1
|
Jiménez-Alfaro B, Aunina L, Carbognani M, Dítě D, Fernández-Pascual E, Garbolino E, Hájek O, Hájková P, Ivchenko TG, Jandt U, Jansen F, Kolari THM, Pawlikowski P, Pérez-Haase A, Peterka T, Petraglia A, Plesková Z, Tahvanainen T, Tomaselli M, Hájek M. Habitat-based biodiversity responses to macroclimate and edaphic factors in European fen ecosystems. GLOBAL CHANGE BIOLOGY 2023; 29:6756-6771. [PMID: 37818677 DOI: 10.1111/gcb.16965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/30/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023]
Abstract
Understanding large-scale drivers of biodiversity in palustrine wetlands is challenging due to the combined effects of macroclimate and local edaphic conditions. In boreal and temperate fen ecosystems, the influence of macroclimate on biodiversity is modulated by hydrological settings across habitats, making it difficult to assess their vulnerability to climate change. Here, we investigate the influence of macroclimate and edaphic factors on three Essential Biodiversity Variables across eight ecologically defined habitats that align with ecosystem classifications and red lists. We used 27,555 vegetation plot samples from European fens to assess the influence of macroclimate and groundwater pH predictors on the geographic distribution of each habitat type. Additionally, we modeled the relative influence of macroclimate, water pH, and water table depth on community species richness and composition, focusing on 309 plant specialists. Our models reveal strong effects of mean annual temperature, diurnal thermal range, and summer temperature on biodiversity variables, with contrasting differences among habitats. While macroclimatic factors primarily shape geographic distributions and species richness, edaphic factors emerge as the primary drivers of composition for vascular plants and bryophytes. Annual precipitation exhibits non-linear effects on fen biodiversity, with varying impact across habitats with different hydrological characteristics, suggesting a minimum requirement of 600 mm of annual precipitation for the occurrence of fen ecosystems. Our results anticipate potential impacts of climate warming on European fens, with predictable changes among habitat types and geographic regions. Moreover, we provide evidence that the drivers of biodiversity in boreal and temperate fens are closely tied to the ecological characteristics of each habitat type and the dispersal abilities of bryophytes and vascular plants. Given that the influence of macroclimate and edaphic factors on fen ecosystems is habitat specific, climate change research and conservation actions should consider ecological differentiation within functional IUCN ecosystems at continental and regional scales.
Collapse
Affiliation(s)
- Borja Jiménez-Alfaro
- Biodiversity Research Institute, IMIB (Univ.Oviedo-CSIC-Princ.Asturias), Mieres, Spain
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Liene Aunina
- Institute of Biology of University of Latvia, Riga, Latvia
| | - Michele Carbognani
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Daniel Dítě
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - Emmanuel Garbolino
- Climpact Data Science, Nova Sophia-Regus Nova, Sophia Antipolis Cedex, France
| | - Ondřej Hájek
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petra Hájková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Paleoecology, Institute of Botany, The Czech Academy of Sciences, Brno, Czech Republic
| | - Tatiana G Ivchenko
- Laboratory of General Geobotany, Komarov Botanical Institute, Russian Academy of Sciences, St. Petersburg, Russia
- Group of Ecology of Living Organisms, Tobolsk Complex Scientific Station, Ural Branch of the Russian Academy of Sciences, Tobolsk, Russia
| | - Ute Jandt
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Florian Jansen
- Faculty of Agricultural- and Environmental Sciences, University of Rostock, Rostock, Germany
| | - Tiina H M Kolari
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Paweł Pawlikowski
- Department of Ecology and Environmental Conservation, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Aaron Pérez-Haase
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
| | - Tomáš Peterka
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Alessandro Petraglia
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Zuzana Plesková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Teemu Tahvanainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Marcello Tomaselli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Michal Hájek
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
2
|
Bryn A, Bekkby T, Rinde E, Gundersen H, Halvorsen R. Reliability in Distribution Modeling—A Synthesis and Step-by-Step Guidelines for Improved Practice. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.658713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Information about the distribution of a study object (e.g., species or habitat) is essential in face of increasing pressure from land or sea use, and climate change. Distribution models are instrumental for acquiring such information, but also encumbered by uncertainties caused by different sources of error, bias and inaccuracy that need to be dealt with. In this paper we identify the most common sources of uncertainties and link them to different phases in the modeling process. Our aim is to outline the implications of these uncertainties for the reliability of distribution models and to summarize the precautions needed to be taken. We performed a step-by-step assessment of errors, biases and inaccuracies related to the five main steps in a standard distribution modeling process: (1) ecological understanding, assumptions and problem formulation; (2) data collection and preparation; (3) choice of modeling method, model tuning and parameterization; (4) evaluation of models; and, finally, (5) implementation and use. Our synthesis highlights the need to consider the entire distribution modeling process when the reliability and applicability of the models are assessed. A key recommendation is to evaluate the model properly by use of a dataset that is collected independently of the training data. We support initiatives to establish international protocols and open geodatabases for distribution models.
Collapse
|