1
|
Migunova E, Rajamani S, Bonanni S, Wang F, Zhou C, Dubrovsky EB. Cardiac RNase Z edited via CRISPR-Cas9 drives heart hypertrophy in Drosophila. PLoS One 2023; 18:e0286214. [PMID: 37228086 PMCID: PMC10212119 DOI: 10.1371/journal.pone.0286214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
Cardiomyopathy (CM) is a group of diseases distinguished by morphological and functional abnormalities in the myocardium. It is etiologically heterogeneous and may develop via cell autonomous and/or non-autonomous mechanisms. One of the most severe forms of CM has been linked to the deficiency of the ubiquitously expressed RNase Z endoribonuclease. RNase Z cleaves off the 3'-trailer of both nuclear and mitochondrial primary tRNA (pre-tRNA) transcripts. Cells mutant for RNase Z accumulate unprocessed pre-tRNA molecules. Patients carrying RNase Z variants with reduced enzymatic activity display a plethora of symptoms including muscular hypotonia, microcephaly and severe heart hypertrophy; still, they die primarily due to acute heart decompensation. Determining whether the underlying mechanism of heart malfunction is cell autonomous or not will provide an opportunity to develop novel strategies of more efficient treatments for these patients. In this study, we used CRISPR-TRiM technology to create Drosophila models that carry cardiomyopathy-linked alleles of RNase Z only in the cardiomyocytes. We found that this modification is sufficient for flies to develop heart hypertrophy and systolic dysfunction. These observations support the idea that the RNase Z linked CM is driven by cell autonomous mechanisms.
Collapse
Affiliation(s)
- Ekaterina Migunova
- Department of Biological Sciences, Fordham University, Bronx, NY, United States of America
| | - Saathvika Rajamani
- Department of Biological Sciences, Fordham University, Bronx, NY, United States of America
| | - Stefania Bonanni
- Department of Biological Sciences, Fordham University, Bronx, NY, United States of America
| | - Fei Wang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Chao Zhou
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Edward B. Dubrovsky
- Department of Biological Sciences, Fordham University, Bronx, NY, United States of America
- Center for Cancer, Genetic Diseases, and Gene Regulation, Fordham University, Bronx, NY, United States of America
| |
Collapse
|
2
|
Kondo T, Hayashi S. Two-step regulation of trachealess ensures tight coupling of cell fate with morphogenesis in the Drosophila trachea. eLife 2019; 8:45145. [PMID: 31439126 PMCID: PMC6707767 DOI: 10.7554/elife.45145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/03/2019] [Indexed: 12/19/2022] Open
Abstract
During organogenesis, inductive signals cause cell differentiation and morphogenesis. However, how these phenomena are coordinated to form functional organs is poorly understood. Here, we show that cell differentiation of the Drosophila trachea is sequentially determined in two steps and that the second step is synchronous with the invagination of the epithelial sheet. The master gene trachealess is dispensable for the initiation of invagination, while it is essential for maintaining the invaginated structure, suggesting that tracheal morphogenesis and differentiation are separately induced. trachealess expression starts in bipotential tracheal/epidermal placode cells. After invagination, its expression is maintained in the invaginated cells but is extinguished in the remaining sheet cells. A trachealess cis-regulatory module that shows both tracheal enhancer activity and silencer activity in the surface epidermal sheet was identified. We propose that the coupling of trachealess expression with the invaginated structure ensures that only invaginated cells canalize robustly into the tracheal fate. Cells in developing organs have two important decisions to make: where to be and what cell type to become. If cells end up in the wrong places, they can stop an organ from working, so it is vital that one decision depends upon the other. The so-called progenitor cells responsible for forming the trachea, for example, can either become part of a flat sheet or part of a tube. The cells on the sheet need to become epidermal cells, while the cells in the tube need to become tracheal cells. Work on fruit flies found that a gene called 'trachealess' plays an important role in this process. Without it, developing flies cannot make a trachea at all. At the start of trachea development, some of the cells form thickened structures called placodes. The progenitor cells in the placodes start to divide, and the structures buckle inwards to form pockets. These pockets then lengthen into tubes. The trachealess gene codes for a protein that works as a genetic switch. It turns other genes on or off, helping the progenitor cells inside the pockets to become tracheal cells. But, it is not clear whether trachealess drives the formation of the pockets: the progenitor cells first decide what to be; or whether pocket formation tells the cells to use trachealess: the progenitor cells first decide where to be. To find out, Kondo and Hayashi imaged developing fly embryos and saw that the trachealess gene does not start pocket formation, but that it is essential to maintain the pockets. Flies without the gene managed to form pockets, but they did not last long. Looking at embryos with defects in other genes involved in pocket formation revealed why. In these flies, some of the progenitor cells using trachealess got left behind when the pockets started to form. But rather than forming pockets of their own (as they might if trachealess were driving pocket formation), they turned their trachealess gene off. Progenitor cells in the fly trachea seem to decide where to be before they decide what cell type to become. This helps to make sure that trachea cells do not form in the wrong places. A question that still remains is how do the cells know when they are inside a pocket? It is possible that the cells are sensing different mechanical forces or different chemical signals. Further research could help scientists to understand how organs form in living animals, and how they might better recreate that process in the laboratory.
