1
|
Zhou Y, Liu X, Zhao G, Zuo C, Alofs K, Wang R. Pathways linking watershed development and riparian quality to stream water quality and fish communities: Insights from 233 subbasins of the Great Lakes region. WATER RESEARCH 2024; 261:121964. [PMID: 38941680 DOI: 10.1016/j.watres.2024.121964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
Anthropogenic stressors such as urban development, agricultural runoff, and riparian zone degradation impair stream water quality and biodiversity. However, the intricate pathways that connect these stressors at watershed and riparian scales to stream ecosystems-and their interplay with climate and hydrology-remain understudied. In this study, we used Partial Least Squares (PLS) path modeling to examine these pathways and their collective impacts on stream water quality and fish community structures across 233 watersheds in the Great Lakes region. Our study suggests that moderate levels of watershed development enhance overall fish richness, potentially due to increased water temperature and nutrient availability, but reduces both the percentages and richness of cold water and intolerant taxa. Riparian quality exerts indirect effects on water quality with climate and stream order serving as key mediators. Complementing our SEM analysis, we also used Multiple Linear Regression (MLR) models and identified a significant positive relationship between the proportion of clay and agricultural land with TN concentrations. However, TP concentrations are influenced by a more complex set of interactions involving developed areas, soil, and slope. These findings emphasize the necessity of adopting integrated management strategies to preserve the health and integrity of freshwater ecosystems in the Great Lakes region. These strategies should integrate watershed and riparian protection measures while also taking into account the effects of climate change and specific local conditions.
Collapse
Affiliation(s)
- Yuhan Zhou
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, 48109, United States.
| | - Xiaofeng Liu
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, 48109, United States.
| | - Gang Zhao
- Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, China, 100101, China.
| | - Chen Zuo
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, 48109, United States.
| | - Karen Alofs
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, 48109, United States.
| | - Runzi Wang
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, 48109, United States; Department of Human Ecology, College of Agricultural and Environmental Sciences, University of California, Davis.
| |
Collapse
|
2
|
Martelo J, Gkenas C, Ribeiro D, Alves MJ, Ribeiro F, Cucherousset J, Gago J, Magalhães MF. Local environment and fragmentation by drought and damming shape different components of native and non-native fish beta diversity across pool refuges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172517. [PMID: 38641092 DOI: 10.1016/j.scitotenv.2024.172517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
Pool refuges are critical for maintaining stream fish diversity in increasingly intermittent streams. Yet, the patterns and drivers of beta diversity of native and non-native fish in pool refuges remain poorly known. Focusing on Mediterranean streams, we decomposed beta diversity of native and non-native fish into richness difference (RichDiff) and species replacement (Repl), and local (LCBD, LCBDRichDiff and LCBDRepl) and species (SCBD) contributions. We assessed the influence of environmental and spatial factors associated with drought and damming fragmentations on beta diversity components and LCBDs, and of local species richness and occupancy on LCBDs and SCBD, respectively. Overall, non-native species showed a more limited occupancy of pool refuges than native fish. RichDiff dominated beta diversity, though it was influenced by drought and damming fragmentations for native fish and local environment for non-native fish. Repl for native fish was slightly influenced by local environment, but for non-native fish was largely driven by drought and damming, albeit with a contribution of local environment as well. LCBD and LCBDRichDiff increased in pools in low order streams for native fish and at low elevations for non-native fish, and with high or low species richness. SCBD was higher for native species with intermediated pool occupancy, but for non-native species with low occupancy. Our results suggest that stream fragmentation may drive native species loss and non-native species replacement in pool refuges, and that environmental filtering may shape non-native species loss. Pools in lower order streams harbouring unique species-rich or species-poor assemblages should be prioritize for conservation and restoration, respectively, and pools at low elevation with unique non-native assemblages should deserve control efforts. We encourage the partitioning of beta diversity and individual analysis of native and non-native fish in intermittent streams, which may be key in stressing the importance of pool refuges in safeguarding native fish diversity.
Collapse
Affiliation(s)
- Joana Martelo
- cE3c- Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal; MARE, Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network Associated Laboratory, Faculty of Sciences, University of Lisbon, Lisbon, Portugal.
| | - Christos Gkenas
- MARE, Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network Associated Laboratory, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Diogo Ribeiro
- MARE, Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network Associated Laboratory, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - M Judite Alves
- cE3c- Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal; Museum of Natural History and Sciences, University of Lisbon, Lisbon, Portugal
| | - Filipe Ribeiro
- MARE, Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network Associated Laboratory, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Julien Cucherousset
- Laboratoire EDB (UMR 5174), CNRS, University Toulouse III, Paul Sabatier, France
| | - João Gago
- MARE, Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network Associated Laboratory, Faculty of Sciences, University of Lisbon, Lisbon, Portugal; Escola Superior Agrária de Santarém, Instituto Politécnico de Santarém, Santarém, Portugal; CERNAS, Research Centre for Natural Resources, Environment and Society, Portugal
| | - M Filomena Magalhães
- cE3c- Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
3
|
Hopper GW, Miller EJ, Haag WR, Vaughn CC, Hornbach DJ, Jones JW, Atkinson CL. A test of the loose-equilibrium concept with long-lived organisms: Evaluating temporal change in freshwater mussel assemblages. J Anim Ecol 2024; 93:281-293. [PMID: 38243658 DOI: 10.1111/1365-2656.14046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/12/2023] [Indexed: 01/21/2024]
Abstract
The loose-equilibrium concept (LEC) predicts that ecological assemblages change transiently but return towards an earlier or average structure. The LEC framework can help determine whether assemblages vary within expected ranges or are permanently altered following environmental change. Long-lived, slow-growing animals typically respond slowly to environmental change, and their assemblage dynamics may respond over decades, which transcends most ecological studies. Unionid mussels are valuable for studying dynamics of long-lived animals because they can live >50 years and occur in dense, species-rich assemblages (mussel beds). Mussel beds can persist for decades, but disturbance can affect species differently, resulting in variable trajectories according to differences in species composition within and among rivers. We used long-term data sets (10-40 years) from seven rivers in the eastern United States to evaluate the magnitude, pace and directionality of mussel assemblage change within the context of the LEC. Site trajectories varied within and among streams and showed patterns consistent with either the LEC or directional change. In streams that conformed to the LEC, rank abundance of dominant species remained stable over time, but directional change in other streams was driven by changes in the rank abundance and composition of dominant species. Characteristics of mussel assemblage change varied widely, ranging from those conforming to the LEC to those showing strong directional change. Conservation approaches that attempt to maintain or create a desired assemblage condition should acknowledge this wide range of possible assemblage trajectories and that the environmental factors that influence those changes remain poorly understood.
Collapse
Affiliation(s)
- Garrett W Hopper
- School of Renewable Natural Resources, Louisiana State University and Agricultural Center, Baton Rouge, Louisiana, USA
| | - Edwin J Miller
- Kansas Department of Wildlife and Parks, Independence, Kansas, USA
| | - Wendell R Haag
- US Forest Service, Southern Research Station, Center for Bottomland Hardwoods Research, Frankfort, Kentucky, USA
| | - Caryn C Vaughn
- Oklahoma Biological Survey and Department of Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Daniel J Hornbach
- Department of Environmental Studies, Macalester College, St. Paul, Minnesota, USA
| | - Jess W Jones
- U.S. Fish and Wildlife Service, Department of Fish and Wildlife Conservation and Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Carla L Atkinson
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
| |
Collapse
|