1
|
Aguirre NM, Ochoa ME, Holmlund HI, Palmeri GN, Lancaster ER, Gilderman GS, Taylor SR, Sauer KE, Borges AJ, Lamb AND, Jacques SB, Ewers FW, Davis SD. How megadrought causes extensive mortality in a deep-rooted shrub species normally resistant to drought-induced dieback: The role of a biotic mortality agent. PLANT, CELL & ENVIRONMENT 2024; 47:1053-1069. [PMID: 38017668 DOI: 10.1111/pce.14768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 10/21/2023] [Accepted: 11/03/2023] [Indexed: 11/30/2023]
Abstract
Southern California experienced unprecedented megadrought between 2012 and 2018. During this time, Malosma laurina, a chaparral species normally resilient to single-year intense drought, developed extensive mortality exceeding 60% throughout low-elevation coastal populations of the Santa Monica Mountains. We assessed the physiological mechanisms by which the advent of megadrought predisposed M. laurina to extensive shoot dieback and whole-plant death. We found that hydraulic conductance of stem xylem (Ks, native ) was reduced seven to 11-fold in dieback adult and resprout branches, respectively. Staining of stem xylem vessels revealed that dieback plants experienced 68% solid-blockage, explaining the reduction in water transport. Following Koch's postulates, persistent isolation of a microorganism in stem xylem of dieback plants but not healthy controls indicated that the causative agent of xylem blockage was an opportunistic endophytic fungus, Botryosphaeria dothidea. We inoculated healthy M. laurina saplings with fungal isolates and compared hyphal elongation rates under well-watered, water-deficit, and carbon-deficit treatments. Relative to controls, we found that both water deficit and carbon-deficit increased hyphal extension rates and the incidence of shoot dieback.
Collapse
Affiliation(s)
- Natalie M Aguirre
- Ecology and Evolutionary Biology Program, Texas A&M University, College Station, Texas, USA
- Natural Science Division, Pepperdine University, Malibu, California, USA
| | - Marissa E Ochoa
- Natural Science Division, Pepperdine University, Malibu, California, USA
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| | - Helen I Holmlund
- Natural Science Division, Pepperdine University, Malibu, California, USA
| | | | - Emily R Lancaster
- Natural Science Division, Pepperdine University, Malibu, California, USA
- School of Marine Sciences, University of Maine, Orono, Maine, USA
| | - Gina S Gilderman
- Natural Science Division, Pepperdine University, Malibu, California, USA
| | - Shaquetta R Taylor
- Natural Science Division, Pepperdine University, Malibu, California, USA
| | - Kaitlyn E Sauer
- Natural Science Division, Pepperdine University, Malibu, California, USA
| | - Adriana J Borges
- Natural Science Division, Pepperdine University, Malibu, California, USA
| | - Avery N D Lamb
- Natural Science Division, Pepperdine University, Malibu, California, USA
- Nicholas School of the Environment, The Divinity School, Duke University, Durham, North Carolina, USA
| | - Sarah B Jacques
- Natural Science Division, Pepperdine University, Malibu, California, USA
- Department of Surgery, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Frank W Ewers
- Department of Biological Sciences, California State Polytechnic University, Pomona, California, USA
| | - Stephen D Davis
- Natural Science Division, Pepperdine University, Malibu, California, USA
| |
Collapse
|
2
|
Siegel KJ, Cavanaugh KC, Dee LE. Balancing multiple management objectives as climate change transforms ecosystems. Trends Ecol Evol 2024; 39:381-395. [PMID: 38052686 DOI: 10.1016/j.tree.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023]
Abstract
As climate change facilitates significant and persistent ecological transformations, managing ecosystems according to historical baseline conditions may no longer be feasible. The Resist-Accept-Direct (RAD) framework can guide climate-informed management interventions, but in its current implementations RAD has not yet fully accounted for potential tradeoffs between multiple - sometimes incompatible - ecological and societal goals. Key scientific challenges for informing climate-adapted ecosystem management include (i) advancing our predictive understanding of transformations and their socioecological impacts under novel climate conditions, and (ii) incorporating uncertainty around trajectories of ecological change and the potential success of RAD interventions into management decisions. To promote the implementation of RAD, practitioners can account for diverse objectives within just and equitable participatory decision-making processes.
