1
|
Wirabuana PYAP, Baskorowati L, Pamungkas B, Mulyana B, South J, Purnobasuki H, Andriyono S, Hasan V. Mangroves, fauna compositions and carbon sequestration after ten years restoration on Flores Island, Indonesia. Sci Rep 2025; 15:4866. [PMID: 39929922 PMCID: PMC11811105 DOI: 10.1038/s41598-025-87307-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 01/17/2025] [Indexed: 02/13/2025] Open
Abstract
Indonesia has extensively reforested mangroves to stabilize coastal ecosystems and mitigate climate change. Reforestation's long-term effects on recovering mangroves are not extensively established because most projects are only observed for two years. It raises the question of whether mangrove replanting aids biodiversity conservation and ecological recovery. This study will characterize Flores Island mangrove ecosystems after ten years of regeneration. The ecological survey took place at Bangkoor, Kolisia, and Talibura reforestation areas. Floristic composition, wildlife diversity, carbon sequestration, and energy storage were measured at each location. Field observations revealed 10 mangrove species and 11 species, which is varying by site. Flora diversity was highest in Kolisia and fauna diversity was highest in Talibura. Talibura and Kolisia have similar vegetation and wildlife than Bangkoor. Restored mangrove stands sequestered 28.69 - 70.02 Mg CO2 ha- 1 and stored 30.54 × 104 - 54.07 × 104 MJ ha- 1 of energy. Rhizophora apiculata (47.37 ± 5.68 kg CO2) had the most carbon sequestration, while Bruguiera gymnorhiza (645.22 ± 21.65 MJ) had the highest energy storage. Reforestation-induced mangrove ecosystems have biodiversity, carbon storage, and energy stock features.
Collapse
Affiliation(s)
- Pandu Y A P Wirabuana
- Faculty of Forestry, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Trofsit Research Center, Yogyakarta, Indonesia
| | - Liliana Baskorowati
- Research Centre for Applied Botany, National Research and Innovation Agency, Bogor, Indonesia.
| | - Bayu Pamungkas
- Research Assistance of Breeding Research Group for Timber-Producing Resources, Research Centre for Applied Botany, National Research and Innovation Agency, Bogor, Indonesia
| | - Budi Mulyana
- Faculty of Forestry, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Faculty of Forestry, University of Sopron, Sopron, Hungary
| | - Josie South
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Hery Purnobasuki
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
| | - Sapto Andriyono
- Department of Aquaculture, Faculty of Fisheries and Marine Science, Universitas Airlangga, Surabaya, Indonesia
| | - Veryl Hasan
- Department of Aquaculture, Faculty of Fisheries and Marine Science, Universitas Airlangga, Surabaya, Indonesia.
| |
Collapse
|
2
|
Marrero P, Fregel R, Richardson DS. Inter and intra-island genetic structure and differentiation of the endemic Bolle's Laurel Pigeon (Columba bollii) in the Canary archipelago. ZOOLOGY 2024; 167:126209. [PMID: 39303381 DOI: 10.1016/j.zool.2024.126209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Islands provide excellent settings for studying the evolutionary history of species, since their geographic isolation and relatively small size limit gene flow between populations, and promote divergence and speciation. The endemic Bolle's Laurel Pigeon Columba bollii is an arboreal frugivorous bird species distributed on laurel forests in four islands of the Canary archipelago. To elucidate the population genetics, we genotyped ten microsatellite loci using DNA obtained from non-invasive samples collected across practically all laurel forest remnants, and subsequently grouped into eight sampling sites. Analyses including F-statistics, Bayesian clustering approaches, isolation by distance tests and population graph topologies, were used to infer the genetic diversity and the population differentiation within and among insular populations. Additionally, we evaluated the effect of null alleles on data analysis. Low genetic diversity was found in all populations of Bolle's Laurel Pigeon, with no significant differences in diversity among them. However, significant genetic differentiation was detected among all populations, with pigeons from La Palma and El Hierro exhibiting the closest affinity. Bayesian clustering supported population separation between islands, and also detected fine-scale structure within the Tenerife and La Gomera populations. Our results suggest that, despite columbids have a high movement ability, they can show signature of genetic divergence among populations, particularly on oceanic islands. Geological history of the islands and distribution range of habitats could have close influence on the evolutionary trajectories of these birds. This approach can provide practical tools to implement appropriate conservation measures for range-restricted species and their habitat.
Collapse
Affiliation(s)
- Patricia Marrero
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Island Ecology and Evolution Research Group, La Laguna, Tenerife, Canary Islands, Spain; School of Biological Sciences, University of East Anglia, Norwich, Norfolk, UK
| | - Rosa Fregel
- Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, Tenerife, Canary Islands, Spain.
| | - David S Richardson
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, UK
| |
Collapse
|
3
|
Wang J, Xie W, Si F, He Z, Wang X, Shao S, Shi S, Guo Z. Evolution of sea-surfing plant propagule as revealed by the genomes of Heritiera mangroves. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:432-448. [PMID: 37850375 DOI: 10.1111/tpj.16499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/13/2023] [Accepted: 10/04/2023] [Indexed: 10/19/2023]
Abstract
Coastal forests, such as mangroves, protect much of the tropical and subtropical coasts. Long-distance dispersal via sea-surfing propagules is essential for coastal plants, but the genomic and molecular basis of sea-surfing plant propagule evolution remains unclear. Heritiera fomes and Heritiera littoralis are two coastal plants with typical buoyant fruits. We de novo sequenced and assembled their high-quality genomes. Our phylogenomic analysis indicates H. littoralis and H. fomes originated (at ~6.08 Mya) just before the start of Quaternary sea-level fluctuations. Whole-genome duplication occurred earlier, permitting gene copy gains in the two species. Many of the expanded gene families are involved in lignin and flavonoid biosynthesis, likely contributing to buoyant fruit emergence. It is repeatedly revealed that one duplicated copy to be under positive selection while the other is not. By examining H. littoralis fruits at three different developmental stages, we found that gene expression levels remain stable from young to intermediate. However, ~1000 genes are up-regulated and ~ 3000 genes are down-regulated as moving to mature. Particularly in fruit epicarps, the upregulation of WRKY12 and E2Fc likely constrains the production of p-Coumaroyl-CoA, the key internal substrate for lignin biosynthesis. Hence, to increase fruit impermeability, methylated lignin biosynthesis is shut down by down-regulating the genes CCoAOMT, F5H, COMT, and CSE, while unmethylated lignins are preferentially produced by upregulating CAD and CCR. Similarly, cutin polymers and cuticular waxes accumulate with high levels before maturation in epicarps. Overall, our genome assemblies and analyses uncovered the genomic evolution and temporal transcriptional regulation of sea-surfing propagule.
