1
|
Zhang Z, Chen W, Li Z, Ren W, Mou L, Zheng J, Zhang T, Qin H, Zhou L, Sai B, Ci H, Yang Y, Biswas SR, Yan E. The island rule-like patterns of plant size variation in a young land-bridge archipelago: Roles of environmental circumstance and biotic competition. PLANT DIVERSITY 2025; 47:300-310. [PMID: 40182481 PMCID: PMC11963187 DOI: 10.1016/j.pld.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 04/05/2025]
Abstract
The island rule, a general pattern of dwarfism in large species to gigantism in small species on islands relative to mainland, is typically seen as a macroevolutionary phenomenon. However, whether the ecological processes associated with abiotic and biotic factors generate a pattern of plant size variation similar to the island rule remains unknown. We measured plant height for 29,623 individuals of 50 common woody plant species across 43 islands in the Zhoushan Archipelago (8500 years old and yet to undergo major evolutionary adaptation) and the adjacent mainlands in China. We found pronounced variations in plant height, similar to those of the island rule. Interestingly, islands with low resource availability, such as low soil organic matter content and low precipitation, had a high degree of dwarfism; islands experiencing high environmental stress, such as high soil pH, had a high degree of dwarfism; and islands experiencing less plant-plant competition had a high degree of gigantism. The magnitude of plant dwarfism was higher on small and remote islands than on larger and nearer islands. These results highlight the importance of ecological processes associated with abiotic and biotic conditions in shaping the island rule-like patterns of plant size variation. Since our studied archipelago is too young to undergo major evolution, ecological processes likely played a prominent role in generating the observed pattern, challenging the notion that the evolutionary process is the dominant factor underlying the island rule. Future studies on the island rule need to perform experiments to disentangle evolutionary from ecological mechanisms.
Collapse
Affiliation(s)
- Zengke Zhang
- Zhejiang Zhoushan Island Ecosystem Observation and Research Station, and Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Wensheng Chen
- Zhejiang Zhoushan Island Ecosystem Observation and Research Station, and Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zengyan Li
- Zhejiang Zhoushan Island Ecosystem Observation and Research Station, and Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Wentao Ren
- Zhejiang Zhoushan Island Ecosystem Observation and Research Station, and Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Ling Mou
- Zhejiang Zhoushan Island Ecosystem Observation and Research Station, and Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Junyong Zheng
- Zhejiang Zhoushan Island Ecosystem Observation and Research Station, and Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Tian Zhang
- Zhejiang Zhoushan Island Ecosystem Observation and Research Station, and Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Hantang Qin
- Zhejiang Zhoushan Island Ecosystem Observation and Research Station, and Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Liyi Zhou
- Zhejiang Zhoushan Island Ecosystem Observation and Research Station, and Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Bile Sai
- Zhejiang Zhoushan Island Ecosystem Observation and Research Station, and Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Hang Ci
- Zhejiang Zhoushan Island Ecosystem Observation and Research Station, and Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd., Shanghai 200062, China
| | - Yongchuan Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400030, China
| | - Shekhar R. Biswas
- Zhejiang Zhoushan Island Ecosystem Observation and Research Station, and Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd., Shanghai 200062, China
| | - Enrong Yan
- Zhejiang Zhoushan Island Ecosystem Observation and Research Station, and Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd., Shanghai 200062, China
| |
Collapse
|
2
|
Vilar CC, Andrades R, Guabiroba HC, de Oliveira-Filho RR, Condini MV, Hostim-Silva M, Joyeux JC. Impacts of mining pollution on coastal ecosystems: is fish body condition a reliable indicator? MARINE ENVIRONMENTAL RESEARCH 2023; 190:106070. [PMID: 37421704 DOI: 10.1016/j.marenvres.2023.106070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 07/10/2023]
Abstract
Identifying reliable biological indicators is fundamental to efficiently assess human impacts on biodiversity and to monitor the outcomes of management actions. This study investigates whether body condition is an appropriate indicator of putative effects from iron ore mining tailings on marine fishes, focusing on the world's largest mining disaster - known as the Mariana disaster, in Brazil. Eight species were used to test the hypothesis that individuals inhabiting an area severely impacted by tailings have reduced body condition in comparison to those in control areas near (<60 km) and distant (>120 km) from the impact site. Contrary to our prediction, no significant difference in condition was detected between the impacted area and both near and distant controls in seven of the eight species. The results indicate that body condition, as measured by the scaled mass index, has limited applicability as indicator of impact from mining pollution on the fishes analysed. Hypotheses that could explain our findings are proposed, including nutrient provisioning from continental drainage that could indirectly influence fish condition and compensate for the deleterious effects of mining pollution.
Collapse
Affiliation(s)
- Ciro Colodetti Vilar
- Laboratório de Ictiologia, Departamento de Oceanografia e Ecologia, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, Vitória, ES, 29075-910, Brazil.
