1
|
Ashman KR, Ward M, Dickman CR, Harley D, Valentine L, Woinarski J, Marsh JR, Jolly CJ, Driscoll DA, Bowd E, Watchorn DJ, Clemann N, Lindenmayer DB. Policy decisions matter: Cessation of logging benefits 34 threatened species in Victoria, Australia. PLoS One 2025; 20:e0319531. [PMID: 40073013 PMCID: PMC11902118 DOI: 10.1371/journal.pone.0319531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 02/04/2025] [Indexed: 03/14/2025] Open
Abstract
In January 2024, the Australian state of Victoria committed to ending native forest logging six years ahead of schedule, a decision that has been advocated for by scientists and conservationists for decades. However, the direct benefits for threatened species from this policy change has not been quantified. This study assesses the spatial overlap between areas approved for logging and the habitats of nationally listed threatened species, to estimate the potential impacts of continued logging and the likely benefits of its cessation. We found that 99% of the areas approved for logging overlapped with the habitats of nationally threatened species. On average, each logging cutblock contained habitat for eight listed species. Areas approved for logging had considerable overlap with the habitat of several threatened species, particularly the Baw Baw frog (Philoria frosti, Critically Endangered, 6.2% of habitat approved for logging), Leadbeater's possum (Gymnobelideus leadbeateri, Critically Endangered, 6.1%), barred galaxias (Galaxias fuscus, Endangered, 5.6%), Tall astelia (Astelia australiana, Vulnerable, 5.4%), and Colquhoun grevillea (Grevillea celata, Vulnerable, 5%). Notably, these five species are found only in Victoria, thus these values represent the proportion of their entire mapped habitat slated for logging over a short time period. Our findings underscore the need for urgent, nationwide forest protection policies, alongside restoration efforts, to support species recovery and meet global climate and biodiversity commitments.
Collapse
Affiliation(s)
- Kita R. Ashman
- Regenerative Country, WWF-Australia, Melbourne, Victoria, Australia
- Fenner School of Environment & Society, The Australian National University, Canberra, ACT, Australia
| | - Michelle Ward
- Regenerative Country, WWF-Australia, Melbourne, Victoria, Australia
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, Queensland, Australia
- School of Environment and Science, Griffith University, Nathan, Queensland, Australia
| | - Chris R. Dickman
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Dan Harley
- Wildlife Conservation & Science, Zoos Victoria, Parkville, Victoria, Australia
| | - Leonie Valentine
- Regenerative Country, WWF-Australia, Melbourne, Victoria, Australia
- University of Western Australia, School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - John Woinarski
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Jess R. Marsh
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Chris J. Jolly
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Don A. Driscoll
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | - Elle Bowd
- Fenner School of Environment & Society, The Australian National University, Canberra, ACT, Australia
| | - Darcy J. Watchorn
- Wildlife Conservation & Science, Zoos Victoria, Parkville, Victoria, Australia
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | - Nick Clemann
- Wildlife Conservation & Science, Zoos Victoria, Parkville, Victoria, Australia
| | - David B. Lindenmayer
- Fenner School of Environment & Society, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
2
|
Reside AE, Carwardine J, Ward M, Yong C, Venegas Li R, Rogers A, Wintle BA, Silcock J, Woinarski J, Lintermans M, Taylor G, Pintor AFV, Watson JEM. The cost of recovering Australia's threatened species. Nat Ecol Evol 2025; 9:425-435. [PMID: 39715952 DOI: 10.1038/s41559-024-02617-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 11/27/2024] [Indexed: 12/25/2024]
Abstract
Accounting for the cost of repairing the degradation of Earth's biosphere is critical to guide conservation and sustainable development decisions. Yet the costs of repairing nature through the recovery of a continental suite of threatened species across their range have never been calculated. We estimated the cost of in situ recovery of nationally listed terrestrial and freshwater threatened species (n = 1,657) across the megadiverse continent of Australia by combining the spatially explicit costs of all strategies required to address species-specific threats. Individual species recovery required up to 12 strategies (mean 2.3), predominantly habitat retention and restoration, and the management of fire and invasive species. The estimated costs of maximizing threatened species recovery across Australia varied from AU$0-$12,626 per ha, depending on the species, threats and context of each location. The total cost of implementing all strategies to recover threatened species in their in situ habitat across Australia summed to an estimated AU$583 billion per year, with management of invasive weeds making up 81% of the total cost. This figure, at 25% of Australia's GDP, does not represent a realistic biodiversity conservation budget, but needs to be accounted for when weighing up decisions that lead to further costly degradation of Australia's natural heritage.
Collapse
Affiliation(s)
- April E Reside
- School of the Environment, University of Queensland, Brisbane, Queensland, Australia.