Collapse
Affiliation(s)
- Jiayan Wang
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wei Xie
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, Guangdong, China
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| | - Fa Si
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ziwen He
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xinfeng Wang
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shao Shao
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zixiao Guo
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Nimbs MJ, Champion C, Lobos SE, Malcolm HA, Miller AD, Seinor K, Smith SD, Knott N, Wheeler D, Coleman MA. Genomic analyses indicate resilience of a commercially and culturally important marine gastropod snail to climate change. PeerJ 2023; 11:e16498. [PMID: 38025735 PMCID: PMC10676721 DOI: 10.7717/peerj.16498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Genomic vulnerability analyses are being increasingly used to assess the adaptability of species to climate change and provide an opportunity for proactive management of harvested marine species in changing oceans. Southeastern Australia is a climate change hotspot where many marine species are shifting poleward. The turban snail, Turbo militaris is a commercially and culturally harvested marine gastropod snail from eastern Australia. The species has exhibited a climate-driven poleward range shift over the last two decades presenting an ongoing challenge for sustainable fisheries management. We investigate the impact of future climate change on T. militaris using genotype-by-sequencing to project patterns of gene flow and local adaptation across its range under climate change scenarios. A single admixed, and potentially panmictic, demographic unit was revealed with no evidence of genetic subdivision across the species range. Significant genotype associations with heterogeneous habitat features were observed, including associations with sea surface temperature, ocean currents, and nutrients, indicating possible adaptive genetic differentiation. These findings suggest that standing genetic variation may be available for selection to counter future environmental change, assisted by widespread gene flow, high fecundity and short generation time in this species. We discuss the findings of this study in the content of future fisheries management and conservation.
Collapse
Affiliation(s)
- Matt J. Nimbs
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
- NSW Department of Primary Industries, Fisheries, National Marine Science Centre, Coffs Harbour, Australia
| | - Curtis Champion
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
- NSW Department of Primary Industries, Fisheries, National Marine Science Centre, Coffs Harbour, Australia
| | - Simon E. Lobos
- Deakin Genomics Centre, Deakin University, Geelong, Vic, Australia
- School of Life and Environmental Sciences, Deakin University, Warrnambool, Vic, Australia
| | - Hamish A. Malcolm
- NSW Department of Primary Industries, Fisheries Research, Coffs Harbour, NSW, Australia
| | - Adam D. Miller
- Deakin Genomics Centre, Deakin University, Geelong, Vic, Australia
- School of Life and Environmental Sciences, Deakin University, Warrnambool, Vic, Australia
| | - Kate Seinor
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Stephen D.A. Smith
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
- Aquamarine Australia, Mullaway, NSW, Australia
| | - Nathan Knott
- NSW Department of Primary Industries, Fisheries Research, Huskisson, NSW, Australia
| | - David Wheeler
- NSW Department of Primary Industries, Orange, NSW, Australia
| | - Melinda A. Coleman
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
- NSW Department of Primary Industries, Fisheries, National Marine Science Centre, Coffs Harbour, Australia
| |
Collapse
|
5
|
Malekmohammadi L, Sheidai M, Ghahremaninejad F, Danehkar A, Koohdar F. Studies on genetic diversity, gene flow and landscape genetic in Avicennia marina: Spatial PCA, Random Forest, and phylogeography approaches. BMC PLANT BIOLOGY 2023; 23:459. [PMID: 37789283 PMCID: PMC10546741 DOI: 10.1186/s12870-023-04475-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023]
Abstract
Mangrove forests grow in coastal areas, lagoons, estuaries, and deltas and form the main vegetation in tidal and saline wetlands. Due to the mankind activities and also changes in climate, these forests face degradations and probably extinction in some areas. Avicennia marina is one of the most distributed mangrove species throughout the world. The populations of A. marina occur in a limited region in southern parts of Iran. Very few genetic and spatial analyses are available on these plants from our country. Therefore, the present study was planned to provide detailed information on Avicennia marina populations with regard to genetic diversity, gene flow versus genetic isolation, effects of spatial variables on connectivity and structuring the genetic content of trees populations and also identifying adaptive genetic regions in respond too spatial variables. We used SCoT molecular markers for genetic analyses and utilized different computational approaches for population genetics and landscapes analyses. The results of present study showed a low to moderate genetic diversity in the studied populations and presence of significant Fst values among them. Genetic fragmentation was also observed within each province studied. A limited gene flow was noticed among neighboring populations within a particular province. One population was almost completely isolated from the gene flow with other populations and had peculiar genetic content.Spatial PCA analysis revealed both significant global and local genetic structuring in the studied populations. Spatial variables like humidity, longitude and altitude were the most important spatial features affecting genetic structure in these populations.
Collapse
Affiliation(s)
- Laleh Malekmohammadi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Masoud Sheidai
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Farrokh Ghahremaninejad
- Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Afshin Danehkar
- Department of Environmental Sciences, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Fahimeh Koohdar
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
6
|
Hernawan UE, van Dijk K, Kendrick GA, Feng M, Berry O, Kavazos C, McMahon K. Ocean connectivity and habitat characteristics predict population genetic structure of seagrass in an extreme tropical setting. Ecol Evol 2023; 13:e10257. [PMID: 37404702 PMCID: PMC10316484 DOI: 10.1002/ece3.10257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/06/2023] Open
Abstract
Understanding patterns of gene flow and processes driving genetic differentiation is important for a broad range of conservation practices. In marine organisms, genetic differentiation among populations is influenced by a range of spatial, oceanographic, and environmental factors that are attributed to the seascape. The relative influences of these factors may vary in different locations and can be measured using seascape genetic approaches. Here, we applied a seascape genetic approach to populations of the seagrass, Thalassia hemprichii, at a fine spatial scale (~80 km) in the Kimberley coast, western Australia, a complex seascape with strong, multidirectional currents greatly influenced by extreme tidal ranges (up to 11 m, the world's largest tropical tides). We incorporated genetic data from a panel of 16 microsatellite markers, overwater distance, oceanographic data derived from predicted passive dispersal on a 2 km-resolution hydrodynamic model, and habitat characteristics from each meadow sampled. We detected significant spatial genetic structure and asymmetric gene flow, in which meadows 12-14 km apart were less connected than ones 30-50 km apart. This pattern was explained by oceanographic connectivity and differences in habitat characteristics, suggesting a combined scenario of dispersal limitation and facilitation by ocean current with local adaptation. Our findings add to the growing evidence for the key role of seascape attributes in driving spatial patterns of gene flow. Despite the potential for long-distance dispersal, there was significant genetic structuring over small spatial scales implicating dispersal and recruitment bottlenecks and highlighting the importance of implementing local-scale conservation and management measures.
