1
|
Pacheco-Muñoz R, Ceja-Madrigal A, Schondube JE. Migratory birds benefit from urban environments in a highly anthropized Neotropical region. PLoS One 2025; 20:e0311290. [PMID: 39854505 PMCID: PMC11760022 DOI: 10.1371/journal.pone.0311290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 09/17/2024] [Indexed: 01/26/2025] Open
Abstract
Land use change from wildlands to urban and productive environments can dramatically transform ecosystem structure and processes. Despite their structural and functional differences from wildlands, human-modified environments offer unique habitat elements for wildlife. In this study, we examined how migratory birds use urban, productive, and wildland environments of a highly anthropized region of Western Mexico known as "El Bajío". We used Generalized Linear Models to compare species richness, abundance, and the functional traits of migratory bird assemblages among these three environments. Results revealed differences in species richness, composition, and the functional traits of migratory birds among environments. Regardless of wildlands showing medium to high levels of human disturbance, they presented the highest species richness and abundance of migratory birds, with urban environments presenting the lowest values. Insectivorous and granivorous birds were dominant in the migratory bird assemblages of the three environments. The migratory bird assemblages of productive environments had more grassland granivorous birds. In contrast, insectivorous birds with dense habitat preferences and short culmen lengths dominated the urban bird assemblage. Migratory bird assemblages in productive and urban environments showed similar species richness and abundance of insectivorous birds, but they differ in their composition. Our results reveal that urban trees allowed cities to function as simplified forests, showing that the urban environment has the untapped potential to support complex assemblages of migratory birds. To promote migratory birds in human-modified landscapes, we must maintain complex vegetation areas that allow birds with diverse functional traits to overwinter in urban and productive environments.
Collapse
Affiliation(s)
- Rodrigo Pacheco-Muñoz
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
| | - Adrián Ceja-Madrigal
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
| | - Jorge E. Schondube
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
| |
Collapse
|
2
|
Straka TM, Radchuk V, Kowarik I, von der Lippe M, Buchholz S. Urbanization Impacts Top Predators and Alters Biotic Interactions in Predator-Prey-Mutualistic Communities of Urban Dry Grasslands. Ecol Evol 2025; 15:e70791. [PMID: 39803209 PMCID: PMC11724209 DOI: 10.1002/ece3.70791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Urbanization as a major driver of global change modifies biodiversity patterns and the abundance and interactions among species or functional species groups. For example, urbanization can negatively impact both predator-prey and mutualistic relationships. However, empirical studies on how urbanization modifies biotic, particularly multitrophic, interactions are still limited. In this study, we applied a framework focused on a predator-prey-mutualistic relationship involving communities of insect-pollinated vascular plants, pollinators (bees and hoverflies), predatory spiders, and sand lizards as top predators to test (i) the effect of urbanization on abundance and species richness at different trophic levels and (ii) the effect of urbanization on the regulation of biotic interactions using correlations between species abundances as a proxy. By assessing 56 dry grassland patches in Berlin, Germany, we found that higher trophic levels (sand lizard abundance as well as predatory spider species richness and abundance) were significantly impacted by urbanization whereas pollinators were affected to a lesser degree (only abundance, but not species richness). In contrast, insect-pollinated vascular plants were not impacted by urbanization. Path analyses revealed significant relationships in low-urbanized areas. In these areas, we observed significant bottom-up-regulated mutualistic and predator-prey interactions (plants-pollinators, and pollinators-predatory spiders), as well as top-down-regulated predator-prey interactions (sand lizards-pollinators, and predatory spiders-pollinators). In contrast, no significant interactions were found in highly urbanized sites. Our results suggest that bottom-up regulation is stronger than top-down regulation in low-urbanized areas. To our knowledge, this is the first study to examine the effects of urbanization on predator-prey-mutualistic interactions and to determine whether these interactions are regulated by bottom-up or top-down processes. These findings enhance our understanding of multitrophic interactions in urban environments and their associated ecosystem services, such as pollination, thereby supporting efforts in urban biodiversity conservation.
Collapse
Affiliation(s)
- Tanja M. Straka
- Department of EcologyTechnische Universität BerlinBerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
- Freie Universität Berlin, Institute of BiologyBerlinGermany
| | - Viktoriia Radchuk
- Department of Ecological DynamicsLeibniz Institute for Zoo and Wildlife ResearchBerlinGermany
| | - Ingo Kowarik
- Department of EcologyTechnische Universität BerlinBerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
| | - Moritz von der Lippe
- Department of EcologyTechnische Universität BerlinBerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
| | - Sascha Buchholz
- Department of EcologyTechnische Universität BerlinBerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
- University of Münster, Institute of Landscape EcologyMünsterGermany
| |
Collapse
|
3
|
VanDiest IJ, Jones KR, Fossett TE, Lane SJ, Sewall KB. Differences in urban arthropod communities may not limit the nestling diet of a generalist songbird. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176518. [PMID: 39332723 DOI: 10.1016/j.scitotenv.2024.176518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Anthropogenic land use, including urbanization, has caused population declines across diverse taxa including arthropods and songbirds. Declines in one taxa can impact other groups based on its role in a community. In particular, declines in lower trophic level taxa, such as arthropods, could have negative impacts on higher trophic level species. Here, we examined how urban arthropod communities compare to rural ones and how these differences may impact song sparrow (Melospiza melodia) nestlings living in urban and rural habitats. We quantified differences in the abundance, biomass, and diversity of arthropod communities between replicate urban and rural sites. At the same sites, we also compared the stomach contents of nestlings because song sparrows rely upon arthropod prey during development. We found that the arthropod community in urban habitats had lower average abundance, average biomass, and Simpson's diversity compared to rural habitats. The arthropod communities also significantly differed in the relative abundance of some higher trophic level taxa, such as spiders. However, we found no difference in the total stomach content mass, nor the mass of invertebrate food items in the stomachs of urban and rural nestlings. Thus, though urban habitats had lower availability of arthropods, possibly driven by the simplification of urban habitats, there was no evidence of a negative impact on the quantity of food provided to urban song sparrow nestlings.