- Centre for Biodiversity and Conservation Science, The University of Queensland, Brisbane, Queensland, Australia.
| | | | - Michelle Ward
- School of the Environment, University of Queensland, Brisbane, Queensland, Australia
- Centre for Biodiversity and Conservation Science, The University of Queensland, Brisbane, Queensland, Australia
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Nathan, Queensland, Australia
| | - Chuanji Yong
- School of the Environment, University of Queensland, Brisbane, Queensland, Australia
- Centre for Biodiversity and Conservation Science, The University of Queensland, Brisbane, Queensland, Australia
- School of Agriculture and Environment, University of Western Australia, Perth, Western Australia, Australia
| | - Ruben Venegas Li
- School of the Environment, University of Queensland, Brisbane, Queensland, Australia
- Centre for Biodiversity and Conservation Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Andrew Rogers
- School of the Environment, University of Queensland, Brisbane, Queensland, Australia
- Centre for Biodiversity and Conservation Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Brendan A Wintle
- Melbourne Biodiversity Institute, School of Agriculture, Food and Ecosystem Sciences, University of Melbourne, Victoria, Australia
| | - Jennifer Silcock
- School of the Environment, University of Queensland, Brisbane, Queensland, Australia
- Centre for Biodiversity and Conservation Science, The University of Queensland, Brisbane, Queensland, Australia
| | - John Woinarski
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Mark Lintermans
- Centre for Applied Water Science, Institute for Applied Ecology, University of Canberra, Canberra, Australia
- Fish Fondler Pty Ltd, Bungendore, New South Wales, Australia
| | - Gary Taylor
- Australian Centre for Evolutionary Biology and Biodiversity, and School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Anna F V Pintor
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - James E M Watson
- School of the Environment, University of Queensland, Brisbane, Queensland, Australia
- Centre for Biodiversity and Conservation Science, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
3
|
Makdissi R, Verdon SJ, Radford JQ, Bennett AF, Clarke MF. The impact of plant-derived fire management prescriptions on fire-responsive bird species. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024:e3036. [PMID: 39344180 DOI: 10.1002/eap.3036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/23/2024] [Accepted: 07/10/2024] [Indexed: 10/01/2024]
Abstract
In fire-prone regions, the occurrence of some faunal species is contingent on the presence of resources that arise through post-fire plant succession. Through planned burning, managers can alter resource availability and aim to provide the conditions required to promote biodiversity. Understanding how species occurrence changes at different spatial and temporal scales after fire is essential to achieve this goal. However, many fire prescriptions are guided primarily by the responses of fire-sensitive plants when setting tolerable fire intervals. This approach assumes that maintaining floristic diversity will satisfy the requirements of fauna. We surveyed bird species in two semi-arid vegetation types across an environmental gradient in south-eastern Australia. We conducted four surveys at each of 253 sites across a 75-year chronosequence of time since fire and used generalized additive mixed models to examine changes in the occurrence of birds in response to time since fire. Model predictions were compared to plant-derived fire prescriptions currently guiding fire management in the region. Time since fire was a significant predictor for 18 of 28 species modeled, in at least one vegetation type, over a gradient of 1.3° of latitude. We detected considerable variation in the responses of some species, both between vegetation types and geographically within a vegetation type. Our evaluation of plant-derived fire prescriptions suggests that the intervals considered acceptable for maintaining floristic diversity may not be sustainable for populations of birds requiring longer unburnt vegetation, with 6 of the 12 species assessed attaining a mean occurrence probability of 20.3% by the minimum tolerable fire interval, and 57.3% by the maximum tolerable fire interval, in their respective vegetation types. Our findings highlight the potential vulnerability of fire-responsive bird species if fire prescriptions are applied in a manner that fails to account for the slow development of habitat resources needed by some species, and the variation detected within the responses of species. This highlights the need for species-specific data collected at an appropriate spatial scale to inform management plans.