Collapse
Affiliation(s)
- Udhi E. Hernawan
- School of Science and Centre for Marine Ecosystems ResearchEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Research Centre for Oceanography (PRO), National Research and Innovation Agency (BRIN)JakartaIndonesia
| | - Kor‐jent van Dijk
- School of Biological SciencesThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Gary A. Kendrick
- School of Biological Sciences and The Ocean InstituteThe University of Western AustraliaCrawleyWestern AustraliaAustralia
- Western Australian Marine Science InstitutionPerthWestern AustraliaAustralia
| | - Ming Feng
- Western Australian Marine Science InstitutionPerthWestern AustraliaAustralia
- CSIRO Environment, Indian Ocean Marine Research CentreCrawleyWestern AustraliaAustralia
| | - Oliver Berry
- Western Australian Marine Science InstitutionPerthWestern AustraliaAustralia
- CSIRO Environment, Indian Ocean Marine Research CentreCrawleyWestern AustraliaAustralia
| | - Christopher Kavazos
- School of Science and Centre for Marine Ecosystems ResearchEdith Cowan UniversityJoondalupWestern AustraliaAustralia
| | - Kathryn McMahon
- School of Science and Centre for Marine Ecosystems ResearchEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Western Australian Marine Science InstitutionPerthWestern AustraliaAustralia
| |
Collapse
|
7
|
Chaput R, Quigley CN, Weppe SB, Jeffs AG, de Souza JMAC, Gardner JPA. Identifying the source populations supplying a vital economic marine species for the New Zealand aquaculture industry. Sci Rep 2023; 13:9344. [PMID: 37291180 PMCID: PMC10250383 DOI: 10.1038/s41598-023-36224-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023] Open
Abstract
Aquaculture of New Zealand's endemic green-lipped mussel (Perna canaliculus) is an industry valued at NZ$ 336 M per annum and is ~ 80% reliant on the natural supply of wild mussel spat harvested at a single location-Te Oneroa-a-Tōhē-Ninety Mile Beach (NMB)-in northern New Zealand. Despite the economic and ecological importance of this spat supply, little is known about the population connectivity of green-lipped mussels in this region or the location of the source population(s). In this study, we used a biophysical model to simulate the two-stage dispersal process of P. canaliculus. A combination of backward and forward tracking experiments was used to identify primary settlement areas and putative source populations. The model was then used to estimate the local connectivity, revealing two geographic regions of connectivity in northern New Zealand, with limited larval exchange between them. Although secondary dispersal can double the dispersal distance, our simulations show that spat collected at NMB originate from neighbouring mussel beds, with large contributions from beds located at Ahipara (southern end of NMB). These results provide information that may be used to help monitor and protect these important source populations to ensure the ongoing success of the New Zealand mussel aquaculture industry.
Collapse
Affiliation(s)
- Romain Chaput
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.
- Cawthron Institute, Nelson, New Zealand.
| | - Calvin N Quigley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Simon B Weppe
- MetOcean Solutions, Division of Meteorological Service of New Zealand, Raglan, New Zealand
| | - Andrew G Jeffs
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - João M A C de Souza
- MetOcean Solutions, Division of Meteorological Service of New Zealand, Raglan, New Zealand
| | - Jonathan P A Gardner
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
8
|
Gouvêa LP, Fragkopoulou E, Cavanaugh K, Serrão EA, Araújo MB, Costello MJ, Westergerling EHT, Assis J. Oceanographic connectivity explains the intra-specific diversity of mangrove forests at global scales. Proc Natl Acad Sci U S A 2023; 120:e2209637120. [PMID: 36996109 PMCID: PMC10083552 DOI: 10.1073/pnas.2209637120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 02/16/2023] [Indexed: 03/31/2023] Open
Abstract
The distribution of mangrove intra-specific biodiversity can be structured by historical demographic processes that enhance or limit effective population sizes. Oceanographic connectivity (OC) may further structure intra-specific biodiversity by preserving or diluting the genetic signatures of historical changes. Despite its relevance for biogeography and evolution, the role of oceanographic connectivity in structuring the distribution of mangrove's genetic diversity has not been addressed at global scale. Here we ask whether connectivity mediated by ocean currents explains the intra-specific diversity of mangroves. A comprehensive dataset of population genetic differentiation was compiled from the literature. Multigenerational connectivity and population centrality indices were estimated with biophysical modeling coupled with network analyses. The variability explained in genetic differentiation was tested with competitive regression models built upon classical isolation-by-distance (IBD) models considering geographic distance. We show that oceanographic connectivity can explain the genetic differentiation of mangrove populations regardless of the species, region, and genetic marker (significant regression models in 95% of cases, with an average R-square of 0.44 ± 0.23 and Person's correlation of 0.65 ± 0.17), systematically improving IBD models. Centrality indices, providing information on important stepping-stone sites between biogeographic regions, were also important in explaining differentiation (R-square improvement of 0.06 ± 0.07, up to 0.42). We further show that ocean currents produce skewed dispersal kernels for mangroves, highlighting the role of rare long-distance dispersal events responsible for historical settlements. Overall, we demonstrate the role of oceanographic connectivity in structuring mangrove intra-specific diversity. Our findings are critical for mangroves' biogeography and evolution, but also for management strategies considering climate change and genetic biodiversity conservation.
Collapse
Affiliation(s)
- Lidiane P. Gouvêa
- CCMAR–Center of Marine Sciences, University of the Algarve, 8005-139Faro, Portugal
| | - Eliza Fragkopoulou
- CCMAR–Center of Marine Sciences, University of the Algarve, 8005-139Faro, Portugal
| | - Kyle Cavanaugh
- Department of Geography, University of California, Los Angeles, CA90095
| | - Ester A. Serrão
- CCMAR–Center of Marine Sciences, University of the Algarve, 8005-139Faro, Portugal
| | - Miguel B. Araújo
- Department of Biogeography and Global Change, National Museum of Natural Sciences, CSIC-Spanish National Research Council,28806Madrid, Spain
- Rui Nabeiro Biodiversity Chair, MED–Mediterranean Institute for Agriculture, Environment and Development, University of Évora, 7000Évora, Portugal
| | - Mark John Costello
- Faculty of Bioscience and Aquaculture, Nord Universitet, 1490Bodø, Norway
| | - E. H. Taraneh Westergerling
- Department of Biological Sciences, University of Bergen,5020Bergen, Norway
- Institute of Marine Research, 5817Bergen, Norway
| | - Jorge Assis
- CCMAR–Center of Marine Sciences, University of the Algarve, 8005-139Faro, Portugal
- Faculty of Bioscience and Aquaculture, Nord Universitet, 1490Bodø, Norway
| |
Collapse
|
9
|
Kim YR, Kim HR, Kim JY, Myeong HH, Kang JH, Kim BJ, Lee HJ. Spatio-temporal genetic structure of the striped field mouse (Apodemus agrarius) populations inhabiting national parks in South Korea: Implications for conservation and management of protected areas. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1038058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Population or habitat connectivity is a key component in maintaining species and community-level regional biodiversity as well as intraspecific genetic diversity. Ongoing human activities cause habitat destruction and fragmentation, which exacerbate the connectivity due to restricted animal movements across local habitats, eventually resulting in the loss of biodiversity. The Baekdudaegan Mountain Range (BMR) on the Korean Peninsula represents “biodiversity hotspots” and eight of the 22 Korean national parks are located within the BMR. Given the striped field mouse (Apodemus agrarius) is the most common and ecologically important small mammals in these protected areas, the population genetic assessment of this species will allow for identifying “genetic diversity hotspots” and also “genetic barriers” that may hinder gene flow, and will therefore inform on effective conservation and management efforts for the national park habitats. We collected samples from hair, tail, or buccal swabs for 252 A. agrarius individuals in 2015 and 2019. By using mitochondrial DNA cytochrome b (cyt b) sequences and nine microsatellite loci, we determined levels of genetic diversity, genetic differentiation, and gene flow among eight national park populations of A. agrarius along the BMR. We found high levels of genetic diversity but the occurrences of inbreeding for all the nine samples analyzed. Our results also indicated that there was detectable temporal genetic variation between the 2015 and 2019 populations in the Jirisan National Park, which is probably due to a short-term decline in genetic diversity caused by reduced population sizes. We also found a well-admixed shared gene pool among the national park populations. However, a significant positive correlation between geographic and genetic distances was detected only in mtDNA but not microsatellites, which might be attributed to different dispersal patterns between sexes. There was a genetic barrier to animal movements around the Woraksan National Park areas. The poor habitat connectivity surrounding these areas can be improved by establishing an ecological corridor. Our findings of the presence of genetic barriers in some protected areas provide insights into the conservation and management efforts to improve the population or habitat connectivity among the national parks.