Collapse
Affiliation(s)
- Takefumi Kondo
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,The Keihanshin Consortium for Fostering the Next Generation of Global Leaders in Research (K-CONNEX), Kyoto, Japan
| | - Shigeo Hayashi
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,Department of Biology, Kobe University Graduate School of Science, Kobe, Japan
| |
Collapse
|
3
|
Ogura Y, Wen FL, Sami MM, Shibata T, Hayashi S. A Switch-like Activation Relay of EGFR-ERK Signaling Regulates a Wave of Cellular Contractility for Epithelial Invagination. Dev Cell 2018; 46:162-172.e5. [PMID: 29983336 DOI: 10.1016/j.devcel.2018.06.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/27/2018] [Accepted: 06/06/2018] [Indexed: 01/24/2023]
Abstract
The dynamics of extracellular signal-regulated kinase (ERK) signaling underlies its versatile functions in cell differentiation, cell proliferation, and cell motility. Classical studies in Drosophila established that a gradient of epidermal growth factor receptor (EGFR)-ERK signaling is essential for these cellular responses. However, we challenge this view by the real-time monitoring of ERK activation; we show that a switch-like ERK activation is essential for the invagination movement of the Drosophila tracheal placode. This switch-like ERK activation stems from the positive feedback regulation of the EGFR-ERK signaling and a resultant relay of EGFR-ERK signaling among tracheal cells. A key transcription factor Trachealess (Trh) permissively regulates the iteration of the relay, and the ERK activation becomes graded in trh mutant. A mathematical model based on these observations and a molecular link between ERK activation dynamics and myosin shows that the relay mechanism efficiently promotes epithelial invagination while the gradient mechanism does not.
Collapse
Affiliation(s)
- Yosuke Ogura
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Fu-Lai Wen
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Mustafa M Sami
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Tatsuo Shibata
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Shigeo Hayashi
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
4
|
Dangi AK, Sinha R, Dwivedi S, Gupta SK, Shukla P. Cell Line Techniques and Gene Editing Tools for Antibody Production: A Review. Front Pharmacol 2018; 9:630. [PMID: 29946262 PMCID: PMC6006397 DOI: 10.3389/fphar.2018.00630] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/25/2018] [Indexed: 12/16/2022] Open
Abstract
The present day modern formulation practices for drugs are based on newer tools and techniques toward effective utilization. The methods of antibody formulations are to be revolutionized based on techniques of cell engineering and gene editing. In the present review, we have discussed innovations in cell engineering toward production of novel antibodies for therapeutic applications. Moreover, this review deciphers the use of RNAi, ribozyme engineering, CRISPR-Cas-based techniques for better strategies for antibody production. Overall, this review describes the multidisciplinary aspects of the production of therapeutic proteins that has gained more attention due to its increasing demand.