Collapse
Affiliation(s)
- Katherine J Siegel
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA; Cooperative Programs for the Advancement of Earth System Science, University Corporation for Atmospheric Research, Boulder, CO, USA.
| | - Kyle C Cavanaugh
- Department of Geography, University of California Los Angeles, Los Angeles, CA, USA
| | - Laura E Dee
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
3
|
Dewees SL, D'Antonio CM, Molinari N. Determining potential drivers of vegetation change in a Mediterranean environment. Ecosphere 2022. [DOI: 10.1002/ecs2.4313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Shane L. Dewees
- University of California, Santa Barbara Santa Barbara California USA
| | | | - Nicole Molinari
- United States Forest Service, Los Padres National Forest Goleta California USA
| |
Collapse
|
4
|
Syphard AD, Brennan TJ, Rustigian-Romsos H, Keeley JE. Fire-driven vegetation type conversion in Southern California. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2626. [PMID: 35397185 DOI: 10.1002/eap.2626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
One consequence of global change causing widespread concern is the possibility of ecosystem conversions from one type to another. A classic example of this is vegetation type conversion (VTC) from native woody shrublands to invasive annual grasslands in the biodiversity hotspot of Southern California. Although the significance of this problem is well recognized, understanding where, how much, and why this change is occurring remains elusive owing to differences in results from studies conducted using different methods, spatial extents, and scales. Disagreement has arisen particularly over the relative importance of short-interval fires in driving these changes. Chronosequence approaches that use space for time to estimate changes have produced different results than studies of changes at a site over time. Here we calculated the percentage woody and herbaceous cover across Southern California using air photos from ~1950 to 2019. We assessed the extent of woody cover change and the relative importance of fire history, topography, soil moisture, and distance to human infrastructure in explaining change across a hierarchy of spatial extents and regions. We found substantial net decline in woody cover and expansion of herbaceous vegetation across all regions, but the most dramatic changes occurred in the northern interior and southern coastal areas. Variables related to frequent, short-interval fire were consistently top ranked as the explanation for shrub to grassland type conversion, but low soil moisture and topographic complexity were also strong correlates. Despite the consistent importance of fire, there was substantial geographical variation in the relative importance of drivers, and these differences resulted in different mapped predictions of VTC. This geographical variation is important to recognize for management decision-making and, in addition to differences in methodological design, may also partly explain differences in previous study results. The overwhelming importance of short-interval fire has management implications. It suggests that actions should be directed away from imposing fires to preventing fires. Prevention can be controlled through management actions that limit ignitions, fire spread, and the damage sustained in areas that do burn. This study also demonstrates significant potential for changing fire regimes to drive large-scale, abrupt ecological change.
Collapse
Affiliation(s)
- Alexandra D Syphard
- Conservation Biology Institute, Corvallis, Oregon, USA
- Department of Geography, San Diego State University, San Diego, California, USA
| | - Teresa J Brennan
- USGS Western Ecological Research Center, Three Rivers, California, USA
| | | | - Jon E Keeley
- USGS Western Ecological Research Center, Three Rivers, California, USA
- Department of Ecology & Evolutionary Biology, University of California, Los Angeles, California, USA
| |
Collapse
|
5
|
Underwood EC, Hollander AD, Molinari NA, Larios L, Safford HD. Identifying priorities for post‐fire restoration in California chaparral shrublands. Restor Ecol 2022. [DOI: 10.1111/rec.13513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Emma C. Underwood
- Department of Environmental Science and Policy University of California Davis CA 95616 U.S.A
- Centre for Biological Sciences University of Southampton Southampton SO17 1BJ U.K
| | - Allan D. Hollander
- Department of Environmental Science and Policy University of California Davis CA 95616 U.S.A
| | - Nicole A. Molinari
- USDA Forest Service Pacific Southwest Region 1980 Old Mission Drive Solvang CA 93463 U.S.A
| | - Loralee Larios
- Department of Botany and Plant Science 900 University Avenue Riverside CA 92521 U.S.A
| | - Hugh D. Safford
- Department of Environmental Science and Policy University of California Davis CA 95616 U.S.A
- USDA Forest Service Pacific Southwest Region 1323 Club Dive Vallejo CA 94592 U.S.A
| |
Collapse
|
6
|
Human ignitions on private lands drive USFS cross-boundary wildfire transmission and community impacts in the western US. Sci Rep 2022; 12:2624. [PMID: 35169134 PMCID: PMC8847424 DOI: 10.1038/s41598-022-06002-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/21/2022] [Indexed: 11/28/2022] Open
Abstract
Wildfires in the western United States (US) are increasingly expensive, destructive, and deadly. Reducing wildfire losses is particularly challenging when fires frequently start on one land tenure and damage natural or developed assets on other ownerships. Managing wildfire risk in multijurisdictional landscapes has recently become a centerpiece of wildfire strategic planning, legislation, and risk research. However, important empirical knowledge gaps remain regarding cross-boundary fire activity in the western US. Here, we use lands administered by the US Forest Service as a study system to assess the causes, ignition locations, structure loss, and social and biophysical factors associated with cross-boundary fire activity over the past three decades. Results show that cross-boundary fires were primarily caused by humans on private lands. Cross-boundary ignitions, area burned, and structure losses were concentrated in California. Public lands managed by the US Forest Service were not the primary source of fires that destroyed the most structures. Cross-boundary fire activity peaked in moderately populated landscapes with dense road and jurisdictional boundary networks. Fire transmission is increasing, and evidence suggests it will continue to do so in the future. Effective cross-boundary fire risk management will require cross-scale risk co-governance. Focusing on minimizing damages to high-value assets may be more effective than excluding fire from multijurisdictional landscapes.