Collapse
|
10
|
Dalongeville A, Nielsen ES, Teske PR, Heyden S. Comparative phylogeography in a marine biodiversity hotspot provides novel insights into evolutionary processes across the Atlantic‐Indian Ocean transition. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
| | - Erica S. Nielsen
- Department of Evolution and Ecology University of California, Davis Davis California USA
| | - Peter R. Teske
- Department of Zoology Centre for Ecological Genomics and Wildlife Conservation University of Johannesburg Auckland Park South Africa
| | - Sophie Heyden
- Department of Botany and Zoology Evolutionary Genomics Group Stellenbosch University Stellenbosch South Africa
| |
Collapse
|
11
|
Remote Sensing Based Conservation Effectiveness Evaluation of Mangrove Reserves in China. REMOTE SENSING 2022. [DOI: 10.3390/rs14061386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In recent decades, the mangrove area in China has changed dramatically, and governments have established multiple mangrove protected areas at various levels. However, we know little about the effectiveness of conservation on mangroves on a national scale. In this study, we constructed an evaluation index system for landscape health and proposed a landscape health composite index (LHCI) to characterize the landscape health status of mangroves. Based on the distribution dataset of mangrove forests mangrove in the recent 40 years, we evaluated the conservation effectiveness of mangrove reserves in China from a perspective of landscape health. The dynamics of mangrove areas show that the mangrove area in 83% of the reserves increased after the establishment of reserves. Additionally, the increase in mangrove area in provincial-level, municipal-level, and county-level reserves was higher than that in national-level reserves, and the most significant increase in mangrove area was in Guangxi, followed by Fujian and Hong Kong. The evaluation results show that mangrove reserves have achieved outstanding conservation effectiveness in China, with 43% of the reserves significantly improving the landscape health status of mangroves and 35% of the reserves maintaining good condition. The reserves in Guangxi, Guangdong, and Fujian Provinces showed more significant protective effects. Specifically, the most effective reserves protecting mangroves were the Qi’ao Island reserve, Maowei Gulf reserve, and Enping reserve. This study may provide references for formulating a rapid evaluation method of conservation effectiveness based on remote sensing and promote the scientific management of protected areas and the ecological restoration of mangroves in China.
Collapse
|
12
|
Knutsen H, Catarino D, Rogers L, Sodeland M, Mattingsdal M, Jahnke M, Hutchings JA, Mellerud I, Espeland SH, Johanneson K, Roth O, Hansen MM, Jentoft S, André C, Jorde PE. Combining population genomics with demographic analyses highlights habitat patchiness and larval dispersal as determinants of connectivity in coastal fish species. Mol Ecol 2022; 31:2562-2577. [PMID: 35229385 PMCID: PMC9311693 DOI: 10.1111/mec.16415] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 11/30/2022]
Abstract
Gene flow shapes spatial genetic structure and the potential for local adaptation. Among marine animals with nonmigratory adults, the presence or absence of a pelagic larval stage is thought to be a key determinant in shaping gene flow and the genetic structure of populations. In addition, the spatial distribution of suitable habitats is expected to influence the distribution of biological populations and their connectivity patterns. We used whole genome sequencing to study demographic history and reduced representation (double‐digest restriction associated DNA) sequencing data to analyse spatial genetic structure in broadnosed pipefish (Syngnathus typhle). Its main habitat is eelgrass beds, which are patchily distributed along the study area in southern Norway. Demographic connectivity among populations was inferred from long‐term (~30‐year) population counts that uncovered a rapid decline in spatial correlations in abundance with distance as short as ~2 km. These findings were contrasted with data for two other fish species that have a pelagic larval stage (corkwing wrasse, Symphodus melops; black goby, Gobius niger). For these latter species, we found wider spatial scales of connectivity and weaker genetic isolation‐by‐distance patterns, except where both species experienced a strong barrier to gene flow, seemingly due to lack of suitable habitat. Our findings verify expectations that a fragmented habitat and absence of a pelagic larval stage promote genetic structure, while presence of a pelagic larvae stage increases demographic connectivity and gene flow, except perhaps over extensive habitat gaps.
Collapse
Affiliation(s)
- Halvor Knutsen
- Institute of Marine Research, Nye Flødevigveien 20, 4817, His, Norway.,Centre for Coastal Research, Department of Natural Sciences, University of Agder, 4630, Kristiansand, Norway
| | - Diana Catarino
- Centre for Coastal Research, Department of Natural Sciences, University of Agder, 4630, Kristiansand, Norway
| | - Lauren Rogers
- Alaska Fisheries Science Center, National Oceanic and Atmospheric Administration, 7600 Sand Point Way NE, Seattle, WA, 98115, USA
| | - Marte Sodeland
- Centre for Coastal Research, Department of Natural Sciences, University of Agder, 4630, Kristiansand, Norway
| | - Morten Mattingsdal
- Centre for Coastal Research, Department of Natural Sciences, University of Agder, 4630, Kristiansand, Norway
| | - Marlene Jahnke
- Department of Marine Sciences - Tjärnö, University of Gothenburg, 45296, Strömstad, Sweden
| | - Jeffrey A Hutchings
- Institute of Marine Research, Nye Flødevigveien 20, 4817, His, Norway.,Centre for Coastal Research, Department of Natural Sciences, University of Agder, 4630, Kristiansand, Norway.,Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Ida Mellerud
- Institute of Marine Research, Nye Flødevigveien 20, 4817, His, Norway
| | - Sigurd H Espeland
- Institute of Marine Research, Nye Flødevigveien 20, 4817, His, Norway.,Centre for Coastal Research, Department of Natural Sciences, University of Agder, 4630, Kristiansand, Norway
| | - Kerstin Johanneson
- Department of Marine Sciences - Tjärnö, University of Gothenburg, 45296, Strömstad, Sweden
| | - Olivia Roth
- Marine Evolutionary Biology, Zoological Institute, Kiel University, Germany
| | - Michael M Hansen
- Department of Biology, Aarhus University, 8000, Aarhus C, Denmark
| | - Sissel Jentoft
- University of Oslo, Department of Biology, 0316, Oslo, Norway
| | - Carl André
- Department of Marine Sciences - Tjärnö, University of Gothenburg, 45296, Strömstad, Sweden
| | - Per Erik Jorde
- Institute of Marine Research, Nye Flødevigveien 20, 4817, His, Norway
| |
Collapse
|
13
|
Abstract
Mangroves form coastal tropical forests in the intertidal zone and are an important component of shoreline protection. In comparison to other tropical forests, mangrove stands are thought to have relatively low genetic diversity with population genetic structure gradually increasing with distance along a coastline. We conducted genetic analyses of mangrove forests across a range of spatial scales; within a 400 m2 parcel comprising 181 Rhizophora mangle (red mangrove) trees, and across four sites ranging from 6-115 km apart in Honduras. In total, we successfully genotyped 269 R. mangle trees, using a panel of 677 SNPs developed with 2b-RAD methodology. Within the 400 m2 parcel, we found two distinct clusters with high levels of genetic differentiation (FST = 0.355), corresponding to trees primarily located on the seaward fringe and trees growing deeper into the forest. In contrast, there was limited genetic differentiation (FST = 0.027-0.105) across the sites at a larger scale, which had been predominantly sampled along the seaward fringe. Within the 400 m2 parcel, the cluster closest to the seaward fringe exhibited low genetic differentiation (FST = 0.014-0.043) with the other Honduran sites, but the cluster further into the forest was highly differentiated from them (FST = 0.326-0.414). These findings contradict the perception that genetic structure within mangroves forests occurs mainly along a coastline and highlights that there is greater genetic structure at fine spatial scales.