Collapse
Affiliation(s)
- Isaac J VanDiest
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, United States of America.
| | - Korin R Jones
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, United States of America
| | - Taylor E Fossett
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, United States of America
| | - Samuel J Lane
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, United States of America
| | - Kendra B Sewall
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, United States of America
| |
Collapse
|
4
|
Scholz C, Jarquín-Díaz VH, Planillo A, Radchuk V, Scherer C, Schulze C, Ortmann S, Kramer-Schadt S, Heitlinger E. Host weight, seasonality and anthropogenic factors contribute to parasite community differences between urban and rural foxes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 936:173355. [PMID: 38796016 DOI: 10.1016/j.scitotenv.2024.173355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024]
Abstract
Pathogens often occur at different prevalence along environmental gradients. This is of particular importance for gradients of anthropogenic impact such as rural-urban transitions presenting a changing interface between humans and wildlife. The assembly of parasite communities is affected by both the external environmental conditions and individual host characteristics. Hosts with low body weight (smaller individuals or animals with poor body condition) might be more susceptible to infection. Furthermore, parasites' mode of transmission might affect their occurrence: rural environments with better availability of intermediate hosts might favour trophic transmission, while urban environments, typically with dense definitive host populations, might favour direct transmission. We here study helminth communities (141 intestinal samples) within the red fox (Vulpes vulpes), a synanthropic host, using DNA metabarcoding of multiple marker genes. We analysed the effect of urbanisation, seasonality and host-intrinsic (weight, sex) variables on helminth communities. Helminth species richness increased in foxes with lower body weight and in winter and spring. Season and urbanisation, however, had strong effects on the community composition, i.e., on the identity of the detected species. Surprisingly, transmission in two-host life cycles (trophic transmission) was more pronounced in urban Berlin than in rural Brandenburg. This disagrees with the prevailing hypothesis that trophically transmitted helminths are less prevalent in urban areas than in rural areas. Generally, co-infestations with multiple helminths and high infection intensity are associated with lighter (younger, smaller or low body condition) animals. Both host-intrinsic traits and environmental drivers together shape parasite community composition and turnover along urban-rural gradients.
Collapse
Affiliation(s)
- Carolin Scholz
- Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., Berlin, Germany
| | - Víctor Hugo Jarquín-Díaz
- Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., Berlin, Germany; Department of Molecular Parasitology, Institute for Biology, Humboldt University Berlin (HU), Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Aimara Planillo
- Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Viktoriia Radchuk
- Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., Berlin, Germany
| | - Cédric Scherer
- Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., Berlin, Germany
| | - Christoph Schulze
- Berlin-Brandenburg State Laboratory (LLBB), Frankfurt (Oder), Germany
| | - Sylvia Ortmann
- Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., Berlin, Germany
| | - Stephanie Kramer-Schadt
- Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany; Institute of Ecology, Technische Universität Berlin, Germany
| | - Emanuel Heitlinger
- Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., Berlin, Germany; Department of Molecular Parasitology, Institute for Biology, Humboldt University Berlin (HU), Berlin, Germany.
| |
Collapse
|
5
|
Felgentreff ES, Pernat N, Buchholz S. Birds of Berlin: Changes in communities and guilds in the urban park "Tiergarten" since 1850. Ecol Evol 2024; 14:e11461. [PMID: 38803607 PMCID: PMC11128458 DOI: 10.1002/ece3.11461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
Urbanization has far-reaching consequences on birds, and knowledge of the impacts on taxonomic and functional diversity is necessary to make cities as compatible as possible for species. Avian diversity in parks in urban centers has been investigated multiple times, but rarely so in long-term studies due to lacking data. The Tiergarten in Berlin is a large-scale park in the city center of great value for people and many species including birds. We compiled bird species lists since 1850 and from monitoring in 2022 in one dataset to investigate how bird communities and guilds have changed over time and how these alterations were influenced by the eventful history of the park's vegetation conditions. Long-term changes in species assemblages were analyzed with an ordination analysis, and changes in guild presence and functional richness were discussed with regard to landscape transitions. A gradual development of species assemblages yet only small changes in guild composition since 1850 was detected, whereas the 1950 community stands out with a drop in species richness and replacement of forest species with an open land community, which reflects the deforestation of the park during World War II. Consideration of habitat, lifestyle, trophic, and migration guilds revealed no sign of functional homogenization over the last 172 years (1850-2022). Despite the high frequentation of the park by humans it still allows for a high bird diversity due to the Tiergarten's sheer size and heterogeneity of vegetation and habitats. We recommend that the park is maintained and managed accordingly to preserve this condition and advise other urban parks to strive for these beneficial features.