Collapse
Affiliation(s)
- Arun K. Dangi
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | | | - Shailja Dwivedi
- Advanced Biotech Lab, Ipca Laboratories Limited, Mumbai, India
| | | | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
5
|
Anstead CA, Batterham P, Korhonen PK, Young ND, Hall RS, Bowles VM, Richards S, Scott MJ, Gasser RB. A blow to the fly — Lucilia cuprina draft genome and transcriptome to support advances in biology and biotechnology. Biotechnol Adv 2016; 34:605-620. [DOI: 10.1016/j.biotechadv.2016.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/08/2016] [Accepted: 02/20/2016] [Indexed: 02/07/2023]
|
6
|
Hatakeyama M, Yatomi J, Sumitani M, Takasu Y, Sekiné K, Niimi T, Sezutsu H. Knockout of a transgene by transcription activator-like effector nucleases (TALENs) in the sawfly, Athalia rosae (Hymenoptera) and the ladybird beetle, Harmonia axyridis (Coleoptera). INSECT MOLECULAR BIOLOGY 2016; 25:24-31. [PMID: 26496859 DOI: 10.1111/imb.12195] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Transcription activator-like effector nucleases (TALENs) are efficient tools for targeted genome editing and have been utilized in a number of insects. Here, we demonstrate the gene disruption (knockout) caused by TALENs targeting a transgene, 3xP3-driven enhanced green fluorescence protein (EGFP), that is integrated in the genome of two species, the sawfly Athalia rosae (Hymenoptera) and the ladybird beetle Harmonia axyridis (Coleoptera). Messenger RNAs of TALENs targeting the sequences adjacent to the chromophore region were microinjected into the eggs/embryos of each species. In At. rosae, when microinjection was performed at the posterior end of eggs, 15% of G(0) individuals showed a somatic mosaic phenotype for eye EGFP fluorescence. Three-quarters of the somatic mosaics produced EGFP-negative G(1) progeny. When eggs were injected at the anterior end, 63% of the G(0) individuals showed somatic mosaicism, and 17% of them produced EGFP-negative G(1) progeny. In H. axyridis, 25% of posterior-injected and 8% of anterior-injected G(0) individuals produced EGFP-negative G(1) progeny. In both species, the EGFP-negative progeny retained the EGFP gene, and various deletions were detected in the target sequences, indicating that gene disruption was successfully induced. Finally, for both species, 18-21% of G(0) founders produced gene knockout progeny sufficient for establishing knockout strains.
Collapse
Affiliation(s)
- M Hatakeyama
- Division of Insect Sciences, National Institute of Agrobiological Sciences, Owashi, Tsukuba, Japan
| | - J Yatomi
- Laboratory of Sericulture & Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan
| | - M Sumitani
- Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Owashi, Tsukuba, Japan
| | - Y Takasu
- Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Owashi, Tsukuba, Japan
| | - K Sekiné
- Division of Insect Sciences, National Institute of Agrobiological Sciences, Owashi, Tsukuba, Japan
| | - T Niimi
- Laboratory of Sericulture & Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan
| | - H Sezutsu
- Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Owashi, Tsukuba, Japan
| |
Collapse
|
7
|
Venken KJT, Sarrion-Perdigones A, Vandeventer PJ, Abel NS, Christiansen AE, Hoffman KL. Genome engineering: Drosophila melanogaster and beyond. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 5:233-67. [PMID: 26447401 DOI: 10.1002/wdev.214] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 08/03/2015] [Accepted: 08/20/2015] [Indexed: 12/26/2022]
Abstract
A central challenge in investigating biological phenomena is the development of techniques to modify genomic DNA with nucleotide precision that can be transmitted through the germ line. Recent years have brought a boon in these technologies, now collectively known as genome engineering. Defined genomic manipulations at the nucleotide level enable a variety of reverse engineering paradigms, providing new opportunities to interrogate diverse biological functions. These genetic modifications include controlled removal, insertion, and substitution of genetic fragments, both small and large. Small fragments up to a few kilobases (e.g., single nucleotide mutations, small deletions, or gene tagging at single or multiple gene loci) to large fragments up to megabase resolution can be manipulated at single loci to create deletions, duplications, inversions, or translocations of substantial sections of whole chromosome arms. A specialized substitution of chromosomal portions that presumably are functionally orthologous between different organisms through syntenic replacement, can provide proof of evolutionary conservation between regulatory sequences. Large transgenes containing endogenous or synthetic DNA can be integrated at defined genomic locations, permitting an alternative proof of evolutionary conservation, and sophisticated transgenes can be used to interrogate biological phenomena. Precision engineering can additionally be used to manipulate the genomes of organelles (e.g., mitochondria). Novel genome engineering paradigms are often accelerated in existing, easily genetically tractable model organisms, primarily because these paradigms can be integrated in a rigorous, existing technology foundation. The Drosophila melanogaster fly model is ideal for these types of studies. Due to its small genome size, having just four chromosomes, the vast amount of cutting-edge genetic technologies, and its short life-cycle and inexpensive maintenance requirements, the fly is exceptionally amenable to complex genetic analysis using advanced genome engineering. Thus, highly sophisticated methods developed in the fly model can be used in nearly any sequenced organism. Here, we summarize different ways to perform precise inheritable genome engineering using integrases, recombinases, and DNA nucleases in the D. melanogaster. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Koen J T Venken
