PMID: 38927286 PMCID: PMC11200450 DOI: 10.3390/biology13060406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
The round goby Neogobius melanostomus is a notoriously invasive fish originating from the Ponto-Caspian region that in recent decades has successfully spread across the globe. One of its primary impacts is direct predation; in addition, when entering new ecosystems, the round goby is likely to become a food resource for many higher native predators. However, little is known either about the indirect effects of predators on the round goby as prey or its feeding behaviour and activity. The non-consumptive effect of the presence of higher native predators presumably plays an important role in mitigating the impact of non-native round gobies as mesopredators on benthic invertebrate communities, especially when both higher- and mesopredators occupy the same habitat. We tested the food consumption probability and gut evacuation rates in round gobies in response to chemical signals from a higher predator, the European eel Anguilla anguilla. Gobies were placed individually in experimental arenas equipped with shelters and exposed to water from a tank in which (a) the higher predator had actively preyed on a heterospecific prey, earthworms Lumbricus sp. (the heterospecific treatment; HS); (b) the higher predator had fed on round gobies (the conspecific treatment; CS); or (c) the water was provided as a control treatment (C). To ensure exposure to the chemical stimuli, this study incorporated the application of skin extracts containing damaged-released alarm cues from the CS treatment; distilled water was used for the remaining treatments. No significant differences were observed in either the food consumption probability or gut evacuation rate in the tested treatments. Despite the lack of reaction to the chemical stimuli, round gobies did exhibit high evacuation rates (R = 0.2323 ± 0.011 h-1; mean ± SE) in which complete gut clearance occurred within 16 h regardless of the applied treatment. This rapid food processing suggests high efficiency and great pressure on resources regardless of the presence or not of a higher predator. These findings hint at the boldness of round gobies, which did not exhibit any pronounced threat sensitivity. This would seem to suggest great efficiency in food processing and a potential competitive advantage over local native species when colonising new ecosystems, irrespective of the presence of native predators. Our study did not detect any non-consumptive effect attributable to the higher predator, given that the feeding activity of the invasive round goby was not altered.
Collapse
Affiliation(s)
- Natalia Z. Szydłowska
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (P.F.); (M.L.); (V.M.); (M.B.); (B.D.)
| | | | | | | | | | | |
Collapse
|
4
|
Haubrock PJ, Soto I, Ahmed DA, Ansari AR, Tarkan AS, Kurtul I, Macêdo RL, Lázaro-Lobo A, Toutain M, Parker B, Błońska D, Guareschi S, Cano-Barbacil C, Dominguez Almela V, Andreou D, Moyano J, Akalın S, Kaya C, Bayçelebi E, Yoğurtçuoğlu B, Briski E, Aksu S, Emiroğlu Ö, Mammola S, De Santis V, Kourantidou M, Pincheira-Donoso D, Britton JR, Kouba A, Dolan EJ, Kirichenko NI, García-Berthou E, Renault D, Fernandez RD, Yapıcı S, Giannetto D, Nuñez MA, Hudgins EJ, Pergl J, Milardi M, Musolin DL, Cuthbert RN. Biological invasions are a population-level rather than a species-level phenomenon. GLOBAL CHANGE BIOLOGY 2024; 30:e17312. [PMID: 38736133 DOI: 10.1111/gcb.17312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/08/2024] [Accepted: 04/21/2024] [Indexed: 05/14/2024]
Abstract
Biological invasions pose a rapidly expanding threat to the persistence, functioning and service provisioning of ecosystems globally, and to socio-economic interests. The stages of successful invasions are driven by the same mechanism that underlies adaptive changes across species in general-via natural selection on intraspecific variation in traits that influence survival and reproductive performance (i.e., fitness). Surprisingly, however, the rapid progress in the field of invasion science has resulted in a predominance of species-level approaches (such as deny lists), often irrespective of natural selection theory, local adaptation and other population-level processes that govern successful invasions. To address these issues, we analyse non-native species dynamics at the population level by employing a database of European freshwater macroinvertebrate time series, to investigate spreading speed, abundance dynamics and impact assessments among populations. Our findings reveal substantial variability in spreading speed and abundance trends within and between macroinvertebrate species across biogeographic regions, indicating that levels of invasiveness and impact differ markedly. Discrepancies and inconsistencies among species-level risk screenings and real population-level data were also identified, highlighting the inherent challenges in accurately assessing population-level effects through species-level assessments. In recognition of the importance of population-level assessments, we urge a shift in invasive species management frameworks, which should account for the dynamics of different populations and their environmental context. Adopting an adaptive, region-specific and population-focused approach is imperative, considering the diverse ecological contexts and varying degrees of susceptibility. Such an approach could improve and refine risk assessments while promoting mechanistic understandings of risks and impacts, thereby enabling the development of more effective conservation and management strategies.