Collapse
Affiliation(s)
| | - Nadja Pernat
- Institute of Landscape EcologyUniversity of MünsterMünsterGermany
| | - Sascha Buchholz
- Institute of Landscape EcologyUniversity of MünsterMünsterGermany
| |
Collapse
|
6
|
Martínez-Núñez C, Gossner MM, Maurer C, Neff F, Obrist MK, Moretti M, Bollmann K, Herzog F, Knop E, Luka H, Cahenzli F, Albrecht M. Land-use change in the past 40 years explains shifts in arthropod community traits. J Anim Ecol 2024; 93:540-553. [PMID: 38509643 DOI: 10.1111/1365-2656.14062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/07/2024] [Indexed: 03/22/2024]
Abstract
Understanding how anthropogenic activities induce changes in the functional traits of arthropod communities is critical to assessing their ecological consequences. However, we largely lack comprehensive assessments of the long-term impact of global-change drivers on the trait composition of arthropod communities across a large number of species and sites. This knowledge gap critically hampers our ability to predict human-driven impacts on communities and ecosystems. Here, we use a dataset of 1.73 million individuals from 877 species to study how four functionally important traits of carabid beetles and spiders (i.e. body size, duration of activity period, tolerance to drought, and dispersal capacity) have changed at the community level across ~40 years in different types of land use and as a consequence of land use changes (that is, urbanisation and loss of woody vegetation) at the landscape scale in Switzerland. The results show that the mean body size in carabid communities declined in all types of land use, with particularly stronger declines in croplands compared to forests. Furthermore, the length of the activity period and the tolerance to drought of spider communities decreased in most land use types. The average body size of carabid communities in landscapes with increased urbanisation in the last ~40 years tended to decrease. However, the length of the activity period, the tolerance to drought, and the dispersal capacity did not change significantly. Furthermore, urbanisation promoted increases in the average dispersal capacities of spider communities. Additionally, urbanisation favoured spider communities with larger body sizes and longer activity periods. The loss of woody areas at the landscape level was associated with trait shifts to carabid communities with larger body sizes, shorter activity periods, higher drought tolerances and strongly decreased dispersal capacities. Decreases in activity periods and dispersal capacities were also found in spider communities. Our study demonstrates that human-induced changes in land use alter key functional traits of carabid and spider communities in the long term. The detected trait shifts in arthropod communities likely have important consequences for their functional roles in ecosystems.
Collapse
Affiliation(s)
- Carlos Martínez-Núñez
- Agroecology and Environment, Zürich, Switzerland
- Department of Ecology and Evolution, Estación Biológica de Doñana EBD (CSIC), Seville, Spain
| | - Martin M Gossner
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zürich, Switzerland
| | - Corina Maurer
- Agroecology and Environment, Zürich, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zürich, Switzerland
| | - Felix Neff
- Agroecology and Environment, Zürich, Switzerland
| | - Martin K Obrist
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Marco Moretti
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Kurt Bollmann
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Felix Herzog
- Agroecology and Environment, Zürich, Switzerland
| | - Eva Knop
- Agroecology and Environment, Zürich, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
| | - Henryk Luka
- Department of Crop Sciences, Research Institute of Organic Agriculture FiBL, Frick, Switzerland
| | - Fabian Cahenzli
- Department of Crop Sciences, Research Institute of Organic Agriculture FiBL, Frick, Switzerland
| | | |
Collapse
|
7
|
Brambilla M, Bazzi G, Ilahiane L. The effectiveness of species distribution models in predicting local abundance depends on model grain size. Ecology 2024; 105:e4224. [PMID: 38038251 DOI: 10.1002/ecy.4224] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 10/19/2023] [Accepted: 11/10/2023] [Indexed: 12/02/2023]
Abstract
The use of species distribution models (SDMs) to predict local abundance has been often proposed and contested. We tested whether SDMs at different spatiotemporal resolutions may predict the local density of 14 bird species of open/semi-open habitats. SDMs were built at 1 ha and 1 km, and with long-term versus a mix of current and long-term climatic variables. The estimated environmental suitability was used to predict local abundance obtained by means of 275 linear transects. We tested SDM ability to predict abundance for all sampled sites versus occurrence sites, using N-mixture models to account for imperfect detection. Then, we related the R2 of N-mixture models to SDM traits. Fine-grain SDMs appeared generally more robust than large-grain ones. Considering the all-transects models, for all species environmental suitability displayed a positive and highly significant effect at all the four combinations of spatial and temporal grains. When focusing only on occurrence transects, at the 1 km grain only one species showed a significant and positive effect. At the 1 ha grain, 62% of species models showed (over both climatic sets) a significant or nearly significant positive effect of environmental suitability on abundance. Grain was the only factor significantly affecting the model's explanatory power: 1 km grain led to lower amounts of variation explained by models. Our work re-opens the debate about predicting abundance using SDM-derived suitability, emphasizing the importance of grains and of spatiotemporal resolution more in general. The incorporation of local variables into SDMs at fine grains is key to predict local abundance. SDMs worked out at really fine grains, approaching the average size of territory or home range of target species, are needed to predict local abundance effectively. This may result from the fact that each single cell may represent a potential territory/home range, and hence a higher suitability over a given area means that more potential territories occur there.