Collapse
|
7
|
Rojas IM, Jennings MK, Conlisk E, Syphard AD, Mikesell J, Kinoshita AM, West K, Stow D, Storey E, De Guzman ME, Foote D, Warneke A, Pairis A, Ryan S, Flint LE, Flint AL, Lewison RL. A landscape-scale framework to identify refugia from multiple stressors. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13834. [PMID: 34476838 PMCID: PMC9298232 DOI: 10.1111/cobi.13834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 05/12/2023]
Abstract
From a conservation perspective, quantifying potential refugial capacity has been predominantly focused on climate refugia, which is critical for maintaining the persistence of species and ecosystems. However, protection from other stressors, such as human-induced changes in fire and hydrology, that cause habitat loss, degradation, and fragmentation is also necessary to ensure that conservation efforts focused on climate are not undermined by other threats. Thus, conceptual and methodological advances for quantifying potential refugia from multiple anthropogenic stressors are important to support conservation efforts. We devised a new conceptual approach, the domains of refugia, for assessing refugial capacity that identifies areas where exposure to multiple stressors is low. In our framework, patterns of environmental variability (e.g., increased frequency of warm summers), thresholds of resilience, and extent and intensity of stressors are used to identify areas of potential refugia from a suite of ongoing anthropogenic stressors (e.g., changes in fire regime). To demonstrate its utility, we applied the framework to a Southern California landscape. Sites with high refugial capacity (super-refugia sites) had on average 30% fewer extremely warm summers, 20% fewer fire events, 10% less exposure to altered river channels and riparian areas, and 50% fewer recreational trails than the surrounding landscape. Our results suggest that super-refugia sites (∼8200 km2 ) for some natural communities are underrepresented in the existing protected area network, a finding that can inform efforts to expand protected areas. Our case study highlights how considering exposure to multiple stressors can inform planning and practice to conserve biodiversity in a changing world.
Collapse
Affiliation(s)
- Isabel M. Rojas
- Department of BiologySan Diego State UniversitySan DiegoCaliforniaUSA
| | - Megan K. Jennings
- Department of BiologySan Diego State UniversitySan DiegoCaliforniaUSA
- Institute for Ecological Monitoring and ManagementSan Diego State UniversitySan DiegoCaliforniaUSA
| | - Erin Conlisk
- Department of BiologySan Diego State UniversitySan DiegoCaliforniaUSA
- Point Blue Conservation SciencePetalumaCaliforniaUSA
| | - Alexandra D. Syphard
- Department of GeographySan Diego State UniversitySan DiegoCaliforniaUSA
- Vertus WildfireSan DiegoCaliforniaUSA
- Conservation Biology InstituteLa MesaCaliforniaUSA
| | - Jack Mikesell
- Department of Civil, Construction, & Environmental EngineeringSan Diego State UniversitySan DiegoCaliforniaUSA
| | - Alicia M. Kinoshita
- Department of Civil, Construction, & Environmental EngineeringSan Diego State UniversitySan DiegoCaliforniaUSA
| | - Krista West
- Department of GeographySan Diego State UniversitySan DiegoCaliforniaUSA
| | - Doug Stow
- Department of GeographySan Diego State UniversitySan DiegoCaliforniaUSA
| | - Emanuel Storey
- Department of GeographySan Diego State UniversitySan DiegoCaliforniaUSA
| | - Mark E. De Guzman
- Department of BiologySan Diego State UniversitySan DiegoCaliforniaUSA
- Department of Environmental Science and PolicyUniversity of California, DavisDavisCaliforniaUSA
| | - Diane Foote
- Department of BiologySan Diego State UniversitySan DiegoCaliforniaUSA
- School of Public AffairsSan Diego State UniversitySan DiegoCaliforniaUSA
| | | | | | - Sherry Ryan
- School of Public AffairsSan Diego State UniversitySan DiegoCaliforniaUSA
| | - Lorraine E. Flint
- Water Resources DisciplineU.S. Geological SurveySacramentoCaliforniaUSA
| | - Alan L. Flint
- Water Resources DisciplineU.S. Geological SurveySacramentoCaliforniaUSA
| | - Rebecca L. Lewison
- Department of BiologySan Diego State UniversitySan DiegoCaliforniaUSA
- Institute for Ecological Monitoring and ManagementSan Diego State UniversitySan DiegoCaliforniaUSA
| |
Collapse
|
8
|
