1
|
Wang K, Yuan N, Zhou J, Ni H. Comparative Analysis of Bacterial Community Structures in Earthworm Skin, Gut, and Habitat Soil across Typical Temperate Forests. Microorganisms 2024; 12:1673. [PMID: 39203516 PMCID: PMC11357350 DOI: 10.3390/microorganisms12081673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Earthworms are essential components in temperate forest ecosystems, yet the patterns of change in earthworm-associated microbial communities across different temperate forests remain unclear. This study employed high-throughput sequencing technology to compare bacterial community composition and structure in three earthworm-associated microhabitats (skin, gut, and habitat soil) across three typical temperate forests in China, and investigated the influence of environmental factors on these differential patterns. The results indicate that: (1) From warm temperate forests to cold temperate forests, the soil pH of the habitat decreased significantly. In contrast, the physicochemical properties of earthworm skin mucus exhibited different trends compared to those of the habitat soil. (2) Alpha diversity analysis revealed a declining trend in Shannon indices across all three microhabitats. (3) Beta diversity analysis revealed that the transition from warm temperate deciduous broad-leaved forest to cold temperate coniferous forest exerted the most significant impact on the gut bacterial communities of earthworms, while its influence on the skin bacterial communities was comparatively less pronounced. (4) Actinobacteria and Proteobacteria were the predominant phyla in earthworm skin, gut, and habitat soil, but the trends in bacterial community composition differed among the three microhabitats. (5) Mantel tests revealed significant correlations between bacterial community structures and climatic factors, physicochemical properties of earthworm habitat soil, and physicochemical properties of earthworm skin mucus. The findings of this study offer novel perspectives on the interplay between earthworms, microorganisms, and the environment within forest ecosystems.
Collapse
Affiliation(s)
- Kang Wang
- School of Geographical Sciences, Harbin Normal University, Harbin 150025, China; (K.W.); (N.Y.)
| | - Ning Yuan
- School of Geographical Sciences, Harbin Normal University, Harbin 150025, China; (K.W.); (N.Y.)
| | - Jia Zhou
- School of Geographical Sciences, Harbin Normal University, Harbin 150025, China; (K.W.); (N.Y.)
| | - Hongwei Ni
- Heilongjiang Academy of Forestry, Harbin 150081, China
| |
Collapse
|
2
|
Zeiss R, Briones MJI, Mathieu J, Lomba A, Dahlke J, Heptner LF, Salako G, Eisenhauer N, Guerra CA. Effects of climate on the distribution and conservation of commonly observed European earthworms. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14187. [PMID: 37768192 DOI: 10.1111/cobi.14187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/21/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
Belowground biodiversity distribution does not necessarily reflect aboveground biodiversity patterns, but maps of soil biodiversity remain scarce because of limited data availability. Earthworms belong to the most thoroughly studied soil organisms and-in their role as ecosystem engineers-have a significant impact on ecosystem functioning. We used species distribution modeling (SDMs) and available data sets to map the spatial distribution of commonly observed (i.e., frequently recorded) earthworm species (Annelida, Oligochaeta) across Europe under current and future climate conditions. First, we predicted potential species distributions with commonly used models (i.e., MaxEnt and Biomod) and estimated total species richness (i.e., number of species in a 5 × 5 km grid cell). Second, we determined how much the different types of protected areas covered predicted earthworm richness and species ranges (i.e., distributions) by estimating the respective proportion of the range area. Earthworm species richness was high in central western Europe and low in northeastern Europe. This pattern was mainly associated with annual mean temperature and precipitation seasonality, but the importance of predictor variables to species occurrences varied among species. The geographical ranges of the majority of the earthworm species were predicted to shift to eastern Europe and partly decrease under future climate scenarios. Predicted current and future ranges were only poorly covered by protected areas, such as national parks. More than 80% of future earthworm ranges were on average not protected at all (mean [SD] = 82.6% [0.04]). Overall, our results emphasize the urgency of considering especially vulnerable earthworm species, as well as other soil organisms, in the design of nature conservation measures.
Collapse
Affiliation(s)
- Romy Zeiss
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Maria J I Briones
- Departamento de Ecologia y Biologia Animal, Universidade de Vigo, Vigo, Spain
| | - Jérome Mathieu
- Sorbonne Université, CNRS, IRD, INRAE, Université Paris Est Créteil, Université de Paris Cité, Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Paris, France
| | - Angela Lomba
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Jessica Dahlke
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Martin Luther University Halle-Wittenberg (MLU), Naturwissenschaftliche Fakultät 1, Halle (Saale), Germany
| | - Laura-Fiona Heptner
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Gabriel Salako
- Soil Zoology Division, Senckenberg Museum of Natural History, Görlitz, Germany
- Department of Environmental Management and Toxicology, Kwara State University, Malete, Nigeria
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Carlos A Guerra
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
- Martin Luther University Halle-Wittenberg (MLU), Naturwissenschaftliche Fakultät 1, Halle (Saale), Germany
| |
Collapse
|
3
|
Kass JM, Fukaya K, Thuiller W, Mori AS. Biodiversity modeling advances will improve predictions of nature's contributions to people. Trends Ecol Evol 2024; 39:338-348. [PMID: 37968219 DOI: 10.1016/j.tree.2023.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 11/17/2023]
Abstract
Accurate predictions of ecosystem functions and nature's contributions to people (NCP) are needed to prioritize environmental protection and restoration in the Anthropocene. However, our ability to predict NCP is undermined by approaches that rely on biophysical variables and ignore those describing biodiversity, which have strong links to NCP. To foster predictive mapping of NCP, we should harness the latest methods in biodiversity modeling. This field advances rapidly, and new techniques with promising applications for predicting NCP are still underutilized. Here, we argue that employing recent advances in biodiversity modeling can enhance the accuracy and scope of NCP maps and predictions. This enhancement will contribute significantly to the achievement of global objectives to preserve NCP, for both the present and an unpredictable future.
Collapse
Affiliation(s)
- Jamie M Kass
- Macroecology Laboratory, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan; Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan.
| | - Keiichi Fukaya
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Wilfried Thuiller
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, F-38000 Grenoble, France
| | - Akira S Mori
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Kniazev SY, Kislyi AA, Bogomolova IN, Golovanova EV. Territorial Heterogeneity of the Earthworm Population (Opisthopora, Lumbricidae) of Omsk Oblast and Environmental Factors: A Quantitative Assessment of the Relationship. CONTEMP PROBL ECOL+ 2022. [DOI: 10.1134/s1995425522050079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|