Collapse
Affiliation(s)
- Mattia Brambilla
- Department of Environmental Science and Policy, Milan University, Milan, Italy
| | - Gaia Bazzi
- Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Ozzano dell'Emilia, Italy
| | - Luca Ilahiane
- Department of Environmental Science and Policy, Milan University, Milan, Italy
- Department of Sustainable Development and Ecological Transition, Eastern Piedmont University, Vercelli, Italy
| |
Collapse
|
8
|
Lokatis S, Jeschke JM, Bernard-Verdier M, Buchholz S, Grossart HP, Havemann F, Hölker F, Itescu Y, Kowarik I, Kramer-Schadt S, Mietchen D, Musseau CL, Planillo A, Schittko C, Straka TM, Heger T. Hypotheses in urban ecology: building a common knowledge base. Biol Rev Camb Philos Soc 2023; 98:1530-1547. [PMID: 37072921 DOI: 10.1111/brv.12964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/20/2023]
Abstract
Urban ecology is a rapidly growing research field that has to keep pace with the pressing need to tackle the sustainability crisis. As an inherently multi-disciplinary field with close ties to practitioners and administrators, research synthesis and knowledge transfer between those different stakeholders is crucial. Knowledge maps can enhance knowledge transfer and provide orientation to researchers as well as practitioners. A promising option for developing such knowledge maps is to create hypothesis networks, which structure existing hypotheses and aggregate them according to topics and research aims. Combining expert knowledge with information from the literature, we here identify 62 research hypotheses used in urban ecology and link them in such a network. Our network clusters hypotheses into four distinct themes: (i) Urban species traits & evolution, (ii) Urban biotic communities, (iii) Urban habitats and (iv) Urban ecosystems. We discuss the potentials and limitations of this approach. All information is openly provided as part of an extendable Wikidata project, and we invite researchers, practitioners and others interested in urban ecology to contribute additional hypotheses, as well as comment and add to the existing ones. The hypothesis network and Wikidata project form a first step towards a knowledge base for urban ecology, which can be expanded and curated to benefit both practitioners and researchers.
Collapse
Affiliation(s)
- Sophie Lokatis
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, Berlin, 12587, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig, 04103, Germany
| | - Jonathan M Jeschke
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, Berlin, 12587, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
| | - Maud Bernard-Verdier
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, Berlin, 12587, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
| | - Sascha Buchholz
- Institute of Landscape Ecology, University of Münster, Heisenbergstr. 2, Münster, 48149, Germany
| | - Hans-Peter Grossart
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, Berlin, 12587, Germany
- Institute of Biochemistry and Biology, Potsdam University, Maulbeerallee 2, Potsdam, 14469, Germany
| | - Frank Havemann
- Institut für Bibliotheks- und Informationswissenschaft, Humboldt-Universität zu Berlin, Dorotheenstraße 26, Berlin, 10117, Germany
| | - Franz Hölker
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, Berlin, 12587, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
| | - Yuval Itescu
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, Berlin, 12587, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
| | - Ingo Kowarik
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
- Institute of Ecology, Technische Universität Berlin, Rothenburgstr. 12, Berlin, 12165, Germany
| | - Stephanie Kramer-Schadt
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
- Institute of Ecology, Technische Universität Berlin, Rothenburgstr. 12, Berlin, 12165, Germany
- Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Str. 17, Berlin, 10315, Germany
| | - Daniel Mietchen
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, Berlin, 12587, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
- Institute for Globally Distributed Open Research and Education (IGDORE), Gothenburg, Sweden
| | - Camille L Musseau
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, Berlin, 12587, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
| | - Aimara Planillo
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
- Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Str. 17, Berlin, 10315, Germany
| | - Conrad Schittko
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
- Institute of Ecology, Technische Universität Berlin, Rothenburgstr. 12, Berlin, 12165, Germany
| | - Tanja M Straka
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
- Institute of Ecology, Technische Universität Berlin, Rothenburgstr. 12, Berlin, 12165, Germany
| | - Tina Heger
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, Berlin, 12587, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
- Technical University of Munich, Restoration Ecology, Emil-Ramann-Str. 6, Freising, 85350, Germany
| |
Collapse
|
9
|
Neate-Clegg MHC, Tonelli BA, Youngflesh C, Wu JX, Montgomery GA, Şekercioğlu ÇH, Tingley MW. Traits shaping urban tolerance in birds differ around the world. Curr Biol 2023; 33:1677-1688.e6. [PMID: 37023752 DOI: 10.1016/j.cub.2023.03.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/24/2022] [Accepted: 03/09/2023] [Indexed: 04/08/2023]
Abstract
As human density increases, biodiversity must increasingly co-exist with urbanization or face local extinction. Tolerance of urban areas has been linked to numerous functional traits, yet few globally consistent patterns have emerged to explain variation in urban tolerance, which stymies attempts at a generalizable predictive framework. Here, we calculate an Urban Association Index (UAI) for 3,768 bird species in 137 cities across all permanently inhabited continents. We then assess how this UAI varies as a function of ten species-specific traits and further test whether the strength of trait relationships vary as a function of three city-specific variables. Of the ten species traits, nine were significantly associated with urban tolerance. Urban-associated species tend to be smaller, less territorial, have greater dispersal ability, broader dietary and habitat niches, larger clutch sizes, greater longevity, and lower elevational limits. Only bill shape showed no global association with urban tolerance. Additionally, the strength of several trait relationships varied across cities as a function of latitude and/or human population density. For example, the associations of body mass and diet breadth were more pronounced at higher latitudes, while the associations of territoriality and longevity were reduced in cities with higher population density. Thus, the importance of trait filters in birds varies predictably across cities, indicating biogeographic variation in selection for urban tolerance that could explain prior challenges in the search for global patterns. A globally informed framework that predicts urban tolerance will be integral to conservation as increasing proportions of the world's biodiversity are impacted by urbanization.