Collapse
|
14
|
Triest L, Satyanarayana B, Delange O, Sarker KK, Sierens T, Dahdouh-Guebas F. Barrier to Gene Flow of Grey Mangrove Avicennia marina Populations in the Malay Peninsula as Revealed From Nuclear Microsatellites and Chloroplast Haplotypes. FRONTIERS IN CONSERVATION SCIENCE 2021. [DOI: 10.3389/fcosc.2021.727819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Contemporary mangrove forest areas took shape historically and their genetic connectivity depends on sea-faring propagules, subsequent settlement, and persistence in suitable environments. Mangrove species world-wide may experience genetic breaks caused by major land barriers or opposing ocean currents influencing their population genetic structure. For Malay Peninsula, several aquatic species showed strong genetic differentiation between East and West coast regions due to the Sunda shelf flooding since the Last Glacial Maximum. In this study genetic diversity and structure of Avicennia marina populations in Malay Peninsula were assessed using nuclear microsatellite markers and chloroplast sequences. Even though all populations showed identical morphological features of A. marina, three evolutionary significant units were obtained with nuclear and cytoplasmic markers. Avicennia marina along a 586 km stretch of the West coast differed strongly from populations along an 80 km stretch of the East coast featuring chloroplast capture of Avicennia alba in an introgressive A. marina. Over and above this expected East-West division, an intra-regional subdivision was detected among A. marina populations in the narrowest region of the Strait of Malacca. The latter genetic break was supported by an amova, structure, and barrier analysis whereas RST > FST indicated an evolutionary signal of long-lasting divergence. Two different haplotypes along the Western coast showed phylogeographic relationship with either a northern or a putative southern lineage, thereby assuming two Avicennia sources facing each other during Holocene occupation with prolonged separation in the Strait of Malacca. Migrate-n model testing supported a northward unidirectional stepping-stone migration route, although with an unclear directionality at the genetic break position, most likely due to weak oceanic currents. Low levels of genetic diversity and southward connectivity was detected for East coast Avicennia populations. We compared the fine-scale spatial genetic structure (FSGS) of Avicennia populations along the exposed coast in the East vs. the sheltered coast in the West. A majority of transects from both coastlines revealed no within-site kinship-based FSGS, although the remoteness of the open sea is important for Avicennia patches to maintain a neighborhood. The results provide new insights for mangrove researchers and managers for future in-depth ecological-genetic-based species conservation efforts in Malay Peninsula.
Collapse
|
15
|
Kennedy JP, Antwis RE, Preziosi RF, Rowntree JK. Evidence for the genetic similarity rule at an expanding mangrove range limit. AMERICAN JOURNAL OF BOTANY 2021; 108:1331-1342. [PMID: 34458987 DOI: 10.1002/ajb2.1715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/24/2021] [Indexed: 06/13/2023]
Abstract
PREMISE Host-plant genetic variation can shape associated communities of organisms. These community-genetic effects include (1) genetically similar hosts harboring similar associated communities (i.e., the genetic similarity rule) and (2) host-plant heterozygosity increasing associated community diversity. Community-genetic effects are predicted to be less prominent in plant systems with limited genetic variation, such as those at distributional range limits. Yet, empirical evidence from such systems is limited. METHODS We sampled a natural population of a mangrove foundation species (Avicennia germinans) at an expanding range limit in Florida, USA. We measured genetic variation within and among 40 host trees with 24 nuclear microsatellite loci and characterized their foliar endophytic fungal communities with internal transcribed spacer (ITS1) gene amplicon sequencing. We evaluated relationships among host-tree genetic variation, host-tree spatial location, and the associated fungal communities. RESULTS Genetic diversity was low across all host trees (mean: 2.6 alleles per locus) and associated fungal communities were relatively homogeneous (five sequence variants represented 78% of all reads). We found (1) genetically similar host trees harbored similar fungal communities, with no detectable effect of interhost geographic distance. (2) Host-tree heterozygosity had no detectable effect, while host-tree absolute spatial location affected community alpha diversity. CONCLUSIONS This research supports the genetic similarity rule within a range limit population and helps broaden the current scope of community genetics theory by demonstrating that community-genetic effects can occur even at expanding distributional limits where host-plant genetic variation may be limited. Our findings also provide the first documentation of community-genetic effects in a natural mangrove system.
Collapse
Affiliation(s)
- John Paul Kennedy
- Ecology and Environment Research Centre, Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - Rachael E Antwis
- School of Science, Engineering and Environment, University of Salford, Salford, UK
| | - Richard F Preziosi
- Ecology and Environment Research Centre, Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - Jennifer K Rowntree
- Ecology and Environment Research Centre, Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
16
|
Thomson AI, Archer FI, Coleman MA, Gajardo G, Goodall‐Copestake WP, Hoban S, Laikre L, Miller AD, O’Brien D, Pérez‐Espona S, Segelbacher G, Serrão EA, Sjøtun K, Stanley MS. Charting a course for genetic diversity in the UN Decade of Ocean Science. Evol Appl 2021; 14:1497-1518. [PMID: 34178100 PMCID: PMC8210796 DOI: 10.1111/eva.13224] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
The health of the world's oceans is intrinsically linked to the biodiversity of the ecosystems they sustain. The importance of protecting and maintaining ocean biodiversity has been affirmed through the setting of the UN Sustainable Development Goal 14 to conserve and sustainably use the ocean for society's continuing needs. The decade beginning 2021-2030 has additionally been declared as the UN Decade of Ocean Science for Sustainable Development. This program aims to maximize the benefits of ocean science to the management, conservation, and sustainable development of the marine environment by facilitating communication and cooperation at the science-policy interface. A central principle of the program is the conservation of species and ecosystem components of biodiversity. However, a significant omission from the draft version of the Decade of Ocean Science Implementation Plan is the acknowledgment of the importance of monitoring and maintaining genetic biodiversity within species. In this paper, we emphasize the importance of genetic diversity to adaptive capacity, evolutionary potential, community function, and resilience within populations, as well as highlighting some of the major threats to genetic diversity in the marine environment from direct human impacts and the effects of global climate change. We then highlight the significance of ocean genetic diversity to a diverse range of socioeconomic factors in the marine environment, including marine industries, welfare and leisure pursuits, coastal communities, and wider society. Genetic biodiversity in the ocean, and its monitoring and maintenance, is then discussed with respect to its integral role in the successful realization of the 2030 vision for the Decade of Ocean Science. Finally, we suggest how ocean genetic diversity might be better integrated into biodiversity management practices through the continued interaction between environmental managers and scientists, as well as through key leverage points in industry requirements for Blue Capital financing and social responsibility.