Collapse
Affiliation(s)
- Phillip J Haubrock
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
- CAMB, Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, Kuwait
| | - Ismael Soto
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Danish A Ahmed
- CAMB, Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, Kuwait
| | - Ali R Ansari
- CAMB, Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, Kuwait
| | - Ali Serhan Tarkan
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
- Department of Basic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, Muğla, Turkey
- Department of Life and Environmental Sciences, Bournemouth University, Poole, UK
| | - Irmak Kurtul
- Department of Life and Environmental Sciences, Bournemouth University, Poole, UK
- Faculty of Fisheries, Marine and Inland Waters Sciences and Technology Department, Ege University, İzmir, Turkey
| | - Rafael L Macêdo
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Graduate Program in Ecology and Natural Resources, Department of Ecology and Evolutionary Biology, Federal University of São Carlos, UFSCar, São Carlos, Brazil
| | - Adrián Lázaro-Lobo
- Biodiversity Research Institute IMIB (Univ. Oviedo-CSIC-Princ. Asturias), Mieres, Spain
| | - Mathieu Toutain
- Université de Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], UMR 11 6553, Rennes, France
| | - Ben Parker
- Department of Life and Environmental Sciences, Bournemouth University, Poole, UK
| | - Dagmara Błońska
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
- Department of Life and Environmental Sciences, Bournemouth University, Poole, UK
| | - Simone Guareschi
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
| | - Carlos Cano-Barbacil
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| | | | - Demetra Andreou
- Department of Life and Environmental Sciences, Bournemouth University, Poole, UK
| | - Jaime Moyano
- Grupo de Ecología de Invasiones, INIBIOMA, CONICET, Universidad Nacional del Comahue, San Carlos de Bariloche, Argentina
| | - Sencer Akalın
- Faculty of Fisheries, Marine and Inland Waters Sciences and Technology Department, Ege University, İzmir, Turkey
| | - Cüneyt Kaya
- Faculty of Fisheries, Recep Tayyip Erdogan University, Rize, Turkey
| | - Esra Bayçelebi
- Faculty of Fisheries, Recep Tayyip Erdogan University, Rize, Turkey
| | - Baran Yoğurtçuoğlu
- Department of Biology, Faculty of Science, Hacettepe University, Ankara, Turkey
| | | | - Sadi Aksu
- Vocational School of Health Services, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Özgür Emiroğlu
- Department of Biology, Faculty of Arts and Sciences, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Stefano Mammola
- Water Research Institute, National Research Council (CNR-IRSA), Verbania Pallanza, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Vanessa De Santis
- Water Research Institute, National Research Council (CNR-IRSA), Verbania Pallanza, Italy
| | | | | | - J Robert Britton
- Department of Life and Environmental Sciences, Bournemouth University, Poole, UK
| | - Antonín Kouba
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Ellen J Dolan
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Natalia I Kirichenko
- Sukachev Institute of Forest, Siberian Branch of Russian Academy of Sciences, Federal Research Center «Krasnoyarsk Science Center SB RAS», Krasnoyarsk, Russia
- Siberian Federal University, Krasnoyarsk, Russia
- All-Russian Plant Quarantine Center, Krasnoyarsk Branch, Krasnoyarsk, Russia
| | | | - David Renault
- Université de Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], UMR 11 6553, Rennes, France
| | - Romina D Fernandez