Collapse
Affiliation(s)
- Montague H C Neate-Clegg
- Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Benjamin A Tonelli
- Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Casey Youngflesh
- Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI 48824, USA
| | - Joanna X Wu
- Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Graham A Montgomery
- Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Çağan H Şekercioğlu
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Biology and Genetics, Koç University, Sarıyer, 34450 İstanbul, Türkiye
| | - Morgan W Tingley
- Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
10
|
Xu W, Gong Y, Wang L, Yao J, Wang H. Assessing abiotic correlations of an indicator species with sympatric riparian birds in a threatened submontane river–forest system using joint species modelling. DIVERS DISTRIB 2023. [DOI: 10.1111/ddi.13692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Affiliation(s)
- Wenyu Xu
- Jilin Engineering Laboratory for Avian Ecology and Conservation Genetics, School of Life Sciences Northeast Normal University Changchun China
- Jilin Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
| | - Ye Gong
- Jilin Engineering Laboratory for Avian Ecology and Conservation Genetics, School of Life Sciences Northeast Normal University Changchun China
- Jilin Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
- National Demonstration Center for Biological Experimental Teaching School of Life Sciences Northeast Normal University Changchun China
| | - Lin Wang
- Northeast Institute of Geography and Agroecology Chinese Academy of Sciences Changchun China
| | - Jiyuan Yao
- Animal's Scientific and Technological Institute Agricultural University of Jilin Changchun China
| | - Haitao Wang
- Jilin Engineering Laboratory for Avian Ecology and Conservation Genetics, School of Life Sciences Northeast Normal University Changchun China
- Jilin Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
| |
Collapse
|
11
|
Chatelain M, Rüdisser J, Traugott M. Urban-driven decrease in arthropod richness and diversity associated with group-specific changes in arthropod abundance. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.980387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Habitat loss and fragmentation caused by land-use changes in urbanised landscapes are main drivers of biodiversity loss and changes in species assemblages. While the effects of urbanisation on arthropods has received increasing attention in the last decade, most of the studies were taxon-specific, limited in time and/or covering only part of the habitats along the rural-urban gradient. To comprehensively assess the effects of urbanisation on arthropod communities, here, we sampled arthropods at 180 sites within an urban mosaic in the city of Innsbruck (Austria) using a systematic grid. At each site, arthropods were collected in three micro-habitats: the canopy, the bush layer and tree bark. They were identified to the family, infra-order or order level, depending on the taxonomic group. Urbanisation level was estimated by five different proxies extracted from land use/land cover data (e.g., impervious surface cover), all of them calculated in a 100, 500, and 1,000 m radius around the sampling points, and three indexes based on distance to settlements. We tested for the effects of different levels of urbanisation on (i) overall arthropod abundance, richness and diversity and (ii) community composition using redundancy analyses. In the canopy and the bush layer, arthropod richness and diversity decreased with increasing urbanisation level, suggesting that urbanisation acts as a filter on taxonomic groups. Our data on arthropod abundance further support this hypothesis and suggest that urbanisation disfavours wingless groups, particularly so on trees. Indeed, urbanisation was correlated to lower abundances of spiders and springtails, but higher abundances of aphids, barklice and flies. Arthropod community composition was better explained by a set of urbanisation proxies, especially impervious surface cover measured in a 100, 500, and 1,000 m radius. Arthropods are key elements of food webs and their availability in urban environments is expected to have bottom-up effects, thus shaping foraging behaviour, distribution, and/or success of species at higher trophic levels. Studying ecological networks in urban ecosystems is the next step that will allow to understand how urbanisation alters biodiversity.
Collapse
|
12
|
Urban Birds Using Insects on Front Panels of Cars. BIRDS 2023. [DOI: 10.3390/birds4010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Urbanization influences the food availability and quality for birds in many ways. Although a great amount of food for birds is provided incidentally or intentionally in urban areas, the quantity of insect-based food can be reduced in cities. We studied the role of one artificial food source, insects smashed on the front panels of cars, in Finland, and more specifically in the city of Rovaniemi, by conducting questionnaire research, searching for data from databases and performing a field study. Our results indicated that a total of seven bird species have been detected using insects on the front panels of cars in Finland. However, this behavior is not yet common since about 60% of responders to the questionnaire stated that this behavior is currently either rare or very rare. Most of the observations identified House Sparrows, followed by the White Wagtail or the Eurasian Jackdaw. Only a few observations identified the Eurasian Tree Sparrow, the Hooded Crow, the Great Tit and the Eurasian Magpie. The phenomenon was distributed quite widely across Finland, except in the case of the Eurasian Jackdaws, for which observations were restricted only to the southern part of the country. The first observation was made about the House Sparrow in 1971, followed by the White Wagtail (1975), Hooded Crow (1997), Eurasian Jackdaw (2006), Eurasian Tree Sparrow (2011), Eurasian Magpie (2019) and Great Tit (2022). The species using this food source are mainly sedentary urban exploiters, such as corvids and sparrows, that have been previously reported to have several different types of innovative behaviors. Most of the observations were conducted in urban parking sites of hypermarkets, and no observations were made in residential areas. Most of the foraging observations were made during the end phase of the breeding season, partly supporting the extra need for high-quality insect-based food for nestlings and fledglings. Our observations indicate that this behavior is not yet common and widespread among species.