Collapse
Affiliation(s)
| | | | - Melinda A. Coleman
- New South Wales FisheriesNational Marine Science CentreCoffs HarbourNSWAustralia
- National Marine Science CentreSouthern Cross UniversityCoffs HarbourNSWAustralia
- Oceans Institute and School of Biological SciencesUniversity of Western AustraliaCrawleyWAAustralia
| | - Gonzalo Gajardo
- Laboratory of Genetics, Aquaculture & BiodiversityUniversidad de Los LagosOsornoChile
| | | | - Sean Hoban
- Centre for Tree ScienceThe Morton ArboretumLisleILUSA
| | - Linda Laikre
- Centre for Tree ScienceThe Morton ArboretumLisleILUSA
- The Wildlife Analysis UnitThe Swedish Environmental Protection AgencyStockholmSweden
| | - Adam D. Miller
- School of Life and Environmental SciencesCentre for Integrative EcologyDeakin UniversityGeelongVicAustralia
- Deakin Genomics CentreDeakin UniversityGeelongVic.Australia
| | | | - Sílvia Pérez‐Espona
- The Royal (Dick) School of Veterinary Studies and The Roslin InstituteMidlothianUK
| | - Gernot Segelbacher
- Chair of Wildlife Ecology and ManagementUniversity FreiburgFreiburgGermany
| | - Ester A. Serrão
- CCMARCentre of Marine SciencesFaculty of Sciences and TechnologyUniversity of AlgarveFaroPortugal
| | - Kjersti Sjøtun
- Department of Biological SciencesUniversity of BergenBergenNorway
| | | |
Collapse
|
17
|
Evans RD, McMahon KM, van Dijk KJ, Dawkins K, Nilsson Jacobi M, Vikrant A. Identification of dispersal barriers for a colonising seagrass using seascape genetic analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:143052. [PMID: 33189383 DOI: 10.1016/j.scitotenv.2020.143052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/30/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Seagrasses are important habitats providing many ecological services. Most species have broad distributions with maximum dispersal distances of 100's of kms, however there is limited understanding of dispersal distances of colonising species like Halodule uninervis. It commonly grows in disturbed environments and could disperse to other meadows via clonal fragments. Effective conservation management requires greater understanding of genetic structure, dispersal barriers, and connectivity timescales to predict recovery following disturbance. Despite fragment viability of up to 28 days in a congenera, this theory remains untested in situ. Using 80 neutral single nucleotide polymorphisms, we investigated genetic diversity, gene flow patterns and structure among 15 populations of H. uninervis along 2000 km of Western Australian coastline. These data were combined with a multi-generational oceanographic dispersal model and a barrier dispersal analysis to identify dispersal barriers and determine which fragment dispersal duration (FDD) and timescale over which stepping-stone connectivity occurred, best matched the observed genetic structure. The 2-7 day FDD best matched the genetic structure with 4-12 clusters, with barriers to dispersal that persisted for up to 100 years. Modelling suggested greater fragmentation of metapopulations towards the southern edge of the species distribution, but genetic diversity did not decline. Several long-term boundaries were identified even with fragment viability of up to 28 days. This suggests H. uninervis dispersal is spatially limited by factors like oceanographic features and habitat continuity which may limit dispersal of this species. This study reiterates that potential dispersal does not equal realised dispersal, and management scales of 10's of kilometers are required to maintain existing meadows. Recruitment from distances further than this scale are unlikely to aid recovery after extreme disturbance events, particularly towards the range edge of H. uninervis distribution.
Collapse
Affiliation(s)
- R D Evans
- Department of Biodiversity, Conservation and Attractions, 17 Dick Perry Ave, Kensington 6151, Australia; Oceans Institute, the University of Western Australia, Perth, WA 6009, Australia.
| | - K M McMahon
- School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup 6027, Australia; Centre for Marine Ecosystems Research, Edith Cowan University, 270 Joondalup Drive, Joondalup 6027, Australia
| | - K-J van Dijk
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - K Dawkins
- School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup 6027, Australia; Centre for Ecosystem Management, Edith Cowan University, 270 Joondalup Drive, Joondalup 6027, Australia
| | - M Nilsson Jacobi
- Department of Space, Earth and Environment, Chalmers University of Technology, Maskingränd 2, 412 58 Gothenburg, Sweden
| | - A Vikrant
- Department of Space, Earth and Environment, Chalmers University of Technology, Maskingränd 2, 412 58 Gothenburg, Sweden
| |
Collapse
|
18
|
Da Silva MF, Cruz MV, Vidal Júnior JDD, Zucchi MI, Mori GM, De Souza AP. Geographical and environmental contributions to genomic divergence in mangrove forests. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blaa199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Assessing the relative importance of geographical and environmental factors to the spatial distribution of genetic variation can provide information about the processes that maintain genetic variation in natural populations. With a globally wide but very restricted habitat distribution, mangrove trees are a useful model for studies aiming to understand the contributions of these factors. Mangroves occur along the continent–ocean interface of tropical and subtropical latitudes, regions considered inhospitable to many other types of plants. Here, we used landscape genomics approaches to investigate the relative contributions of geographical and environmental variables to the genetic variation of two black mangrove species, Avicennia schaueriana and Avicennia germinans, along the South American coast. Using single nucleotide polymorphisms, our results revealed an important role of ocean currents and geographical distance in the gene flow of A. schaueriana and an isolation-by-environment pattern in the organization of the genetic diversity of A. germinans. Additionally, for A. germinans, we observed significant correlations between genetic variation with evidence of selection and the influence of precipitation regimens, solar radiation and temperature patterns. These discoveries expand our knowledge about the evolution of mangrove trees and provide important information to predict future responses of coastal species to the expected global changes during this century.