| | - Ryan Andrades
- Laboratório de Ictiologia, Departamento de Oceanografia e Ecologia, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, Vitória, ES, 29075-910, Brazil
| | - Helder Coelho Guabiroba
- Laboratório de Ictiologia, Departamento de Oceanografia e Ecologia, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, Vitória, ES, 29075-910, Brazil
| | - Ronaldo Ruy de Oliveira-Filho
- Laboratório de Ecologia de Peixes Marinhos, Departamento de Ciências Agrárias e Biológicas, Universidade Federal do Espírito Santo, BR 101, km 60, Litorâneo, São Mateus, ES, 29932-540, Brazil
| | - Mario Vinicius Condini
- Laboratório de Ecologia de Peixes Marinhos, Departamento de Ciências Agrárias e Biológicas, Universidade Federal do Espírito Santo, BR 101, km 60, Litorâneo, São Mateus, ES, 29932-540, Brazil
| | - Mauricio Hostim-Silva
- Laboratório de Ecologia de Peixes Marinhos, Departamento de Ciências Agrárias e Biológicas, Universidade Federal do Espírito Santo, BR 101, km 60, Litorâneo, São Mateus, ES, 29932-540, Brazil
| | - Jean-Christophe Joyeux
- Laboratório de Ictiologia, Departamento de Oceanografia e Ecologia, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, Vitória, ES, 29075-910, Brazil
| |
Collapse
|
3
|
Quiroga-Carmona M, Teta P, D’Elía G. The skull variation of the olive field mouse Abrothrix olivacea (Cricetidae: Abrotrichini) is localized and correlated to the ecogeographic features of its geographic distribution. PeerJ 2023; 11:e15200. [PMID: 37077313 PMCID: PMC10108858 DOI: 10.7717/peerj.15200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/17/2023] [Indexed: 04/21/2023] Open
Abstract
The relationship between phenotypic variation and landscape heterogeneity has been extensively studied to understand how the environment influences patterns of morphological variation and differentiation of populations. Several studies had partially addressed intraspecific variation in the sigmodontine rodent Abrothrix olivacea, focusing on the characterization of physiological aspects and cranial variation. However, these had been conducted based on geographically restricted populational samples, and in most cases, the aspects characterized were not explicitly contextualized with the environmental configurations in which the populations occurred. Here, the cranial variation of A. olivacea was characterized by recording twenty cranial measurements in 235 individuals from 64 localities in Argentina and Chile, which widely cover the geographic and environmental distribution of this species. The morphological variation was analyzed and ecogeographically contextualized using multivariate statistical analyses, which also included climatic and ecological variation at the localities where the individuals were sampled. Results indicate that the cranial variation of this species is mostly clustered in localized patterns associated to the types of environments, and that the levels of cranial differentiation are higher among the populations from arid and treeless zones. Additionally, the ecogeographical association of cranial size variation indicate that this species does not follow Bergmann's rule and that island populations exhibit larger cranial sizes compared to their continental counterparts distributed at the same latitudes. These results suggest that cranial differentiation among the populations of this species is not homogeneous throughout its geographic distribution, and that the patterns of morphological differentiation are also not completely consistent with the patterns of genetic structuring that have been described recently. Finally, the analyses performed to ponder morphological differentiation among populations suggest that the contribution of genetic drift in the formation of these patterns can be ruled out among Patagonian populations, and that the selective effect imposed by the environment could better explain them.
Collapse
Affiliation(s)
- Marcial Quiroga-Carmona
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Región de los Ríos, Chile
- Colección de Mamíferos, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Región de los Ríos, Chile
- School of Biological Sciences, University of Nebraska—Lincoln, Lincoln, Nebraska, United States
| | - Pablo Teta
- División de Mastozoología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Buenos Aires, Buenos Aires, Argentina
| | - Guillermo D’Elía
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Región de los Ríos, Chile
- Colección de Mamíferos, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Región de los Ríos, Chile
| |
Collapse
|
4
|
Wu Q, Aubret F, Wu L, Ding P. Sex‐specific shifts in morphology and diet in a frog after 50 years of anthropogenic habitat fragmentation. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Qiang Wu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences Zhejiang University Hangzhou China
| | - Fabien Aubret
- School of Agricultural, Environmental and Veterinary Sciences (SAEVS), Faculty of Science and Health Charles Sturt University Port Macquarie New South Wales Australia
| | - Lingbing Wu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry Hainan University Haikou China
| | - Ping Ding
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences Zhejiang University Hangzhou China
| |
Collapse
|
5
|
Hanslowe EB, Yackel Adams AA, Nafus MG, Page DA, Bradke DR, Erickson FT, Bailey LL. Chew-cards can accurately index invasive rat densities in Mariana Island forests. NEOBIOTA 2022. [DOI: 10.3897/neobiota.74.80242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Rats (Rattus spp.) are likely established on 80–90% of the world’s islands and represent one of the most damaging and expensive biological invaders. Effective rat control tools exist but require accurate population density estimates or indices to inform treatment timing and effort and to assess treatment efficacy. Capture-mark-recapture data are frequently used to produce robust density estimates, but collecting these data can be expensive, time-consuming, and labor-intensive. We tested a potentially cheaper and easier alternative, chew-cards, as a count-based (quantitative) index of invasive rat densities in tropical forests in the Mariana Islands, an archipelago in the western North Pacific Ocean. We trialed chew-cards in nine forest grids on two Mariana Islands by comparing the proportion of cards chewed to capture-mark-recapture density estimates and manipulated rat densities to test whether the relationship was retained. Chew-card counts were positively correlated with rat capture-mark-recapture density estimates across a range of rat densities found in the region. Additionally, the correlation between the two sampling methods increased with the number of days chew-cards were deployed. Specifically, when chew-cards were deployed for five nights, a 10% increase in the proportion of cards chewed equated to an estimated increase in rat density of approximately 2.4 individuals per ha (R2 = 0.74). Chew-cards can provide a valid index of rat densities in Mariana Island forests and are a cheaper alternative to capture-mark-recapture sampling when relative differences in density are of primary interest. New cost-effective monitoring tools can enhance our understanding and management of invaded islands while stretching limited resources further than some conventional approaches, thus improving invasive species management on islands.
Collapse
|