Collapse
Affiliation(s)
- Rhys Makdissi
- Department of Environment and Genetics, and Research Centre for Future Landscapes, La Trobe University, Melbourne, Victoria, Australia
| | - Simon J Verdon
- Department of Environment and Genetics, and Research Centre for Future Landscapes, La Trobe University, Melbourne, Victoria, Australia
| | - James Q Radford
- Department of Environment and Genetics, and Research Centre for Future Landscapes, La Trobe University, Melbourne, Victoria, Australia
| | - Andrew F Bennett
- Department of Environment and Genetics, and Research Centre for Future Landscapes, La Trobe University, Melbourne, Victoria, Australia
| | - Michael F Clarke
- Department of Environment and Genetics, and Research Centre for Future Landscapes, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Harrison ME, Deere NJ, Imron MA, Nasir D, Adul, Asti HA, Aragay Soler J, Boyd NC, Cheyne SM, Collins SA, D’Arcy LJ, Erb WM, Green H, Healy W, Hendri, Holly B, Houlihan PR, Husson SJ, Iwan, Jeffers KA, Kulu IP, Kusin K, Marchant NC, Morrogh-Bernard HC, Page SE, Purwanto A, Ripoll Capilla B, de Rivera Ortega OR, Santiano, Spencer KL, Sugardjito J, Supriatna J, Thornton SA, Frank van Veen FJ, Yulintine, Struebig MJ. Impacts of fire and prospects for recovery in a tropical peat forest ecosystem. Proc Natl Acad Sci U S A 2024; 121:e2307216121. [PMID: 38621126 PMCID: PMC11047076 DOI: 10.1073/pnas.2307216121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/02/2023] [Indexed: 04/17/2024] Open
Abstract
Uncontrolled fires place considerable burdens on forest ecosystems, compromising our ability to meet conservation and restoration goals. A poor understanding of the impacts of fire on ecosystems and their biodiversity exacerbates this challenge, particularly in tropical regions where few studies have applied consistent analytical techniques to examine a broad range of ecological impacts over multiyear time frames. We compiled 16 y of data on ecosystem properties (17 variables) and biodiversity (21 variables) from a tropical peatland in Indonesia to assess fire impacts and infer the potential for recovery. Burned forest experienced altered structural and microclimatic conditions, resulting in a proliferation of nonforest vegetation and erosion of forest ecosystem properties and biodiversity. Compared to unburned forest, habitat structure, tree density, and canopy cover deteriorated by 58 to 98%, while declines in species diversity and abundance were most pronounced for trees, damselflies, and butterflies, particularly for forest specialist species. Tracking ecosystem property and biodiversity datasets over time revealed most to be sensitive to recurrent high-intensity fires within the wider landscape. These megafires immediately compromised water quality and tree reproductive phenology, crashing commercially valuable fish populations within 3 mo and driving a gradual decline in threatened vertebrates over 9 mo. Burned forest remained structurally compromised long after a burn event, but vegetation showed some signs of recovery over a 12-y period. Our findings demonstrate that, if left uncontrolled, fire may be a pervasive threat to the ecological functioning of tropical forests, underscoring the importance of fire prevention and long-term restoration efforts, as exemplified in Indonesia.
Collapse
Affiliation(s)
- Mark E. Harrison
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, PenrynTR10 9FE, United Kingdom
- School of Geography, Geology and the Environment, University of Leicester, LeicesterLE1 7RH, United Kingdom
| | - Nicolas J. Deere
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, CanterburyCT2 7NR, United Kingdom
| | - Muhammad Ali Imron
- Faculty of Forestry, Universitas Gadjah Mada, Yogyakarta55281, Indonesia
| | - Darmae Nasir
- Centre for the International Cooperation in Sustainable Management of Tropical Peatlands, University of Palangka Raya, Palangka Raya73112, Central Kalimantan, Indonesia
| | - Adul
- Yayasan Borneo Nature Indonesia, Palangka Raya73112, Central Kalimantan, Indonesia
| | - Hastin Ambar Asti
- Faculty of Forestry, Universitas Gadjah Mada, Yogyakarta55281, Indonesia
| | - Joana Aragay Soler
- Wildlife Conservation Research Unit, Department of Biology, University of Oxford, OxfordOX13 5QL, United Kingdom
| | - Nicholas C. Boyd
- Department of Modern Languages, University of Wales Aberystwyth, AberystwthSY23 1DE, United Kingdom
| | - Susan M. Cheyne
- School of Humanities and Social Sciences, Oxford Brookes University, OxfordOX3 0BP, United Kingdom
| | - Sarah A. Collins
- School of Biological and Marine Sciences, Faculty of Science and Engineering, University of Plymouth, PlymouthPL4 8AA, United Kingdom
| | - Laura J. D’Arcy
- Borneo Nature Foundation International, Tremough Innovation Centre, PenrynTR10 9TA, United Kingdom
| | - Wendy M. Erb
- K. Lisa Yang Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, Ithaca, NY14850
| | - Hannah Green
- School of Biological and Marine Sciences, Faculty of Science and Engineering, University of Plymouth, PlymouthPL4 8AA, United Kingdom
| | - William Healy
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, PenrynTR10 9FE, United Kingdom
| | - Hendri
- Yayasan Borneo Nature Indonesia, Palangka Raya73112, Central Kalimantan, Indonesia