Collapse
Affiliation(s)
- Michele Fernandes Da Silva
- Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
- Center for Molecular Biology and Genetic Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Mariana Vargas Cruz
- Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
- Center for Molecular Biology and Genetic Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - João De Deus Vidal Júnior
- Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
- Center for Molecular Biology and Genetic Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Gustavo Maruyama Mori
- Institute of Biosciences, São Paulo State University (UNESP), São Vicente, SP, Brazil
| | - Anete Pereira De Souza
- Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
- Center for Molecular Biology and Genetic Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
19
|
Triest L, Van der Stocken T, Allela Akinyi A, Sierens T, Kairo J, Koedam N. Channel network structure determines genetic connectivity of landward-seaward Avicennia marina populations in a tropical bay. Ecol Evol 2020; 10:12059-12075. [PMID: 33209270 PMCID: PMC7663977 DOI: 10.1002/ece3.6829] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 12/31/2022] Open
Abstract
Mangrove ecosystems along the East African coast are often characterized by a disjunct zonation pattern of seaward and landward Avicennia marina trees. This disjunct zonation may be maintained through different positions in the tidal frame, yielding different dispersal settings. The spatial configuration of the landscape and coastal processes such as tides and waves is expected to largely influence the extent of propagule transport and subsequent regeneration. We hypothesized that landward sites would keep a stronger genetic structure over short distances in comparison with enhanced gene flow among regularly flooded seaward fringes. We tested this hypothesis from densely vegetated A. marina transects of a well-documented mangrove system (Gazi Bay, Kenya) and estimated local gene flow and kinship-based fine-scale genetic structure. Ten polymorphic microsatellite markers in 457 A. marina trees revealed no overall significant difference in levels of allele or gene diversities between sites that differ in hydrological proximity. Genetic structure and connectivity of A. marina populations however indicated an overall effect of geographic distance and revealed a pronounced distinction between channels and topographic setting. Migration models allowed to infer gene flow directionality among channels, and indicated a bidirectional steppingstone between seaward and nearest located landward stands. Admixed gene pools without any fine-scale structure were found within the wider and more exposed Kidogoweni channel, suggesting open systems. Elevated kinship values and structure over 5 to 20 m distance were only detected in two distant landward and seaward transects near the mouth of the Mkurumuji River, indicating local retention and establishment. Overall, our findings show that patterns of A. marina connectivity are explained by hydrological proximity, channel network structure, and hydrokinetic energy, rather than just their positioning as disjunct landward or seaward zones.
Collapse
Affiliation(s)
- Ludwig Triest
- Research Group Plant Biology and Nature ManagementVrije Universiteit BrusselBrusselsBelgium
| | - Tom Van der Stocken
- Research Group Plant Biology and Nature ManagementVrije Universiteit BrusselBrusselsBelgium
| | - Abbie Allela Akinyi
- Research Group Plant Biology and Nature ManagementVrije Universiteit BrusselBrusselsBelgium
| | - Tim Sierens
- Research Group Plant Biology and Nature ManagementVrije Universiteit BrusselBrusselsBelgium
| | - James Kairo
- Department of Oceanography and HydrographyKenya Marine and Fisheries Research InstituteMombasaKenya
| | - Nico Koedam
- Research Group Plant Biology and Nature ManagementVrije Universiteit BrusselBrusselsBelgium
| |
Collapse
|
20
|
Banerjee AK, Guo W, Qiao S, Li W, Xing F, Lin Y, Hou Z, Li S, Liu Y, Huang Y. Land masses and oceanic currents drive population structure of Heritiera littoralis, a widespread mangrove in the Indo-West Pacific. Ecol Evol 2020; 10:7349-7363. [PMID: 32760533 PMCID: PMC7391321 DOI: 10.1002/ece3.6460] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/24/2020] [Accepted: 05/11/2020] [Indexed: 12/20/2022] Open
Abstract
Phylogeographic forces driving evolution of sea-dispersed plants are often influenced by regional and species characteristics, although not yet deciphered at a large spatial scale for many taxa like the mangrove species Heritiera littoralis. This study aimed to assess geographic distribution of genetic variation of this widespread mangrove in the Indo-West Pacific region and identify the phylogeographic factors influencing its present-day distribution. Analysis of five chloroplast DNA fragments' sequences from 37 populations revealed low genetic diversity at the population level and strong genetic structure of H. littoralis in this region. The estimated divergence times between the major genetic lineages indicated that glacial level changes during the Pleistocene epoch induced strong genetic differentiation across the Indian and Pacific Oceans. In comparison to the strong genetic break imposed by the Sunda Shelf toward splitting the lineages of the Indian and Pacific Oceans, the genetic differentiation between Indo-Malesia and Australasia was not so prominent. Long-distance dispersal ability of H. littoralis propagules helped the species to attain transoceanic distribution not only across South East Asia and Australia, but also across the Indian Ocean to East Africa. However, oceanic circulation pattern in the South China Sea was found to act as a barrier creating further intraoceanic genetic differentiation. Overall, phylogeographic analysis in this study revealed that glacial vicariance had profound influence on population differentiation in H. littoralis and caused low genetic diversity except for the refugia populations near the equator which might have persisted through glacial maxima. With increasing loss of suitable habitats due to anthropogenic activities, these findings therefore emphasize the urgent need for conservation actions for all populations throughout the distribution range of H. littoralis.
Collapse
Affiliation(s)
- Achyut Kumar Banerjee
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Wuxia Guo
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
- South China Botanical GardenChinese Academy of SciencesGuangzhouGuangdongChina
| | - Sitan Qiao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Weixi Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
- Division of Ecology & BiodiversitySchool of Biological SciencesThe University of Hong KongHong KongChina
| | - Fen Xing
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yuting Lin
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Zhuangwei Hou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Sen Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Ying Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yelin Huang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| |
Collapse
|
21
|
Abstract
Fragmentation is a major driver of ecosystem degradation, reducing the capacity of habitats to provide many important ecosystem services. Mangrove ecosystem services, such as erosion prevention, shoreline protection and mitigation of climate change (through carbon sequestration), depend on the size and arrangement of forest patches, but we know little about broad-scale patterns of mangrove forest fragmentation. Here we conduct a multi-scale analysis using global estimates of mangrove density and regional drivers of mangrove deforestation to map relationships between habitat loss and fragmentation. Mangrove fragmentation was ubiquitous; however, there are geographic disparities between mangrove loss and fragmentation; some regions, like Cambodia and the southern Caribbean, had relatively little loss, but their forests have been extensively fragmented. In Southeast Asia, a global hotspot of mangrove loss, the conversion of forests to aquaculture and rice plantations were the biggest drivers of loss (>50%) and fragmentation. Surprisingly, conversion of forests to oil palm plantations, responsible for >15% of all deforestation in Southeast Asia, was only weakly correlated with mangrove fragmentation. Thus, the management of different deforestation drivers may increase or decrease fragmentation. Our findings suggest that large scale monitoring of mangrove forests should also consider fragmentation. This work highlights that regional priorities for conservation based on forest loss rates can overlook fragmentation and associated loss of ecosystem functionality.
Collapse
|
22
|
D'Aloia CC, Andrés JA, Bogdanowicz SM, McCune AR, Harrison RG, Buston PM. Unraveling hierarchical genetic structure in a marine metapopulation: A comparison of three high-throughput genotyping approaches. Mol Ecol 2020; 29:2189-2203. [PMID: 32147850 DOI: 10.1111/mec.15405] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 02/05/2020] [Accepted: 03/03/2020] [Indexed: 01/04/2023]
Abstract
Marine metapopulations often exhibit subtle population structure that can be difficult to detect. Given recent advances in high-throughput sequencing, an emerging question is whether various genotyping approaches, in concert with improved sampling designs, will substantially improve our understanding of genetic structure in the sea. To address this question, we explored hierarchical patterns of structure in the coral reef fish Elacatinus lori using a high-resolution approach with respect to both genetic and geographic sampling. Previously, we identified three putative E. lori populations within Belize using traditional genetic markers and sparse geographic sampling: barrier reef and Turneffe Atoll; Glover's Atoll; and Lighthouse Atoll. Here, we systematically sampled individuals at ~10 km intervals throughout these reefs (1,129 individuals from 35 sites) and sequenced all individuals at three sets of markers: 2,418 SNPs; 89 microsatellites; and 57 nonrepetitive nuclear loci. At broad spatial scales, the markers were consistent with each other and with previous findings. At finer spatial scales, there was new evidence of genetic substructure, but our three marker sets differed slightly in their ability to detect these patterns. Specifically, we found subtle structure between the barrier reef and Turneffe Atoll, with SNPs resolving this pattern most effectively. We also documented isolation by distance within the barrier reef. Sensitivity analyses revealed that the number of loci (and alleles) had a strong effect on the detection of structure for all three marker sets, particularly at small spatial scales. Taken together, these results illustrate empirically that high-throughput genotyping data can elucidate subtle genetic structure at previously-undetected scales in a dispersive marine fish.