- Instituto de Ecología Regional, Universidad Nacional de Tucumán-CONICET, Yerba Buena, Argentina
| | - Sercan Yapıcı
- Department of Basic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Daniela Giannetto
- Department of Biology, Faculty of Sciences, Muğla Sıtkı Koçman University, Mugla, Turkey
| | - Martin A Nuñez
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Emma J Hudgins
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Jan Pergl
- Institute of Botany; Department of Invasion Ecology, Academy of Sciences of the Czech Republic, Průhonice, Czech Republic
| | - Marco Milardi
- Southern Indian Ocean Fisheries Agreement (SIOFA), Le Port, La Reunion, France
| | - Dmitrii L Musolin
- European and Mediterranean Plant Protection Organization (EPPO), Paris, France
| | - Ross N Cuthbert
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| |
Collapse
|
5
|
Coughlan NE, Dickey JWE, Dick JTA, Médoc V, McCard M, Lacroix G, Fiorini S, Millot A, Cuthbert RN. When worlds collide: Invader-driven benthic habitat complexity alters predatory impacts of invasive and native predatory fishes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156876. [PMID: 35760170 DOI: 10.1016/j.scitotenv.2022.156876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/27/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Interactions between multiple invasive alien species (IAS) might increase their ecological impacts, yet relatively few studies have attempted to quantify the effects of facilitative interactions on the success and impact of aquatic IAS. Further, the effect of abiotic factors, such as habitat structure, have lacked consideration in ecological impact prediction for many high-profile IAS, with most data acquired through simplified assessments that do not account for real environmental complexities. In the present study, we assessed a potential facilitative interaction between a predatory invasive fish, the Ponto-Caspian round goby (Neogobius melanostomus), and an invasive bivalve, the Asian clam (Corbicula fluminea). We compared N. melanostomus functional responses (feeding-rates under different prey densities) to a co-occurring endangered European native analogue fish, the bullhead (Cottus gobio), in the presence of increased levels of habitat complexity driven by the accumulation of dead C. fluminea biomass that persists within the environment (i.e. 0, 10, 20 empty bivalve shells). Habitat complexity significantly influenced predation, with consumption in the absence of shells being greater than where 10 or 20 shells were present. However, at the highest shell density, invasive N. melanostomus maximum feeding-rates and functional response ratios were substantially higher than those of native C. gobio. Further, the Relative Impact Potential metric, by combining per capita effects and population abundances, indicated that higher shell densities exacerbate the relative impact of the invader. It therefore appears that N. melanostomus can better tolerate higher IAS shell abundances when foraging at high prey densities, suggesting the occurrence of an important facilitative interaction. Our data are thus fully congruent with field data that link establishment success of N. melanostomus with the presence of C. fluminea. Overall, we show that invader-driven benthic habitat complexity can alter the feeding-rates and thus impacts of predatory fishes, and highlight the importance of inclusion of abiotic factors in impact prediction assessments for IAS.
Collapse
Affiliation(s)
- Neil E Coughlan
- School of Biological, Earth & Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork, Ireland; Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland BT9 5DL, UK.