| | - Brendan Holly
- Environmental Studies, Centre College, Danville, KY40422
| | - Peter R. Houlihan
- Center for Tropical Research, Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA90095-1496
| | - Simon J. Husson
- Borneo Nature Foundation International, Tremough Innovation Centre, PenrynTR10 9TA, United Kingdom
| | - Iwan
- Yayasan Borneo Nature Indonesia, Palangka Raya73112, Central Kalimantan, Indonesia
| | - Karen A. Jeffers
- School of Humanities and Social Sciences, Oxford Brookes University, OxfordOX3 0BP, United Kingdom
| | - Ici P. Kulu
- Centre for the International Cooperation in Sustainable Management of Tropical Peatlands, University of Palangka Raya, Palangka Raya73112, Central Kalimantan, Indonesia
| | - Kitso Kusin
- Centre for the International Cooperation in Sustainable Management of Tropical Peatlands, University of Palangka Raya, Palangka Raya73112, Central Kalimantan, Indonesia
| | - Nicholas C. Marchant
- Wildlife Conservation Research Unit, Department of Biology, University of Oxford, OxfordOX13 5QL, United Kingdom
| | - Helen C. Morrogh-Bernard
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, PenrynTR10 9FE, United Kingdom
| | - Susan E. Page
- School of Geography, Geology and the Environment, University of Leicester, LeicesterLE1 7RH, United Kingdom
| | - Ari Purwanto
- Yayasan Borneo Nature Indonesia, Palangka Raya73112, Central Kalimantan, Indonesia
| | - Bernat Ripoll Capilla
- Borneo Nature Foundation International, Tremough Innovation Centre, PenrynTR10 9TA, United Kingdom
| | - Oscar Rodriguez de Rivera Ortega
- Department of Mathematics and Statistics, Faculty of Environment, Science and Economy, University of Exeter, ExeterEX4 4QF, United Kingdom
| | - Santiano
- Yayasan Borneo Nature Indonesia, Palangka Raya73112, Central Kalimantan, Indonesia
| | - Katie L. Spencer
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, CanterburyCT2 7NR, United Kingdom
| | - Jito Sugardjito
- Centre for Sustainable Energy and Resources Management, Universitas Nasional, Jakarta12520, Indonesia
- Faculty of Biology, Universitas Nasional, Jakarta12520, Indonesia
| | - Jatna Supriatna
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok16424, Indonesia
| | - Sara A. Thornton
- School of Geography, Geology and the Environment, University of Leicester, LeicesterLE1 7RH, United Kingdom
| | - F. J. Frank van Veen
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, PenrynTR10 9FE, United Kingdom
| | - Yulintine
- Centre for the International Cooperation in Sustainable Management of Tropical Peatlands, University of Palangka Raya, Palangka Raya73112, Central Kalimantan, Indonesia
| | - Matthew J. Struebig
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, CanterburyCT2 7NR, United Kingdom
| |
Collapse
|
5
|
Gretgrix LJ, Decker O, Green PT, Köhler F, Moussalli A, Murphy NP. Genetic diversity of a short-ranged endemic terrestrial snail. Ecol Evol 2023; 13:e10785. [PMID: 38034337 PMCID: PMC10684984 DOI: 10.1002/ece3.10785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/02/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023] Open
Abstract
The factors that influence population structure and connectivity are unknown for most terrestrial invertebrates but are of particular interest both for understanding the impacts of disturbance and for determining accurate levels of biodiversity and local endemism. The main objective of this study was to determine the historical patterns of genetic differentiation and contemporary gene flow in the terrestrial snail, Austrochloritis kosciuszkoensis (Shea & O. L. Griffiths, 2010). Snails were collected in the Mt Buffalo and Alpine National Parks in Victoria, in a bid to understand how populations of this species are connected both within continuous habitat and between adjacent, yet separate environments. Utilising both mitochondrial DNA (mtDNA) and single nucleotide polymorphism (SNP) data, the degree of population structure was determined within and between sites. Very high levels of genetic divergence were found between the Mt Buffalo and Alpine snails, with no evidence for genetic exchange detected between the two regions, indicating speciation has possibly occurred between the two regions. Our analyses of the combined mtDNA and nDNA (generated from SNPs) data have revealed patterns of genetic diversity that are consistent with a history of long-term isolation and limited connectivity. This history may be related to past cycles of changes to the climate over hundreds of thousands of years, which have, in part, caused the fragmentation of Australian forests. Within both regions, extremely limited gene flow between separate populations suggests that these land snails have very limited dispersal capabilities across existing landscape barriers, especially at Mt Buffalo: here, populations only 5 km apart from each other are genetically differentiated. The distinct genetic divergences and clearly reduced dispersal ability detected in this data explain the likely existence of at least two previously unnamed cryptic Austrochloritis species within a 30-50 km radius, and highlight the need for more concentrated efforts to understand population structure and gene flow in terrestrial invertebrates.