Collapse
|
13
|
Casanelles‐Abella J, Fontana S, Fournier B, Frey D, Moretti M. Low resource availability drives feeding niche partitioning between wild bees and honeybees in a European city. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2727. [PMID: 36054537 PMCID: PMC10077915 DOI: 10.1002/eap.2727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/14/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Cities are socioecological systems that filter and select species, therefore establishing unique species assemblages and biotic interactions. Urban ecosystems can host richer wild bee communities than highly intensified agricultural areas, specifically in resource-rich urban green spaces such as allotments and family gardens. At the same time, urban beekeeping has boomed in many European cities, raising concerns that the fast addition of a large number of managed bees could deplete the existing floral resources, triggering competition between wild bees and honeybees. Here, we studied the interplay between resource availability and the number of honeybees at local and landscape scales and how this relationship influences wild bee diversity. We collected wild bees and honeybees in a pollination experiment using four standardized plant species with distinct floral morphologies. We performed the experiment in 23 urban gardens in the city of Zurich (Switzerland), distributed along gradients of urban and local management intensity, and measured functional traits related to resource use. At each site, we quantified the feeding niche partitioning (calculated as the average distance in the multidimensional trait space) between the wild bee community and the honeybee population. Using multilevel structural equation models (SEM), we tested direct and indirect effects of resource availability, urban beekeeping, and wild bees on the community feeding niche partitioning. We found an increase in feeding niche partitioning with increasing wild bee species richness. Moreover, feeding niche partitioning tended to increase in experimental sites with lower resource availability at the landscape scale, which had lower abundances of honeybees. However, beekeeping intensity at the local and landscape scales did not directly influence community feeding niche partitioning or wild bee species richness. In addition, wild bee species richness was positively influenced by local resource availability, whereas local honeybee abundance was positively affected by landscape resource availability. Overall, these results suggest that direct competition for resources was not a main driver of the wild bee community. Due to the key role of resource availability in maintaining a diverse bee community, our study encourages cities to monitor floral resources to better manage urban beekeeping and help support urban pollinators.
Collapse
Affiliation(s)
- Joan Casanelles‐Abella
- Biodiversity and Conservation BiologySwiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- Institute of Terrestrial Ecosystems, ETH ZurichZurichSwitzerland
| | - Simone Fontana
- Biodiversity and Conservation BiologySwiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- Nature Conservation and Landscape EcologyUniversity of FreiburgFreiburgGermany
| | - Bertrand Fournier
- Institute of Environmental Sciences and Geography, University of PotsdamPotsdamGermany
| | - David Frey
- Biodiversity and Conservation BiologySwiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| | - Marco Moretti
- Biodiversity and Conservation BiologySwiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| |
Collapse
|
14
|
Grabow M, Louvrier JLP, Planillo A, Kiefer S, Drenske S, Börner K, Stillfried M, Hagen R, Kimmig S, Straka TM, Kramer-Schadt S. Data-integration of opportunistic species observations into hierarchical modeling frameworks improves spatial predictions for urban red squirrels. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.881247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The prevailing trend of increasing urbanization and habitat fragmentation makes knowledge of species’ habitat requirements and distribution a crucial factor in conservation and urban planning. Species distribution models (SDMs) offer powerful toolboxes for discriminating the underlying environmental factors driving habitat suitability. Nevertheless, challenges in SDMs emerge if multiple data sets - often sampled with different intention and therefore sampling scheme – can complement each other and increase predictive accuracy. Here, we investigate the potential of using recent data integration techniques to model potential habitat and movement corridors for Eurasian red squirrels (Sciurus vulgaris), in an urban area. We constructed hierarchical models integrating data sets of different quality stemming from unstructured on one side and semi-structured wildlife observation campaigns on the other side in a combined likelihood approach and compared the results to modeling techniques based on only one data source - wherein all models were fit with the same selection of environmental variables. Our study highlights the increasing importance of considering multiple data sets for SDMs to enhance their predictive performance. We finally used Circuitscape (version 4.0.5) on the most robust SDM to delineate suitable movement corridors for red squirrels as a basis for planning road mortality mitigation measures. Our results indicate that even though red squirrels are common, urban habitats are rather small and partially lack connectivity along natural connectivity corridors in Berlin. Thus, additional fragmentation could bring the species closer to its limit to persist in urban environments, where our results can act as a template for conservation and management implications.