| | - James W E Dickey
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland BT9 5DL, UK; Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), 12587 Berlin, Germany; Freie Universität Berlin, Institute of Biology, Königin-Luise-Str. 1-3, 14195 Berlin, Germany; GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, 24105 Kiel, Germany
| | - Jaimie T A Dick
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland BT9 5DL, UK
| | - Vincent Médoc
- Equipe Neuro Ethologie Sensorielle, ENES/Neuro-PSI CNRS UMR 9197, Université de Lyon/Saint-Etienne, Saint-Etienne, France
| | - Monica McCard
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland BT9 5DL, UK
| | - Gérard Lacroix
- iEES-Paris, Institut d'Ecologie et des Sciences de l'Environnement de Paris, UMR 7618 (CNRS, INRAE, IRD, Sorbonne Université, UPEC, Université de Paris), CC237 Paris, France; Ecole Normale Supérieure, PSL Research University, CNRS, Centre de Recherche en Écologie Expérimentale et Prédictive (CEREEP-Ecotron Ile-De-France), UAR 3194 Saint-Pierre-lès-Nemours, France
| | - Sarah Fiorini
- Ecole Normale Supérieure, PSL Research University, CNRS, Centre de Recherche en Écologie Expérimentale et Prédictive (CEREEP-Ecotron Ile-De-France), UAR 3194 Saint-Pierre-lès-Nemours, France
| | - Alexis Millot
- Ecole Normale Supérieure, PSL Research University, CNRS, Centre de Recherche en Écologie Expérimentale et Prédictive (CEREEP-Ecotron Ile-De-France), UAR 3194 Saint-Pierre-lès-Nemours, France
| | - Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland BT9 5DL, UK
| |
Collapse
|
6
|
Dominguez Almela V, Palmer SCF, Andreou D, Gillingham PK, Travis JMJ, Britton JR. Predicting the influence of river network configuration, biological traits and habitat quality interactions on riverine fish invasions. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Victoria Dominguez Almela
- Department of Life and Environmental Sciences Faculty of Science and Technology Bournemouth University Poole UK
| | | | - Demetra Andreou
- Department of Life and Environmental Sciences Faculty of Science and Technology Bournemouth University Poole UK
| | - Phillipa K. Gillingham
- Department of Life and Environmental Sciences Faculty of Science and Technology Bournemouth University Poole UK
| | | | - J. Robert Britton
- Department of Life and Environmental Sciences Faculty of Science and Technology Bournemouth University Poole UK
| |
Collapse
|
7
|
Dickey JWE, Coughlan NE, Dick JTA, Médoc V, McCard M, Leavitt PR, Lacroix G, Fiorini S, Millot A, Cuthbert RN. Breathing space: deoxygenation of aquatic environments can drive differential ecological impacts across biological invasion stages. Biol Invasions 2021; 23:2831-2847. [PMID: 34720687 PMCID: PMC8550720 DOI: 10.1007/s10530-021-02542-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 04/16/2021] [Indexed: 11/29/2022]
Abstract
The influence of climate change on the ecological impacts of invasive alien species (IAS) remains understudied, with deoxygenation of aquatic environments often-overlooked as a consequence of climate change. Here, we therefore assessed how oxygen saturation affects the ecological impact of a predatory invasive fish, the Ponto-Caspian round goby (Neogobius melanostomus), relative to a co-occurring endangered European native analogue, the bullhead (Cottus gobio) experiencing decline in the presence of the IAS. In individual trials and mesocosms, we assessed the effect of high, medium and low (90%, 60% and 30%) oxygen saturation on: (1) functional responses (FRs) of the IAS and native, i.e. per capita feeding rates; (2) the impact on prey populations exerted; and (3) how combined impacts of both fishes change over invasion stages (Pre-invasion, Arrival, Replacement, Proliferation). Both species showed Type II potentially destabilising FRs, but at low oxygen saturation, the invader had a significantly higher feeding rate than the native. Relative Impact Potential, combining fish per capita effects and population abundances, revealed that low oxygen saturation exacerbates the high relative impact of the invader. The Relative Total Impact Potential (RTIP), modelling both consumer species’ impacts on prey populations in a system, was consistently higher at low oxygen saturation and especially high during invader Proliferation. In the mesocosm experiment, low oxygen lowered RTIP where both species were present, but again the IAS retained high relative impact during Replacement and Proliferation stages at low oxygen. We also found evidence of multiple predator effects, principally antagonism. We highlight the threat posed to native communities by IAS alongside climate-related stressors, but note that solutions may be available to remedy hypoxia and potentially mitigate impacts across invasion stages.