Collapse
Affiliation(s)
- Lachlan J. Gretgrix
- Department of Environment and Genetics, School of Agriculture, Biomedicine and EnvironmentLa Trobe UniversityMelbourneVictoriaAustralia
| | - Orsi Decker
- Department of Environment and Genetics, School of Agriculture, Biomedicine and EnvironmentLa Trobe UniversityMelbourneVictoriaAustralia
- Bavarian National ParkNationalparkverwaltung Bayerischer WaldGrafenauGermany
| | - Peter T. Green
- Department of Environment and Genetics, School of Agriculture, Biomedicine and EnvironmentLa Trobe UniversityMelbourneVictoriaAustralia
| | | | | | - Nicholas P. Murphy
- Department of Environment and Genetics, School of Agriculture, Biomedicine and EnvironmentLa Trobe UniversityMelbourneVictoriaAustralia
| |
Collapse
|
6
|
Heard GW, Bolitho LJ, Newell D, Hines HB, Norman P, Willacy RJ, Scheele BC. Drought, fire, and rainforest endemics: A case study of two threatened frogs impacted by Australia's "Black Summer". Ecol Evol 2023; 13:e10069. [PMID: 37214614 PMCID: PMC10197140 DOI: 10.1002/ece3.10069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/31/2023] [Accepted: 04/26/2023] [Indexed: 05/24/2023] Open
Abstract
Deepening droughts and unprecedented wildfires are at the leading edge of climate change. Such events pose an emerging threat to species maladapted to these perturbations, with the potential for steeper declines than may be inferred from the gradual erosion of their climatic niche. This study focused on two species of amphibians-Philoria kundagungan and Philoria richmondensis (Limnodynastidae)-from the Gondwanan rainforests of eastern Australia that were extensively affected by the "Black Summer" megafires of 2019/2020 and the severe drought associated with them. We sought to assess the impact of these perturbations by quantifying the extent of habitat affected by fire, assessing patterns of occurrence and abundance of calling males post-fire, and comparing post-fire occurrence and abundance with that observed pre-fire. Some 30% of potentially suitable habitat for P. kundagungan was fire affected, and 12% for P. richmondensis. Field surveys revealed persistence in some burnt rainforest; however, both species were detected at a higher proportion of unburnt sites. There was a clear negative effect of fire on the probability of site occupancy, abundance and the probability of persistence for P. kundagungan. For P. richmondensis, effects of fire were less evident due to the limited penetration of fire into core habitat; however, occupancy rates and abundance of calling males were depressed during the severe drought that prevailed just prior to the fires, with the reappearance of calling males linked to the degree of rehydration of breeding habitat post-fire. Our results highlight the possibility that severe negative impacts of climate change for montane rainforest endemics may be felt much sooner than commonly anticipated under a scenario of gradual (decadal-scale) changes in mean climatic conditions. Instead, the increased rate of severe stochastic events places these narrow range species at a heightened risk of extinction in the near-term.
Collapse
Affiliation(s)
- Geoffrey W. Heard
- Fenner School of Environment and SocietyAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
- Terrestrial Ecosystem Research NetworkUniversity of QueenslandBrisbaneQueenslandAustralia
- Centre for Biodiversity and Conservation ScienceUniversity of QueenslandBrisbaneQueenslandAustralia
| | - Liam J. Bolitho
- Fenner School of Environment and SocietyAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
- Faculty of Science and EngineeringSouthern Cross UniversityLismoreNew South WalesAustralia
| | - David Newell
- Faculty of Science and EngineeringSouthern Cross UniversityLismoreNew South WalesAustralia
| | - Harry B. Hines
- Department of Environment and ScienceQueensland Parks and Wildlife Service and PartnershipsBellbowrieQueenslandAustralia
- Queensland MuseumSouth BrisbaneQueenslandAustralia
| | - Patrick Norman
- Climate Action BeaconGriffith UniversityGold CoastQueenslandAustralia
| | - Rosalie J. Willacy
- Centre for Biodiversity and Conservation ScienceUniversity of QueenslandBrisbaneQueenslandAustralia
- Faculty of Science and EngineeringSouthern Cross UniversityLismoreNew South WalesAustralia
| | - Ben C. Scheele
- Fenner School of Environment and SocietyAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| |
Collapse
|
7
|
Butterworth NJ, Wallman JF, Johnston NP, Dawson BM, Sharp-Heward J, McGaughran A. The blowfly Chrysomya latifrons inhabits fragmented rainforests, but shows no population structure. Oecologia 2023; 201:703-719. [PMID: 36773072 PMCID: PMC10038970 DOI: 10.1007/s00442-023-05333-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/27/2023] [Indexed: 02/12/2023]
Abstract
Climate change and deforestation are causing rainforests to become increasingly fragmented, placing them at heightened risk of biodiversity loss. Invertebrates constitute the greatest proportion of this biodiversity, yet we lack basic knowledge of their population structure and ecology. There is a compelling need to develop our understanding of the population dynamics of a wide range of rainforest invertebrates so that we can begin to understand how rainforest fragments are connected, and how they will cope with future habitat fragmentation and climate change. Blowflies are an ideal candidate for such research because they are widespread, abundant, and can be easily collected within rainforests. We genotyped 188 blowflies (Chrysomya latifrons) from 15 isolated rainforests and found high levels of gene flow, a lack of genetic structure between rainforests, and low genetic diversity - suggesting the presence of a single large genetically depauperate population. This highlights that: (1) the blowfly Ch. latifrons inhabits a ~ 1000 km stretch of Australian rainforests, where it plays an important role as a nutrient recycler; (2) strongly dispersing flies can migrate between and connect isolated rainforests, likely carrying pollen, parasites, phoronts, and pathogens along with them; and (3) widely dispersing and abundant insects can nevertheless be genetically depauperate. There is an urgent need to better understand the relationships between habitat fragmentation, genetic diversity, and adaptive potential-especially for poorly dispersing rainforest-restricted insects, as many of these may be particularly fragmented and at highest risk of local extinction.