Collapse
|
15
|
SIMONS ARIELLEVI, CALDWELL STEVIE, FU MICHELLE, GALLEGOS JOSE, GATHERU MICHAEL, RICCARDELLI LAURA, TRUONG NHI, VIERA VALERIA. Constructing ecological indices for urban environments using species distribution models. Urban Ecosyst 2022. [DOI: 10.1007/s11252-022-01265-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
AbstractIn an increasingly urbanized world, there is a need to study urban areas as their own class of ecosystems as well as assess the impacts of anthropogenic impacts on biodiversity. However, collecting a sufficient number of species observations to estimate patterns of biodiversity in a city can be costly. Here we investigated the use of community science-based data on species occurrences, combined with species distribution models (SDMs), built using MaxEnt and remotely-sensed measures of the environment, to predict the distribution of a number of species across the urban environment of Los Angeles. By selecting species with the most accurate SDMs, and then summarizing these by class, we were able to produce two species richness models (SRMs) to predict biodiversity patterns for species in the class Aves and Magnoliopsida and how they respond to a variety of natural and anthropogenic environmental gradients.We found that species considered native to Los Angeles tend to have significantly more accurate SDMs than their non-native counterparts. For all species considered in this study we found environmental variables describing anthropogenic activities, such as housing density and alterations to land cover, tend to be more influential than natural factors, such as terrain and proximity to freshwater, in shaping SDMs. Using a random forest model we found our SRMs could account for approximately 54% and 62% of the predicted variation in species richness for species in the classes Aves and Magnoliopsida respectively. Using community science-based species occurrences, SRMs can be used to model patterns of urban biodiversity and assess the roles of environmental factors in shaping them.
Collapse
|
16
|
Valdés‐Correcher E, Popova A, Galmán A, Prinzing A, Selikhovkin AV, Howe AG, Mrazova A, Dulaurent A, Hampe A, Tack AJM, Bouget C, Lupaștean D, Harvey D, Musolin DL, Lövei GL, Centenaro G, Halder IV, Hagge J, Dobrosavljević J, Pitkänen J, Koricheva J, Sam K, Barbaro L, Branco M, Ferrante M, Faticov M, Tahadlová M, Gossner M, Cauchoix M, Bogdziewicz M, Duduman M, Kozlov MV, Bjoern MC, Mamaev NA, Fernandez‐Conradi P, Thomas RL, Wetherbee R, Green S, Milanović S, Moreira X, Mellerin Y, Kadiri Y, Castagneyrol B. Herbivory on the pedunculate oak along an urbanization gradient in Europe: Effects of impervious surface, local tree cover, and insect feeding guild. Ecol Evol 2022; 12:e8709. [PMID: 35342614 PMCID: PMC8928871 DOI: 10.1002/ece3.8709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/25/2022] [Accepted: 02/17/2022] [Indexed: 11/08/2022] Open
Abstract
Urbanization is an important driver of the diversity and abundance of tree-associated insect herbivores, but its consequences for insect herbivory are poorly understood. A likely source of variability among studies is the insufficient consideration of intra-urban variability in forest cover. With the help of citizen scientists, we investigated the independent and interactive effects of local canopy cover and percentage of impervious surface on insect herbivory in the pedunculate oak (Quercus robur L.) throughout most of its geographic range in Europe. We found that the damage caused by chewing insect herbivores as well as the incidence of leaf-mining and gall-inducing herbivores consistently decreased with increasing impervious surface around focal oaks. Herbivory by chewing herbivores increased with increasing forest cover, regardless of impervious surface. In contrast, an increase in local canopy cover buffered the negative effect of impervious surface on leaf miners and strengthened its effect on gall inducers. These results show that-just like in non-urban areas-plant-herbivore interactions in cities are structured by a complex set of interacting factors. This highlights that local habitat characteristics within cities have the potential to attenuate or modify the effect of impervious surfaces on biotic interactions.
Collapse
Affiliation(s)
| | - Anna Popova
- A. N. Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesMoscowRussia
| | - Andrea Galmán
- Institute of Biology/Geobotany and Botanical GardenMartin Luther University Halle‐WittenbergHalleGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Andreas Prinzing
- Research Unit ECOBIO (Ecosystems, Biodiversity, Evolution)UMR 6553University of Rennes/Centre National de la Recherche ScientifiqueRennesFrance
| | - Andrey V. Selikhovkin
- Department of Forest Protection, Wood Science and Game ManagementSaint Petersburg State Forest Technical UniversitySt. PetersburgRussia
| | - Andy G. Howe
- Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenFrederiksberg CDenmark
- Forest Industries Research CentreUniversity of the Sunshine CoastSippy DownsAustralia
| | - Anna Mrazova
- Biology Centre of Czech Academy of SciencesEntomology InstituteCeske BudejoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
| | | | | | | | - Christophe Bouget
- Forest Ecosystems' Research UnitBiodiversity Team Domaine des BarresINRAENogent‐sur‐VernissonFrance
| | - Daniela Lupaștean
- Applied Ecology LabForestry Faculty“Ștefan cel Mare” University of SuceavaSuceavaRomania
| | - Deborah Harvey
- Department of Biological SciencesRoyal HollowayUniversity of LondonEghamUK
| | - Dmitry L. Musolin
- Department of Forest Protection, Wood Science and Game ManagementSaint Petersburg State Forest Technical UniversitySt. PetersburgRussia
| | - Gábor L. Lövei
- Department of AgroecologyFlakkebjerg Research CentreAarhus UniversitySlagelseDenmark