Werner CM, Harrison SP, Safford HD, Bohlman GN, Serata R. Extreme pre-fire drought decreases shrub regeneration on fertile soils. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e02464. [PMID: 34614281 DOI: 10.1002/eap.2464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/16/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
Extreme drought and increasing temperatures can decrease the resilience of plant communities to fires. Not only may extremely dry conditions during or after fires lead to higher plant mortality and poorer recruitment, but severe pre-fire droughts may reduce the seed production and belowground vigor that are essential to post-fire plant recovery, and may indirectly facilitate invasion. We studied survival, recruitment, and growth of shrubs and herbs in chaparral (shrubland) communities in Northern California after a 2015 fire that immediately followed California's extreme 3-yr drought. We followed the same protocols used to study similar, adjacent communities after a 1999 fire that did not follow a drought, and we compared the two recovery trajectories. Overall, the 2015 fire was not more severe than the 1999 fire, yet it caused higher mortality and lower growth of resprouting shrubs on fertile (sandstone) soils. In contrast, the 2015 fire did not affect the mortality or growth of resprouting shrubs on infertile (serpentine) soils, the density of shrub seedlings, or the richness or cover of native herbs differently than the 1999 fire. However, the 2015 fire facilitated a massive increase in exotic herbaceous cover, especially on fertile soils, possibly portending the early stages of a type conversion to exotic-dominated grassland. Our findings indicate that the consequences of climate change on fire-dependent communities will include effects of pre-fire as well as post-fire climate, and that resprouting shrubs are particularly likely to be sensitive to pre-fire drought.
Collapse
Affiliation(s)
- Chhaya M Werner
- Department of Plant Sciences and Graduate Group in Population Biology, University of California, Davis, California, 95616, USA
- Department of Environmental Science and Policy, University of California, Davis, California, 95616, USA
| | - Susan P Harrison
- Department of Environmental Science and Policy, University of California, Davis, California, 95616, USA
| | - Hugh D Safford
- Department of Environmental Science and Policy, University of California, Davis, California, 95616, USA
- USDA Forest Service Region 5, Vallejo, California, 94592, USA
| | | | - Rebecca Serata
- Department of Environmental Science and Policy, University of California, Davis, California, 95616, USA
| |
Collapse
|
9
|
Pratt RB. Vegetation-type conversion of evergreen chaparral shrublands to savannahs dominated by exotic annual herbs: causes and consequences for ecosystem function. AMERICAN JOURNAL OF BOTANY 2022; 109:9-28. [PMID: 34636412 DOI: 10.1002/ajb2.1777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Woody, evergreen shrublands are the archetypal community in mediterranean-type ecosystems, and these communities are profoundly changed when they undergo vegetation-type conversion (VTC) to become annual, herb-dominated communities. Recently, VTC has occurred throughout southern California chaparral shrublands, likely with changes in important ecosystem functions. The mechanisms that lead to VTC and subsequent changes to ecosystem processes are important to understand as they have regional and global implications for ecosystem services, climate change, land management, and policy. The main drivers of VTC are altered fire regimes, aridity, and anthropogenic disturbance. Some changes to ecosystem function are certain to occur with VTC, but their magnitudes are unclear, whereas other changes are unpredictable. I present two hypotheses: (1) VTC leads to warming that creates a positive feedback promoting additional VTC, and (2) altered nitrogen dynamics create negative feedbacks and promote an alternative stable state in which communities are dominated by herbs. The patterns described for California are mostly relevant to the other mediterranean-type shrublands of the globe, which are biodiversity hotspots and threatened by VTC. This review examines the extent and causes of VTC, ecosystem effects, and future research priorities.