Collapse
Affiliation(s)
- Nathan J Butterworth
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia.
- Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - James F Wallman
- Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Nikolas P Johnston
- Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Department of Ecology and Biogeography, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, 87-100, Toruń, Poland
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Blake M Dawson
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Joshua Sharp-Heward
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Angela McGaughran
- Te Aka Mātuatua - School of Science, University of Waikato, Private Bag 3105, Hamilton, 3240, New Zealand
| |
Collapse
|
8
|
Pocknee CA, Legge SM, McDonald J, Fisher DO. Modeling mammal response to fire based on species' traits. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2023:e14062. [PMID: 36704894 DOI: 10.1111/cobi.14062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/29/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Fire has shaped ecological communities worldwide for millennia, but impacts of fire on individual species are often poorly understood. We performed a meta-analysis to predict which traits, habitat, or study variables and fire characteristics affect how mammal species respond to fire. We modeled effect sizes of measures of population abundance or occupancy as a function of various combinations of these traits and variables with phylogenetic least squares regression. Nine of 115 modeled species (7.83%) returned statistically significant effect sizes, suggesting most mammals are resilient to fire. The top-ranked model predicted a negative impact of fire on species with lower reproductive rates, regardless of fire type (estimate = -0.68), a positive impact of burrowing in prescribed fires (estimate = 1.46) but not wildfires, and a positive impact of average fire return interval for wildfires (estimate = 0.93) but not prescribed fires. If a species' International Union for Conservation of Nature Red List assessment includes fire as a known or possible threat, the species was predicted to respond negatively to wildfire relative to prescribed fire (estimate = -2.84). These findings provide evidence of experts' abilities to predict whether fire is a threat to a mammal species and the ability of managers to meet the needs of fire-threatened species through prescribed fire. Where empirical data are lacking, our methods provide a basis for predicting mammal responses to fire and thus can guide conservation actions or interventions in species or communities.
Collapse
Affiliation(s)
- Christopher A Pocknee
- School of Biological Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - Sarah M Legge
- Centre for Biodiversity and Conservation Science, University of Queensland, St Lucia, Queensland, Australia
- Fenner School of Environment & Society, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jane McDonald
- Institute for Future Environments, Centre for the Environment, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Diana O Fisher
- School of Biological Sciences, University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
9
|
Van Der Wal C, Ahyong ST, Adams MWD, Ewart KM, Ho SYW, Lo N. Genomic analysis reveals strong population structure in the Giant Sydney Crayfish (Euastacus spinifer (Heller, 1865)). Mol Phylogenet Evol 2023; 178:107629. [PMID: 36191898 DOI: 10.1016/j.ympev.2022.107629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 12/14/2022]
Abstract
Australia is home to over 140 species of freshwater crayfish (Decapoda: Parastacidae), representing a centre of diversity for this group in the Southern Hemisphere. Species delimitation in freshwater crayfish is difficult because many species show significant variation in colouration and morphology. This is particularly evident in the genus Euastacus, which exhibits large variations in colour and spination throughout its putative range. To understand this variation, we investigated the genetic diversity, population structure, phylogeny, and evolutionary timescale of the Giant Sydney Crayfish (Euastacus spinifer (Heller, 1865)). Our data set is sampled from over 70 individuals from across the ∼600 km range of the species, and includes a combination of two mitochondrial markers and more than 7000 single-nucleotide polymorphisms (SNPs) from the nuclear genome. Data were also obtained for representatives of the close relative, Euastacus vesper McCormack and Ahyong, 2017. Genomic SNP analyses revealed strong population structure, with multiple distinct populations showing little evidence of gene flow or migration. Phylogenetic analyses of mitochondrial data revealed similar structure between populations. Taken together, our analyses suggest that E. spinifer, as currently understood, represents a species complex, of which E. vesper is a member. Molecular clock estimates place the divergences within this group during the Pleistocene. The isolated and highly fragmented populations identified in our analyses probably represent relict populations of a previously widespread ancestral species. Periodic flooding events during the Pleistocene are likely to have facilitated the movement of these otherwise restricted freshwater crayfish within and between drainage basins, including the Murray-Darling and South East Coast Drainages. We present evidence supporting the recognition of populations in the southern parts of the range of E. spinifer as one or two separate species, which would raise the number of species within the E. spinifer complex to at least three. Our results add to the growing body of evidence that many freshwater crayfish exhibit highly fragmented, range-restricted distributions. In combination with the life-history traits of these species, the restricted distributions exacerbate the threats already placed on freshwater crayfish, which are among the five most endangered animal groups globally.