Collapse
Affiliation(s)
- James W E Dickey
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL Northern Ireland, UK.,Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), 12587 Berlin, Germany
| | - Neil E Coughlan
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL Northern Ireland, UK.,School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork, Ireland
| | - Jaimie T A Dick
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL Northern Ireland, UK
| | - Vincent Médoc
- Equipe de Neuro-Ethologie Sensorielle (ENES), Centre de Recherche en Neurosciences de Lyon (CRNL), CNRS, INSERM, Université de Lyon/Saint-Etienne, Saint-Etienne, France
| | - Monica McCard
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL Northern Ireland, UK
| | - Peter R Leavitt
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL Northern Ireland, UK.,Department of Biology, University of Regina, Regina, SK S4S 0A2 Canada
| | - Gérard Lacroix
- iEES-Paris, Institut d'Ecologie et des Sciences de l'Environnement de Paris (IRD, Sorbonne Université, CNRS, INRA, UPEC, Université Paris Diderot), CC237 Paris, France.,Ecole Normale Supérieure, CNRS, Centre de Recherche en Écologie Expérimentale et Prédictive (CEREEP-Ecotron Ile-De-France), UMS 3194, PSL Research University, Saint-Pierre-lès-Nemours, France
| | - Sarah Fiorini
- Ecole Normale Supérieure, CNRS, Centre de Recherche en Écologie Expérimentale et Prédictive (CEREEP-Ecotron Ile-De-France), UMS 3194, PSL Research University, Saint-Pierre-lès-Nemours, France
| | - Alexis Millot
- Ecole Normale Supérieure, CNRS, Centre de Recherche en Écologie Expérimentale et Prédictive (CEREEP-Ecotron Ile-De-France), UMS 3194, PSL Research University, Saint-Pierre-lès-Nemours, France
| | - Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL Northern Ireland, UK.,GEOMAR, Helmholtz-Zentrum für Ozeanforschung Kiel, 24105 Kiel, Germany
| |
Collapse
|
8
|
Green L, Niemax J, Herrmann J, Temming A, Behrens JW, Havenhand JN, Leder E, Kvarnemo C. Sperm performance limits the reproduction of an invasive fish in novel salinities. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Leon Green
- Department of Biological and Environmental Sciences University of Gothenburg Gothenburg Sweden
- Linnaeus Centre for Marine Evolutionary Biology University of Gothenburg Gothenburg Sweden
- Gothenburg Global Biodiversity Centre University of Gothenburg Gothenburg Sweden
| | - Jan Niemax
- Department of Biology Institute of Marine Ecosystem and Fishery Science Universität Hamburg Hamburg Germany
| | - Jens‐Peter Herrmann
- Department of Biology Institute of Marine Ecosystem and Fishery Science Universität Hamburg Hamburg Germany
| | - Axel Temming
- Department of Biology Institute of Marine Ecosystem and Fishery Science Universität Hamburg Hamburg Germany
| | - Jane W. Behrens
- National Institute of Aquatic Resources Technical University of Denmark Lyngby Denmark
| | - Jonathan N. Havenhand
- Linnaeus Centre for Marine Evolutionary Biology University of Gothenburg Gothenburg Sweden
- Department of Marine Sciences University of Gothenburg Tjärnö Sweden
| | - Erica Leder
- Linnaeus Centre for Marine Evolutionary Biology University of Gothenburg Gothenburg Sweden
- Department of Marine Sciences University of Gothenburg Tjärnö Sweden
- Natural History Museum University of Oslo Oslo Norway
| | - Charlotta Kvarnemo
- Department of Biological and Environmental Sciences University of Gothenburg Gothenburg Sweden
- Linnaeus Centre for Marine Evolutionary Biology University of Gothenburg Gothenburg Sweden
| |
Collapse
|
9
|
Grabowska J, Tarkan AS, Błońska D, Top Karakuş N, Janic B, Przybylski M. Prolific pioneers and reserved settlers. Changes in the life-history of the western tubenose goby (Proterorhinus semilunaris) at different invasion stages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:142316. [PMID: 33182175 DOI: 10.1016/j.scitotenv.2020.142316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