Collapse
Affiliation(s)
- R Brandon Pratt
- Department of Biology, California State University, Bakersfield, CA, USA
| |
Collapse
|
10
|
Slaton MR, Kohler T, Young L, Molinari NA. An operational tool to detect non-native invasive grasses: Assessing temporal transferability and bias in fires to optimize performance for land management. ECOL INFORM 2021. [DOI: 10.1016/j.ecoinf.2021.101440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Crausbay SD, Sofaer HR, Cravens AE, Chaffin BC, Clifford KR, Gross JE, Knapp CN, Lawrence DJ, Magness DR, Miller-Rushing AJ, Schuurman GW, Stevens-Rumann CS. A Science Agenda to Inform Natural Resource Management Decisions in an Era of Ecological Transformation. Bioscience 2021. [DOI: 10.1093/biosci/biab102] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Earth is experiencing widespread ecological transformation in terrestrial, freshwater, and marine ecosystems that is attributable to directional environmental changes, especially intensifying climate change. To better steward ecosystems facing unprecedented and lasting change, a new management paradigm is forming, supported by a decision-oriented framework that presents three distinct management choices: resist, accept, or direct the ecological trajectory. To make these choices strategically, managers seek to understand the nature of the transformation that could occur if change is accepted while identifying opportunities to intervene to resist or direct change. In this article, we seek to inspire a research agenda for transformation science that is focused on ecological and social science and based on five central questions that align with the resist–accept–direct (RAD) framework. Development of transformation science is needed to apply the RAD framework and support natural resource management and conservation on our rapidly changing planet.
Collapse
Affiliation(s)
- Shelley D Crausbay
- Conservation Science Partners, Fort Collins, Colorado, and is a consortium partner for the US Geological Survey's North Central Climate Adaptation Science Center, Boulder, Colorado, United States
| | - Helen R Sofaer
- US Geological Survey Pacific Island Ecosystems Research Center, Hawaii Volcanoes National Park, Hawai'i, United States
| | - Amanda E Cravens
- US Geological Survey's Social and Economic Analysis Branch, Fort Collins, Colorado, United States
| | | | - Katherine R Clifford
- US Geological Survey's Social and Economic Analysis Branch, Fort Collins, Colorado, United States
| | - John E Gross
- US National Park Service Climate Change Response Program, Fort Collins, Colorado, United States
| | | | - David J Lawrence
- US National Park Service Climate Change Response Program, Fort Collins, Colorado, United States
| | - Dawn R Magness
- US Fish and Wildlife Service, Kenai National Wildlife Refuge, Soldotna, Alaska, United States
| | | | - Gregor W Schuurman
- US National Park Service Climate Change Response Program, in Fort Collins, Colorado, United States
| | - Camille S Stevens-Rumann
- Forest and Rangeland Stewardship Department and assistant director of the Colorado Forest Restoration Institute, at Colorado State University, Fort Collins, Colorado, United States
| |
Collapse
|
12
|
Miller JED, Weill AM, Villella J. Epiphytic macrolichen communities take decades to recover after high‐severity wildfire in chaparral shrublands. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
13
|
Vourlitis GL, Jaureguy J, Marin L, Rodriguez C. Shoot and root biomass production in semi-arid shrublands exposed to long-term experimental N input. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142204. [PMID: 33254913 DOI: 10.1016/j.scitotenv.2020.142204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 06/12/2023]
Abstract
Anthropogenic nitrogen (N) deposition has affected the primary production of terrestrial ecosystems worldwide; however, ecosystem responses often vary over time because of transient responses, interactions between N, precipitation, and/or other nutrients, and changes in plant species composition. Here we report N-induced changes in above- and below-ground standing crop and production over an 11-year period for two semi-arid shrublands, chaparral and coastal sage scrub (CSS), of Southern California. Shrubs were exposed to 50 kgN ha-1 in the fall of each year to simulate the accumulation of dry N deposition, and shoot and root biomass and leaf area index (LAI) were measured every 3 months to assess how biomass production responded to chronic, dry N inputs. N inputs significantly altered above- and below-ground standing crop, production, and LAI; however, N impacts varied over time. For chaparral, N inputs initially increased root production but suppressed shoot production; however, over time biomass partitioning reversed and plants exposed to N had significantly more shoot biomass. In CSS, N inputs caused aboveground production to increase only during wet years, and this interaction between added N and precipitation was due in part to a highly flexible growth response of CSS shrubs to increases in N and water availability and to a shift from slower-growing native shrubs to fast-growing introduced annuals. Together, these results indicate that long-term N inputs will lead to complex, spatially and temporally variable growth responses for these, and similar, Mediterranean-type shrublands.
