1
|
Yin H, Perera-Castro AV, Randall KL, Turnbull JD, Waterman MJ, Dunn J, Robinson SA. Basking in the sun: how mosses photosynthesise and survive in Antarctica. PHOTOSYNTHESIS RESEARCH 2023; 158:151-169. [PMID: 37515652 PMCID: PMC10684656 DOI: 10.1007/s11120-023-01040-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/10/2023] [Indexed: 07/31/2023]
Abstract
The Antarctic environment is extremely cold, windy and dry. Ozone depletion has resulted in increasing ultraviolet-B radiation, and increasing greenhouse gases and decreasing stratospheric ozone have altered Antarctica's climate. How do mosses thrive photosynthetically in this harsh environment? Antarctic mosses take advantage of microclimates where the combination of protection from wind, sufficient melt water, nutrients from seabirds and optimal sunlight provides both photosynthetic energy and sufficient warmth for efficient metabolism. The amount of sunlight presents a challenge: more light creates warmer canopies which are optimal for photosynthetic enzymes but can contain excess light energy that could damage the photochemical apparatus. Antarctic mosses thus exhibit strong photoprotective potential in the form of xanthophyll cycle pigments. Conversion to zeaxanthin is high when conditions are most extreme, especially when water content is low. Antarctic mosses also produce UV screening compounds which are maintained in cell walls in some species and appear to protect from DNA damage under elevated UV-B radiation. These plants thus survive in one of the harshest places on Earth by taking advantage of the best real estate to optimise their metabolism. But survival is precarious and it remains to be seen if these strategies will still work as the Antarctic climate changes.
Collapse
Affiliation(s)
- Hao Yin
- Securing Antarctica's Environmental Future, University of Wollongong, Wollongong, NSW, 2522, Australia
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | | | - Krystal L Randall
- Securing Antarctica's Environmental Future, University of Wollongong, Wollongong, NSW, 2522, Australia
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Johanna D Turnbull
- Securing Antarctica's Environmental Future, University of Wollongong, Wollongong, NSW, 2522, Australia
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Melinda J Waterman
- Securing Antarctica's Environmental Future, University of Wollongong, Wollongong, NSW, 2522, Australia
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Jodie Dunn
- Securing Antarctica's Environmental Future, University of Wollongong, Wollongong, NSW, 2522, Australia
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Sharon A Robinson
- Securing Antarctica's Environmental Future, University of Wollongong, Wollongong, NSW, 2522, Australia.
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
2
|
Finocchiaro M, Médail F, Saatkamp A, Diadema K, Pavon D, Meineri E. Bridging the gap between microclimate and microrefugia: A bottom-up approach reveals strong climatic and biological offsets. GLOBAL CHANGE BIOLOGY 2023; 29:1024-1036. [PMID: 36383061 PMCID: PMC10100396 DOI: 10.1111/gcb.16526] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/11/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
In the context of global warming, a clear understanding of microrefugia-microsites enabling the survival of species populations outside their main range limits-is crucial. Several studies have identified forcing factors that are thought to favor the existence of microrefugia. However, there is a lack of evidence to conclude whether, and to what extent, the climate encountered within existing microrefugia differs from the surrounding climate. To investigate this, we adopt a "bottom-up" approach, linking marginal disconnected populations to microclimate. We used the southernmost disconnected and abyssal populations of the circumboreal herbaceous plant Oxalis acetosella in Southern France to study whether populations in sites matching the definition of "microrefugia" occur in particularly favorable climatic conditions compared to neighboring control plots located at distances of between 50 to 100 m. Temperatures were recorded in putative microrefugia and in neighboring plots for approximately 2 years to quantify their thermal offsets. Vascular plant inventories were carried out to test whether plant communities also reflect microclimatic offsets. We found that current microclimatic dynamics are genuinely at stake in microrefugia. Microrefugia climates are systematically colder compared to those found in neighboring control plots. This pattern was more noticeable during the summer months. Abyssal populations showed stronger offsets compared to neighboring plots than the putative microrefugia occurring at higher altitudes. Plant communities demonstrate this strong spatial climatic variability, even at such a microscale approach, as species compositions systematically differed between the two plots, with species more adapted to colder and moister conditions in microrefugia compared to the surrounding area.
Collapse
Affiliation(s)
- Marie Finocchiaro
- Aix Marseille Université, Avignon Université, CNRS, IRD, UMR IMBEMarseilleFrance
| | - Frédéric Médail
- Aix Marseille Université, Avignon Université, CNRS, IRD, UMR IMBEMarseilleFrance
| | - Arne Saatkamp
- Aix Marseille Université, Avignon Université, CNRS, IRD, UMR IMBEMarseilleFrance
| | - Katia Diadema
- Conservatoire Botanique National Méditerranéen de PorquerollesHyèresFrance
| | - Daniel Pavon
- Aix Marseille Université, Avignon Université, CNRS, IRD, UMR IMBEMarseilleFrance
| | - Eric Meineri
- Aix Marseille Université, Avignon Université, CNRS, IRD, UMR IMBEMarseilleFrance
| |
Collapse
|