The western tubenose goby is one of the most wide-spread invasive fish species in European freshwaters, though information of its life-history in relation to its invasion success is limited. We compared the reproductive traits, growth rate and condition of three populations that differed in their stage of invasion in its expanding range in the River Vistula: core - the oldest population established at the centre of the invasive range; intermediate - long established by downstream dispersal from the core area but continuously supplemented by drifting specimens; front - new population at the edge of the invasive range, upstream from the core area. Pronounced differences in life-history traits were found between the 'core' and the 'front' populations. The 'front' population displayed high investment in reproduction and had heavier gonads, higher fecundity, higher batch fecundity though smaller eggs than the 'core' population. The 'core' population was characterized by the lowest fecundity, the largest eggs, the highest condition after spawning, and the highest maximum age of males. The 'intermediate' population was intermediate between the 'front' and the 'core' populations regarding reproductive traits, but showed the highest growth rates. The life-history traits that varied most among populations were gonad weight, fecundity, gonado-somatic index, condition and growth in the first years of life. Inter-individual variability of life-history traits was lower in the front of the invasive range than in the core and intermediate area. The observed plasticity in life-history appears to favour production of large numbers of offspring in newly-colonised areas in the initial stages of invasion and at the edge of the expanding range. In longer-established populations, at the core of invasive range, a strategy for greater competitiveness under intra-specific competition appears to be favoured.
Collapse
Affiliation(s)
- Joanna Grabowska
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Ecology and Vertebrate Zoology, Banacha 12/16, 90-237 Lodz, Poland.
| | - Ali Serhan Tarkan
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Ecology and Vertebrate Zoology, Banacha 12/16, 90-237 Lodz, Poland; Muğla Sıtkı Koçman University, Faculty of Fisheries, 48000 Menteşe, Muğla, Türkiye
| | - Dagmara Błońska
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Ecology and Vertebrate Zoology, Banacha 12/16, 90-237 Lodz, Poland
| | - Nildeniz Top Karakuş
- Muğla Sıtkı Koçman University, Faculty of Fisheries, 48000 Menteşe, Muğla, Türkiye
| | - Bartosz Janic
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Ecology and Vertebrate Zoology, Banacha 12/16, 90-237 Lodz, Poland
| | - Mirosław Przybylski
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Ecology and Vertebrate Zoology, Banacha 12/16, 90-237 Lodz, Poland
| |
Collapse
|
10
|
Allen PE, Laforest L, Diyaljee SI, Smith HM, Tran DX, Winsor AM, Dale AG. Long-term changes in mole cricket body size associated with enemy-free space and a novel range. Biol Invasions 2019. [DOI: 10.1007/s10530-019-02127-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Jan PL, Lehnen L, Besnard AL, Kerth G, Biedermann M, Schorcht W, Petit EJ, Le Gouar P, Puechmaille SJ. Range expansion is associated with increased survival and fecundity in a long-lived bat species. Proc Biol Sci 2019; 286:20190384. [PMID: 31288708 PMCID: PMC6650714 DOI: 10.1098/rspb.2019.0384] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/11/2019] [Indexed: 12/14/2022] Open
Abstract
The speed and dynamics of range expansions shape species distributions and community composition. Despite the critical impact of population growth rates for range expansion, they are neglected in existing empirical studies, which focus on the investigation of selected life-history traits. Here, we present an approach based on non-invasive genetic capture-mark-recapture data for the estimation of adult survival, fecundity and juvenile survival, which determine population growth. We demonstrate the reliability of our method with simulated data, and use it to investigate life-history changes associated with range expansion in 35 colonies of the bat species Rhinolophus hipposideros. Comparing the demographic parameters inferred for 19 of those colonies which belong to an expanding population with those inferred for the remaining 16 colonies from a non-expanding population reveals that range expansion is associated with higher net reproduction. Juvenile survival was the main driver of the observed reproduction increase in this long-lived bat species with low per capita annual reproductive output. The higher average growth rate in the expanding population was not associated with a trade-off between increased reproduction and survival, suggesting that the observed increase in reproduction stems from a higher resource acquisition in the expanding population. Environmental conditions in the novel habitat hence seem to have an important influence on range expansion dynamics, and warrant further investigation for the management of range expansion in both native and invasive species.