Collapse
Affiliation(s)
- George L Vourlitis
- Department of Biological Sciences, California State University, San Marcos, CA 92064, United States of America.
| | - Jeff Jaureguy
- Department of Biological Sciences, California State University, San Marcos, CA 92064, United States of America
| | - Leticia Marin
- Department of Biological Sciences, California State University, San Marcos, CA 92064, United States of America
| | - Charlton Rodriguez
- Department of Biological Sciences, California State University, San Marcos, CA 92064, United States of America
| |
Collapse
|
14
|
Kelly LT, Giljohann KM, Duane A, Aquilué N, Archibald S, Batllori E, Bennett AF, Buckland ST, Canelles Q, Clarke MF, Fortin MJ, Hermoso V, Herrando S, Keane RE, Lake FK, McCarthy MA, Morán-Ordóñez A, Parr CL, Pausas JG, Penman TD, Regos A, Rumpff L, Santos JL, Smith AL, Syphard AD, Tingley MW, Brotons L. Fire and biodiversity in the Anthropocene. Science 2021; 370:370/6519/eabb0355. [PMID: 33214246 DOI: 10.1126/science.abb0355] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022]
Abstract
Fire has been a source of global biodiversity for millions of years. However, interactions with anthropogenic drivers such as climate change, land use, and invasive species are changing the nature of fire activity and its impacts. We review how such changes are threatening species with extinction and transforming terrestrial ecosystems. Conservation of Earth's biological diversity will be achieved only by recognizing and responding to the critical role of fire. In the Anthropocene, this requires that conservation planning explicitly includes the combined effects of human activities and fire regimes. Improved forecasts for biodiversity must also integrate the connections among people, fire, and ecosystems. Such integration provides an opportunity for new actions that could revolutionize how society sustains biodiversity in a time of changing fire activity.
Collapse
Affiliation(s)
- Luke T Kelly
- School of Ecosystem and Forest Sciences, University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | - Andrea Duane
- InForest JRU (CTFC-CREAF), 25280 Solsona, Lleida, Spain
| | - Núria Aquilué
- InForest JRU (CTFC-CREAF), 25280 Solsona, Lleida, Spain.,Centre d'Étude de la Forêt, Université du Québec à Montréal, Montreal, Quebec H3C 3P8, Canada
| | - Sally Archibald
- Centre for African Ecology, School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Natural Resources and the Environment, CSIR, Pretoria, South Africa
| | - Enric Batllori
- CREAF, Edifici C. Autonomous, University of Barcelona, 08193 Bellaterra, Barcelona, Spain.,Department of Evolutionary Biology, Ecology, and Environmental Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Andrew F Bennett
- Department of Ecology, Environment and Evolution, Centre for Future Landscapes, La Trobe University, Bundoora, Australia
| | - Stephen T Buckland
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, Fife KY16 9LZ, UK
| | - Quim Canelles
- InForest JRU (CTFC-CREAF), 25280 Solsona, Lleida, Spain
| | - Michael F Clarke
- Department of Ecology, Environment and Evolution, Centre for Future Landscapes, La Trobe University, Bundoora, Australia
| | - Marie-Josée Fortin
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | | | - Sergi Herrando
- Catalan Ornithological Institute, Natural History Museum of Barcelona, 08019 Barcelona, Catalonia, Spain
| | - Robert E Keane
- U.S. Department of Agriculture Forest Service Rocky Mountain Research Station, Missoula Fire Sciences Laboratory, Missoula, MT 59808, USA
| | - Frank K Lake
- U.S. Department of Agriculture Forest Service Pacific Southwest Research Station, Albany, CA 94710, USA
| | - Michael A McCarthy
- School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | - Catherine L Parr
- Centre for African Ecology, School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Department of Earth, Ocean & Ecological Sciences, University of Liverpool, Liverpool, UK.,Department of Zoology & Entomology, University of Pretoria, Pretoria, South Africa
| | - Juli G Pausas
- Centro de Investigaciones sobre Desertificación (CIDE-CSIC), 46113 Montcada, Valencia, Spain
| | - Trent D Penman
- School of Ecosystem and Forest Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Adrián Regos
- Departamento de Zooloxía, Xenética e Antropoloxía Fisica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,CIBIO/InBIO, Research Center in Biodiversity and Genetic Resources, ECOCHANGE Group, Vairão, Portugal
| | - Libby Rumpff
- School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Julianna L Santos
- School of Ecosystem and Forest Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Annabel L Smith
- School of Agriculture and Food Science, University of Queensland, Gatton 4343, Australia.,Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Alexandra D Syphard
- Vertus Wildfire, San Francisco, CA 94108, USA.,San Diego State University, San Diego, CA 92182, USA.,Conservation Biology Institute, Corvallis, OR 97333, USA
| | - Morgan W Tingley
- Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
| | - Lluís Brotons
- InForest JRU (CTFC-CREAF), 25280 Solsona, Lleida, Spain.,CREAF, Edifici C. Autonomous, University of Barcelona, 08193 Bellaterra, Barcelona, Spain.,Spanish Research Council (CSIC), 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
15
|