Collapse
Affiliation(s)
- Cara Van Der Wal
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia; Australian Museum Research Institute, Australian Museum, 1 William Street, Sydney, NSW 2010, Australia.
| | - Shane T Ahyong
- Australian Museum Research Institute, Australian Museum, 1 William Street, Sydney, NSW 2010, Australia; School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Maxim W D Adams
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Kyle M Ewart
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Nathan Lo
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
10
|
Extensive range contraction predicted under climate warming for two endangered mountaintop frogs from the rainforests of subtropical Australia. Sci Rep 2022; 12:20215. [PMID: 36418388 PMCID: PMC9684556 DOI: 10.1038/s41598-022-24551-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/16/2022] [Indexed: 11/26/2022] Open
Abstract
Montane ecosystems cover approximately 20% of the Earth's terrestrial surface and are centres of endemism. Globally, anthropogenic climate change is driving population declines and local extinctions across multiple montane taxa, including amphibians. We applied the maximum entropy approach to predict the impacts of climate change on the distribution of two poorly known amphibian species (Philoria kundagungan and Philoria richmondensis) endemic to the subtropical uplands of the Gondwana Rainforests of Australia, World Heritage Area (GRAWHA). Firstly, under current climate conditions and also future (2055) low and high warming scenarios. We validated current distribution models against models developed using presence-absence field data. Our models were highly concordant with known distributions and predicted the current distribution of P. kundagungan to contract by 64% under the low warming scenario and by 91% under the high warming scenario and that P. richmondensis would contract by 50% and 85%, respectively. With large areas of habitat already impacted by wildfires, conservation efforts for both these species need to be initiated urgently. We propose several options, including establishing ex-situ insurance populations increasing the long-term viability of both species in the wild through conservation translocations.
Collapse
|
11
|
Wildfire detection in large-scale environments using force-based control for swarms of UAVs. SWARM INTELLIGENCE 2022. [DOI: 10.1007/s11721-022-00218-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
AbstractWildfires affect countries worldwide as global warming increases the probability of their appearance. Monitoring vast areas of forests can be challenging due to the lack of resources and information. Additionally, early detection of wildfires can be beneficial for their mitigation. To this end, we explore in simulation the use of swarms of uncrewed aerial vehicles (UAVs) with long autonomy that can cover large areas the size of California to detect early stage wildfires. Four decentralised control algorithms are tested: (1) random walking, (2) dispersion, (3) pheromone avoidance and (4) dynamic space partition. The first three adaptations are known from literature, whereas the last one is newly developed. The algorithms are tested with swarms of different sizes to test the spatial coverage of the system in 24 h of simulation time. Best results are achieved using a version of the dynamic space partition algorithm (DSP) which can detect 82% of the fires using only 20 UAVs. When the swarm consists of 40 or more aircraft 100% coverage can also be achieved. Further tests of DSP show robustness when agents fail and when new fires are generated in the area.