| | - Giada Centenaro
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
| | | | - Jonas Hagge
- Forest Nature ConservationNorthwest German Forest Research InstituteHann. MündenGermany
- Forest Nature ConservationGeorg‐August‐University GöttingenGöttingenGermany
| | - Jovan Dobrosavljević
- Department of Forest ProtectionFaculty of ForestryUniversity of BelgradeBelgradeSerbia
| | - Juha‐Matti Pitkänen
- Forest Health and BiodiversityNatural Resources Institute Finland (LUKE)HelsinkiFinland
- Spatial Foodweb Ecology GroupDepartment of Agricultural SciencesUniversity of HelsinkiHelsinkiFinland
| | - Julia Koricheva
- Department of Biological SciencesRoyal HollowayUniversity of LondonEghamUK
| | - Katerina Sam
- Biology Centre of Czech Academy of SciencesEntomology InstituteCeske BudejoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
| | - Luc Barbaro
- DynaforUniv. ToulouseINRAECastanet‐TolosanFrance
- CESCO, Museum national d'Histoire naturelleCNRSSorbonne‐Univ.ParisFrance
| | - Manuela Branco
- Centro de Estudos FlorestaisInstituto Superior de AgronomiaUniversidade de LisboaLisboaPortugal
| | - Marco Ferrante
- Department of AgroecologyFlakkebjerg Research CentreAarhus UniversitySlagelseDenmark
- Azorean Biodiversity GroupcE3c – Centre for Ecology, Evolution and Environmental ChangesUniversity of the AzoresAzoresPortugal
| | - Maria Faticov
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
| | - Markéta Tahadlová
- Biology Centre of Czech Academy of SciencesEntomology InstituteCeske BudejoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
| | - Martin Gossner
- Forest EntomologySwiss Federal Research Institute WSLBirmensdorfSwitzerland
- Department of Environmental Systems ScienceInstitute of Terrestrial EcosystemsETH ZürichZürichSwitzerland
| | - Maxime Cauchoix
- Station d'Ecologie Théorique et Expérimentale du CNRSMoulisFrance
| | - Michał Bogdziewicz
- Department of Systematic ZoologyFaculty of BiologyAdam Mickiewicz UniversityPoznanPoland
- Laboratoire EcoSystèmes et Sociétés En MontagneINRAE Univ Grenoble AlpesSaint‐Martin‐d'Hères cedexFrance
| | - Mihai‐Leonard Duduman
- Applied Ecology LabForestry Faculty“Ștefan cel Mare” University of SuceavaSuceavaRomania
| | | | - Mona C. Bjoern
- Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenFrederiksberg CDenmark
| | - Nikita A. Mamaev
- Department of Forest Protection, Wood Science and Game ManagementSaint Petersburg State Forest Technical UniversitySt. PetersburgRussia
| | | | - Rebecca L. Thomas
- Department of Biological SciencesRoyal HollowayUniversity of LondonEghamUK
| | - Ross Wetherbee
- Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life SciencesAasNorway
| | - Samantha Green
- Centre for Agroecology, Water and ResilienceCoventry UniversityCoventryUK
| | - Slobodan Milanović
- Department of Forest ProtectionFaculty of ForestryUniversity of BelgradeBelgradeSerbia
- Department of Forest Protection and Wildlife ManagementFaculty of Forestry and Wood TechnologyMendel University in BrnoBrnoCzech Republic
| | | | | | | | | |
Collapse
|
17
|
Marcacci G, Westphal C, Wenzel A, Raj V, Nölke N, Tscharntke T, Grass I. Taxonomic and functional homogenization of farmland birds along an urbanization gradient in a tropical megacity. GLOBAL CHANGE BIOLOGY 2021; 27:4980-4994. [PMID: 34157186 DOI: 10.1111/gcb.15755] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Urbanization is a major driver of land use change and biodiversity decline. While most of the ongoing and future urbanization hotspots are located in the Global South, the impact of urban expansion on agricultural biodiversity and associated functions and services in these regions has widely been neglected. Additionally, most studies assess biodiversity responses at local scale (α-diversity), however, ecosystem functioning is strongly determined by compositional and functional turnover of communities (β-diversity) at regional scales. We investigated taxonomic and functional β-diversity of farmland birds across three seasons on 36 vegetable farms spread along a continuous urbanization gradient in Bangalore, a South Indian megacity. Increasing amount of grey area in the farm surroundings was the dominant driver affecting β-diversity and resulting in taxonomic and functional homogenization of farmland bird communities. Functional diversity losses were higher than expected from species declines (i.e., urbanization acts as an environmental filter), with particular losses of functionally important groups such as insectivores of crop pests. Moreover, urbanization reduced functional redundancy of bird communities, which may further weaken ecosystems resilience to future perturbations. Our study underscores urbanization as a major driver of taxonomic and functional homogenization of species communities in agricultural systems, potentially threatening crucial ecosystem services for food production.
Collapse
Affiliation(s)
- Gabriel Marcacci
- Functional Agrobiodiversity, University of Göttingen, Göttingen, Germany
| | - Catrin Westphal
- Functional Agrobiodiversity, University of Göttingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Göttingen, Germany
| | - Arne Wenzel
- Functional Agrobiodiversity, University of Göttingen, Göttingen, Germany
| | - Varsha Raj
- Agricultural Entomology, University of Agricultural Sciences, GKVK, Bangalore, India
| | - Nils Nölke
- Forest Inventory and Remote Sensing, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Göttingen, Germany
| | - Teja Tscharntke
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Göttingen, Germany
- Agroecology, University of Göttingen, Göttingen, Germany
| | - Ingo Grass
- Institute of Agricultural Sciences in the Tropics, Department of Ecology of Tropical Agricultural Systems, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|