Storey EA, Stow DA, O'Leary JF, Davis FW, Roberts DA. Does short-interval fire inhibit postfire recovery of chaparral across southern California? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:142271. [PMID: 33182014 PMCID: PMC7670083 DOI: 10.1016/j.scitotenv.2020.142271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
Regrowth after fire is critical to the persistence of chaparral shrub communities in southern California, which has been subject to frequent fire events in recent decades. Fires that recur at short intervals of 10 years or less have been considered an inhibitor of recovery and the major cause of 'community type-conversion' in chaparral, primarily based on studies of small extents and limited time periods. However, recent sub-regional investigations based on remote sensing suggest that short-interval fire (SIF) does not have ubiquitous impact on postfire chaparral recovery. A region-wide analysis including a greater spatial extent and time period is needed to better understand SIF impact on chaparral. This study evaluates patterns of postfire recovery across southern California, based on temporal trajectories of Normalized Difference Vegetation Index (NDVI) derived from June-solstice Landsat image series covering the period 1984-2018. High spatial resolution aerial images were used to calibrate Landsat NDVI trajectory-based estimates of change in fractional shrub cover (dFSC) for 294 stands. The objectives of this study were (1) to assess effects of time between fires and number of burns on recovery, using stand-aggregate samples (n = 294) and paired single- and multiple-burn sample plots (n = 528), and (2) to explain recovery variations among predominant single-burn locations based on shrub community type, climate, soils, and terrain. Stand-aggregate samples showed a significant but weak effect of SIF on recovery (p < 0.001; R2 = 0.003). Results from paired sample plots showed no significant effect of SIF on dFSC among twice-burned sites, although recovery was diminished due to SIF at sites that burned three times within 25 years. Multiple linear regression showed that annual precipitation and temperature, chaparral community type, and edaphic variables explain 28% of regional variation in recovery of once-burned sites. Many stands that exhibited poor recovery had burned only once and consist of xeric, desert-fringe chamise in soils of low clay content.
Collapse
Affiliation(s)
- Emanuel A Storey
- Department of Geography, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, United States of America.
| | - Douglas A Stow
- Department of Geography, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, United States of America.
| | - John F O'Leary
- Department of Geography, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, United States of America.
| | - Frank W Davis
- Bren School of Environmental Science and Management, University of California-Santa Barbara, Santa Barbara, CA 93106, United States of America.
| | - Dar A Roberts
- Department of Geography, University of California-Santa Barbara, Santa Barbara, CA 93106, United States of America.
| |
Collapse
|
16
|
Storey EA, Stow DA, Roberts DA, O'Leary JF, Davis FW. Evaluating Drought Impact on Postfire Recovery of Chaparral Across Southern California. Ecosystems 2020; 2020. [PMID: 33293894 DOI: 10.1007/s10021-020-00551-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Chaparral shrubs in southern California may be vulnerable to frequent fire and severe drought. Drought may diminish postfire recovery or worsen impact of short-interval fires. Field-based studies have not shown the extent and magnitude of drought effects on recovery, which may vary among chaparral types and climatic zones. We tracked regional patterns of shrub cover based on June-solstice Landsat Normalized Difference Vegetation Index series, compared between the periods 1984-1989 and 2014-2018. High spatial resolution ortho-imagery was used to map shrub cover in distributed sample plots, to empirically constrain the Landsat-based estimates of mature-stage lateral canopy recovery. We evaluated precipitation, climatic water deficit (CWD), and Palmer Drought Severity Index in summer and wet seasons preceding and following fire, as regional predictors of recovery in 982 locations between the Pacific Coast and inland deserts. Wet-season CWD was the strongest drought-metric predictor of recovery, contributing 34-43 % of explanatory power in multivariate regressions (R 2 =0.16-0.42). Limited recovery linked to drought was most prevalent in transmontane chamise chaparral; impacts were minor in montane areas, and in mixed and montane chaparral types. Elevation was correlated negatively to recovery of transmontane chamise; this may imply acute drought sensitivity in resprouts which predominate seedlings at higher elevations. Landsat Visible Atmospherically Resistant Index (sensitive to live-fuel moisture) was evaluated as a landscape-scale predictor of recovery and explained the greatest amount of variance in a multivariate regression (R 2 = 0.53). We find that drought severity was more closely related to recovery differences among twice-burned sites than was fire-return interval. Summarily, drought has a major role in long-term shrub cover reduction within xeric chaparral ecotones bounding the Mojave Desert and Colorado Desert, likely in tandem with other global change stressors.