Collapse
Affiliation(s)
- P.-L. Jan
- ESE, Ecology and Ecosystem Health, Agrocampus Ouest, INRA, Rennes, France
| | - L. Lehnen
- Applied Zoology and Nature Conservation, Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | - A.-L. Besnard
- ESE, Ecology and Ecosystem Health, Agrocampus Ouest, INRA, Rennes, France
| | - G. Kerth
- Applied Zoology and Nature Conservation, Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | - M. Biedermann
- Interessengemeinschaft für Fledermausschutz und -forschung Thüringen (IFT) e.V., Bad Liebenstein, Germany
| | - W. Schorcht
- Nachtaktiv- Biologists for Bat research GbR, Germany
| | - E. J. Petit
- ESE, Ecology and Ecosystem Health, Agrocampus Ouest, INRA, Rennes, France
| | - P. Le Gouar
- UMR CNRS 6553 ECOBIO, Université Rennes 1, Station Biologique, Paimpont, France
| | - S. J. Puechmaille
- Applied Zoology and Nature Conservation, Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| |
Collapse
|
12
|
Growth and Mortality of Invasive Flathead Catfish in the Tidal James River, Virginia. JOURNAL OF FISH AND WILDLIFE MANAGEMENT 2019. [DOI: 10.3996/052019-jfwm-033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Abstract
Invasive species are a major threat to biodiversity of native fishes in North America. In Atlantic coastal rivers of the United States, large catfishes introduced from the Gulf of Mexico drainages have become established and contributed to native species declines. Flathead Catfish Pylodictis olivaris were introduced to the Chesapeake Bay drainage in the 1960s and 1970s in the James and Potomac river systems in the eastern United States. Diet studies have found James River Flathead Catfish function as apex predators and are known to consume at-risk Alosa spp. To limit further range expansion and impacts to native species, resource management agencies need information on population characteristics to support population assessments and management plan development. Thus, we examined temporal trends in growth rates and estimated total instantaneous mortality for tidal James River Flathead Catfish collected by Virginia Department of Game and Inland Fisheries from 1997 to 2015. Parameters of the von Bertalanffy growth model with length-at-age observations pooled across sampling years were estimated as L∞ = 1,059 mm, k = 0.231/y, and t0 = 0.55 y. Flathead Catfish growth differed among sampling years, especially for the years 2007 and 2014, which had the largest sample sizes. However, there were no obvious temporal trends in growth trajectories. James River Flathead Catfish tend to grow much faster than most populations used in development of the relative growth index, but the species is known to grow faster in its nonnative range. Consequently, scientists and managers should use caution when applying growth indices if native and nonnative populations are not expressly considered in development of the index. We estimated total instantaneous mortality as Z = 0.50 and mean natural mortality from six estimators as M = 0.30. A lack of older individuals in the population means that mortality rates may be overestimated as a result of gear selectivity or ongoing maturation of the population. These data provide information to support future work examining the species in the James River and development of population models to evaluate management strategies and management plans.
Collapse
|