Collapse
Affiliation(s)
- Cassidy C D'Aloia
- Department of Biological Sciences, University of New Brunswick, Saint John, NB, Canada
| | - Jose A Andrés
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Steven M Bogdanowicz
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Amy R McCune
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Richard G Harrison
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Peter M Buston
- Department of Biology and Marine Program, Boston University, Boston, MA, USA
| |
Collapse
|
23
|
Kennedy JP, Preziosi RF, Rowntree JK, Feller IC. Is the central-marginal hypothesis a general rule? Evidence from three distributions of an expanding mangrove species, Avicennia germinans (L.) L. Mol Ecol 2020; 29:704-719. [PMID: 31990426 PMCID: PMC7065085 DOI: 10.1111/mec.15365] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 12/17/2019] [Accepted: 01/16/2020] [Indexed: 12/24/2022]
Abstract
The central-marginal hypothesis (CMH) posits that range margins exhibit less genetic diversity and greater inter-population genetic differentiation compared to range cores. CMH predictions are based on long-held "abundant-centre" assumptions of a decline in ecological conditions and abundances towards range margins. Although much empirical research has confirmed CMH, exceptions remain almost as common. We contend that mangroves provide a model system to test CMH that alleviates common confounding factors and may help clarify this lack of consensus. Here, we document changes in black mangrove (Avicennia germinans) population genetics with 12 nuclear microsatellite loci along three replicate coastlines in the United States (only two of three conform to underlying "abundant-centre" assumptions). We then test an implicit prediction of CMH (reduced genetic diversity may constrain adaptation at range margins) by measuring functional traits of leaves associated with cold tolerance, the climatic factor that controls these mangrove distributional limits. CMH predictions were confirmed only along the coastlines that conform to "abundant-centre" assumptions and, in contrast to theory, range margin A. germinans exhibited functional traits consistent with greater cold tolerance compared to range cores. These findings support previous accounts that CMH may not be a general rule across species and that reduced neutral genetic diversity at range margins may not be a constraint to shifts in functional trait variation along climatic gradients.
Collapse
Affiliation(s)
- John Paul Kennedy
- Smithsonian Marine StationSmithsonian InstitutionFort PierceFLUSA
- Department of Natural SciencesFaculty of Science and Engineering, Ecology and Environment Research CentreManchester Metropolitan UniversityManchesterUK
| | - Richard F. Preziosi
- Department of Natural SciencesFaculty of Science and Engineering, Ecology and Environment Research CentreManchester Metropolitan UniversityManchesterUK
| | - Jennifer K. Rowntree
- Department of Natural SciencesFaculty of Science and Engineering, Ecology and Environment Research CentreManchester Metropolitan UniversityManchesterUK
| | - Ilka C. Feller
- Smithsonian Environmental Research CenterSmithsonian InstitutionEdgewaterMDUSA
| |
Collapse
|
24
|
Van der Stocken T, Wee AKS, De Ryck DJR, Vanschoenwinkel B, Friess DA, Dahdouh-Guebas F, Simard M, Koedam N, Webb EL. A general framework for propagule dispersal in mangroves. Biol Rev Camb Philos Soc 2019; 94:1547-1575. [PMID: 31058451 DOI: 10.1111/brv.12514] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 03/19/2019] [Accepted: 03/27/2019] [Indexed: 12/29/2022]
Abstract
Dispersal allows species to shift their distributions in response to changing climate conditions. As a result, dispersal is considered a key process contributing to a species' long-term persistence. For many passive dispersers, fluid dynamics of wind and water fuel these movements and different species have developed remarkable adaptations for utilizing this energy to reach and colonize suitable habitats. The seafaring propagules (fruits and seeds) of mangroves represent an excellent example of such passive dispersal. Mangroves are halophytic woody plants that grow in the intertidal zones along tropical and subtropical shorelines and produce hydrochorous propagules with high dispersal potential. This results in exceptionally large coastal ranges across vast expanses of ocean and allows species to shift geographically and track the conditions to which they are adapted. This is particularly relevant given the challenges presented by rapid sea-level rise, higher frequency and intensity of storms, and changes in regional precipitation and temperature regimes. However, despite its importance, the underlying drivers of mangrove dispersal have typically been studied in isolation, and a conceptual synthesis of mangrove oceanic dispersal across spatial scales is lacking. Here, we review current knowledge on mangrove propagule dispersal across the various stages of the dispersal process. Using a general framework, we outline the mechanisms and ecological processes that are known to modulate the spatial patterns of mangrove dispersal. We show that important dispersal factors remain understudied and that adequate empirical data on the determinants of dispersal are missing for most mangrove species. This review particularly aims to provide a baseline for developing future research agendas and field campaigns, filling current knowledge gaps and increasing our understanding of the processes that shape global mangrove distributions.
Collapse
Affiliation(s)
- Tom Van der Stocken
- Earth Science Section, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, U.S.A.,Radar Science and Engineering Section, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, U.S.A.,Ecology and Biodiversity, Vrije Universiteit Brussel, Brussels, 1050, Belgium
| | - Alison K S Wee
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore.,Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, 530004, China
| | - Dennis J R De Ryck
- Ecology and Biodiversity, Vrije Universiteit Brussel, Brussels, 1050, Belgium
| | | | - Daniel A Friess
- Department of Geography, National University of Singapore, Singapore, 117570, Singapore
| | - Farid Dahdouh-Guebas
- Ecology and Biodiversity, Vrije Universiteit Brussel, Brussels, 1050, Belgium.,Systems Ecology and Resource Management, Université Libre de Bruxelles, Brussels, 1050, Belgium
| | - Marc Simard
- Radar Science and Engineering Section, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, U.S.A
| | - Nico Koedam
- Ecology and Biodiversity, Vrije Universiteit Brussel, Brussels, 1050, Belgium
| | - Edward L Webb
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| |
Collapse
|
25
|
Bradbury D, Binks RM, Coates DJ, Byrne M. Conservation genomics of range disjunction in a global biodiversity hotspot: a case study of Banksia biterax (Proteaceae) in southwestern Australia. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Donna Bradbury
- Biodiversity and Conservation Science; Department of Biodiversity, Conservation & Attractions, Kensington, WA, Australia
| | - Rachel M Binks
- Biodiversity and Conservation Science; Department of Biodiversity, Conservation & Attractions, Kensington, WA, Australia
| | - David J Coates
- Biodiversity and Conservation Science; Department of Biodiversity, Conservation & Attractions, Kensington, WA, Australia
| | - Margaret Byrne
- Biodiversity and Conservation Science; Department of Biodiversity, Conservation & Attractions, Kensington, WA, Australia
| |
Collapse
|