Collapse
Affiliation(s)
- Emanuel A Storey
- Department of Geography, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA
| | - Douglas A Stow
- Department of Geography, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA
| | - Dar A Roberts
- Department of Geography, University of California-Santa Barbara, 3611 Ellison Hall, Santa Barbara, California 93106, USA
| | - John F O'Leary
- Department of Geography, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA
| | - Frank W Davis
- Bren School of Environmental Science and Management, University of California-Santa Barbara, 2400 Bren Hall, Santa Barbara, California 93106, USA
| |
Collapse
|
17
|
Abstract
The goal of this research was to characterize the impact of invasive riparian vegetation on burn severity patterns and fluvial topographic change in an urban Mediterranean riverine system (Med-sys) after fire in San Diego, California. We assessed standard post-fire metrics under urban conditions with non-native vegetation and utilized field observations to quantify vegetation and fluvial geomorphic processes. Field observations noted both high vegetation loss in the riparian area and rapidly resprouting invasive grass species such as Arundo donax (Giant Reed) after fire. Satellite-based metrics that represent vegetation biomass underestimated the initial green canopy loss, as did volumetric data derived from three-dimensional terrestrial laser scanning data. Field measurements were limited to a small sample size but demonstrated that the absolute maximum topographic changes were highest in stands of Arundo donax (0.18 to 0.67 m). This work is the first quantification of geomorphic alterations promoted by non-native vegetation after fire and highlights potential grass–fire feedbacks that can contribute to geomorphic disruption. Our results support the need for ground-truthing or higher resolution when using standard satellite-based indices to assess post-fire conditions in urban open spaces, especially when productive invasive vegetation are present, and they also emphasize restoring urban waterways to native vegetation conditions.
Collapse
|
18
|
Quantifying Drought Sensitivity of Mediterranean Climate Vegetation to Recent Warming: A Case Study in Southern California. REMOTE SENSING 2019. [DOI: 10.3390/rs11242902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A combination of drought and high temperatures (“global-change-type drought”) is projected to become increasingly common in Mediterranean climate regions. Recently, Southern California has experienced record-breaking high temperatures coupled with significant precipitation deficits, which provides opportunities to investigate the impacts of high temperatures on the drought sensitivity of Mediterranean climate vegetation. Responses of different vegetation types to drought are quantified using the Moderate Resolution Imaging Spectroradiometer (MODIS) data for the period 2000–2017. The contrasting responses of the vegetation types to drought are captured by the correlation and regression coefficients between Normalized Difference Vegetation Index (NDVI) anomalies and the Palmer Drought Severity Index (PDSI). A novel bootstrapping regression approach is used to decompose the relationships between the vegetation sensitivity (NDVI–PDSI regression slopes) and the principle climate factors (temperature and precipitation) associated with the drought. Significantly increased sensitivity to drought in warmer locations indicates the important role of temperature in exacerbating vulnerability; however, spatial precipitation variations do not demonstrate significant effects in modulating drought sensitivity. Based on annual NDVI response, chaparral is the most vulnerable community to warming, which will probably be severely affected by hotter droughts in the future. Drought sensitivity of coastal sage scrub (CSS) is also shown to be very responsive to warming in fall and winter. Grassland and developed land will likely be less affected by this warming. The sensitivity of the overall vegetation to temperature increases is particularly concerning, as it is the variable that has had the strongest secular trend in recent decades, which is expected to continue or strengthen in the future. Increased temperatures will probably alter vegetation distribution, as well as possibly increase annual grassland cover, and decrease the extent and ecological services provided by perennial woody Mediterranean climate ecosystems as well.
Collapse
|
19
|
Syphard AD, Brennan TJ, Keeley JE. Extent and drivers of vegetation type conversion in Southern California chaparral. Ecosphere 2019. [DOI: 10.1002/ecs2.2796] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Alexandra D. Syphard
- Conservation Biology Institute 136 SW Washington Avenue, Suite 202 Corvallis Oregon 97333 USA
- Sage Underwriters 4250 Executive Square, Suite 900 La Jolla California 92037 USA
| | | | - Jon E. Keeley
- USGS Western Ecological Research Center Three Rivers California USA
- Department of Ecology & Evolutionary Biology University of California Los Angeles California USA
| |
Collapse
|