Collapse
|
12
|
Ward M, Southwell D, Gallagher RV, Raadik TA, Whiterod NS, Lintermans M, Sheridan G, Nyman P, Suárez‐Castro AF, Marsh J, Woinarski J, Legge S. Modelling the spatial extent of post‐fire sedimentation threat to estimate the impacts of fire on waterways and aquatic species. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Michelle Ward
- Centre for Biodiversity and Conservation Science The University of Queensland St Lucia Queensland Australia
- School of Earth and Environmental Sciences The University of Queensland Brisbane Queensland Australia
- WWF‐Aus Brisbane Queensland Australia
| | - Darren Southwell
- Conservation Biology Research Group, School of Environmental and Life Sciences The University of Newcastle Callaghan NSW Australia
| | - Rachael V. Gallagher
- Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales Australia
| | - Tarmo A. Raadik
- Department of Environment, Land, Water and Planning Arthur Rylah Institute for Environmental Research Heidelberg Victoria Australia
| | - Nick S. Whiterod
- Aquasave−Nature Glenelg Trust Victor Harbor South Australia Australia
| | - Mark Lintermans
- Centre for Applied Water Science University of Canberra Canberra Australian Capital Territory Australia
| | - Gary Sheridan
- School of Ecosystem and Forest Sciences University of Melbourne Parkville Victoria Australia
| | - Petter Nyman
- Alluvium Consulting Australia Cremorne Victoria Australia
| | - Andrés F. Suárez‐Castro
- Centre for Biodiversity and Conservation Science The University of Queensland St Lucia Queensland Australia
- Australian Rivers Institute Griffith University Nathan Queensland Australia
| | - Jessica Marsh
- Harry Butler Research Institute Murdoch University Murdoch Western Australia Australia
| | - John Woinarski
- Research Institute for the Environment and Livelihoods Charles Darwin University Darwin Northern Territory Australia
| | - Sarah Legge
- Centre for Biodiversity and Conservation Science The University of Queensland St Lucia Queensland Australia
- Research Institute for the Environment and Livelihoods Charles Darwin University Darwin Northern Territory Australia
- Fenner School of Environment & Society The Australian National University Canberra Australian Capital Territory Australia
| |
Collapse
|
13
|
Lavery TH, Lindenmayer DB, Allan H, Southwell D, Woinarski JCZ, Lintermans M. Monitoring populations and threats to range‐restricted freshwater fishes: A case study of the Stocky Galaxias (
Galaxias tantangara
). ECOLOGICAL MANAGEMENT & RESTORATION 2022. [DOI: 10.1111/emr.12562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Remarkable Resilience of Forest Structure and Biodiversity Following Fire in the Peri-Urban Bushland of Sydney, Australia. CLIMATE 2022. [DOI: 10.3390/cli10060086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In rapidly urbanizing areas, natural vegetation becomes fragmented, making conservation planning challenging, particularly as climate change accelerates fire risk. We studied urban forest fragments in two threatened eucalypt-dominated (scribbly gum woodland, SGW, and ironbark forest, IF) communities across ~2000 ha near Sydney, Australia, to evaluate effects of fire frequency (0–4 in last 25 years) and time since fire (0.5 to >25 years) on canopy structure, habitat quality and biodiversity (e.g., species richness). Airborne lidar was used to assess canopy height and density, and ground-based surveys of 148 (400 m2) plots measured leaf area index (LAI), plant species composition and habitat metrics such as litter cover and hollow-bearing trees. LAI, canopy density, litter, and microbiotic soil crust increased with time since fire in both communities, while tree and mistletoe cover increased in IF. Unexpectedly, plant species richness increased with fire frequency, owing to increased shrub richness which offset decreased tree richness in both communities. These findings indicate biodiversity and canopy structure are generally resilient to a range of times since fire and fire frequencies across this study area. Nevertheless, reduced arboreal habitat quality and subtle shifts in community composition of resprouters and obligate seeders signal early concern for a scenario of increasing fire frequency under climate change. Ongoing assessment of fire responses is needed to ensure that biodiversity, canopy structure and ecosystem function are maintained in the remaining fragments of urban forests under future climate change which will likely drive hotter and more frequent fires.
Collapse
|
15
|
Nimmo DG, Andersen AN, Archibald S, Boer MM, Brotons L, Parr CL, Tingley MW. Fire ecology for the 21st century: Conserving biodiversity in the age of megafire. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Dale G. Nimmo
- Gulbali Institute, School of Agricultural, Environmental and Veterinary Sciences Charles Sturt University Albury New South Wales Australia
| | - Alan N. Andersen
- Research Institute for the Environment and Livelihoods Charles Darwin University Ellengown Drive Brinkin Northern Territory Australia
| | - Sally Archibald
- Centre for African Ecology, School of Animal, Plant and Environmental Sciences University of the Witwatersrand Johannesburg South Africa
| | - Matthias M. Boer
- Hawkesbury Institute for the Environment Western Sydney University Richmond New South Wales Australia
| | - Lluís Brotons
- CTFC Solsona Spain
- CREAF Cerdanyola del Vallès Spain
- CSIC Cerdanyola del Vallès Spain
| | - Catherine L. Parr
- School of Environmental Sciences University of Liverpool Liverpool UK
- Department of Zoology & Entomology University of Pretoria Pretoria South Africa
- School of Animal, Plant and Environmental Sciences University of the Witwatersrand Wits South Africa
| | - Morgan W. Tingley
- Ecology and Evolutionary Biology University of California – Los Angeles Los Angeles CA USA
| |
Collapse
|