- Department of Biochemistry and Molecular Biology, Verna and Marrs McLean, Houston, TX, USA.,Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.,Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, USA
| | | | - Paul J Vandeventer
- Department of Biochemistry and Molecular Biology, Verna and Marrs McLean, Houston, TX, USA
| | - Nicholas S Abel
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Audrey E Christiansen
- Department of Biochemistry and Molecular Biology, Verna and Marrs McLean, Houston, TX, USA
| | - Kristi L Hoffman
- Department of Biochemistry and Molecular Biology, Verna and Marrs McLean, Houston, TX, USA
| |
Collapse
|
8
|
Abstract
The cytoskeleton is a dynamic network of filamentous protein polymers required for virtually all cellular processes. It consists of three major classes, filamentous actin (F-actin), intermediate filaments, and microtubules, all displaying characteristic structural properties, functions, cellular distributions, and sets of interacting regulatory proteins. One unique class of proteins, the spectraplakins, bind, regulate, and integrate the functions of all three classes of cytoskeleton proteins. Spectraplakins are giant, evolutionary conserved multidomain proteins (spanning up to 9000 aa) that are true members of the plakin, spectrin, and Gas2-like protein families. They have OMIM-listed disease links to epidermolysis bullosa and hereditary sensory and autonomic neuropathy. Their role in disease is likely underrepresented since studies in model animal systems have revealed critical roles in polarity, morphogenesis, differentiation and maintenance, migration, signaling, and intracellular trafficking in a variety of tissues. This enormous diversity of spectraplakin function is consistent with the numerous isoforms produced from single genomic loci that combine different sets of functional domains in distinct cellular contexts. To study the broad range of functions and complexity of these proteins, Drosophila is a powerful model. Thus, the fly spectraplakin Short stop (Shot) acts as an actin-microtubule linker and plays important roles in many developmental processes, which provide experimentally amenable and relevant contexts in which to study spectraplakin functions. For these studies, a versatile range of relevant experimental resources that facilitate genetics and transgenic approaches, highly refined genomics tools, and an impressive set of spectraplakin-specific genetic and molecular tools are readily available. Here, we use the example of Shot to illustrate how the various tools and strategies available for Drosophila can be employed to decipher and dissect cellular roles and molecular mechanisms of spectraplakins.
Collapse
|
9
|
Lee HB, Sebo ZL, Peng Y, Guo Y. An optimized TALEN application for mutagenesis and screening in Drosophila melanogaster. CELLULAR LOGISTICS 2015. [PMID: 26196022 PMCID: PMC4501208 DOI: 10.1080/21592799.2015.1023423] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Transcription activator-like effector nucleases (TALENs) emerged as powerful tools for locus-specific genome engineering. Due to the ease of TALEN assembly, the key to streamlining TALEN-induced mutagenesis lies in identifying efficient TALEN pairs and optimizing TALEN mRNA injection concentrations to minimize the effort to screen for mutant offspring. Here we present a simple methodology to quantitatively assess bi-allelic TALEN cutting, as well as approaches that permit accurate measures of somatic and germline mutation rates in Drosophila melanogaster. We report that percent lethality from pilot injection of candidate TALEN mRNAs into Lig4 null embryos can be used to effectively gauge bi-allelic TALEN cutting efficiency and occurs in a dose-dependent manner. This timely Lig4-dependent embryonic survival assay also applies to CRISPR/Cas9-mediated targeting. Moreover, the somatic mutation rate of individual G0 flies can be rapidly quantitated using SURVEYOR nuclease and capillary electrophoresis, and germline transmission rate determined by scoring progeny of G0 outcrosses. Together, these optimized methods provide an effective step-wise guide for routine TALEN-mediated gene editing in the fly.
Collapse
Key Words
- TALEN
- TALENs, Transcription activator-like effector nucleases; TALEs, TAL effectors; ZFNs, Zinc Finger Nucleases; CRISPR, Clustered Regularly Interspersed Short Palindromic Repeats; Cas9, CRISPR-associated; RVDs, repeat-variable diresidues; DSBs, double-stranded breaks; NHEJ, non-homologous end joining; HR, homologous recombination; RFLP, restriction fragment length polymorphism; HRMA, high resolution melt analysis.
- engineered endonuclease
- genome engineering
- mutagenesis
- screening
Collapse
Affiliation(s)
- Han B Lee
- Graduate Program in Neurobiology of Disease; Mayo Graduate School; Mayo Clinic ; Rochester, MN, USA
| | | | - Ying Peng
- Department of Biochemistry and Molecular Biology; Mayo Clinic ; Rochester, MN, USA
| | - Yi Guo
- Department of Biochemistry and Molecular Biology; Mayo Clinic ; Rochester, MN, USA ; Division of Gastroenterology and Hepatology; Mayo Clinic ; Rochester, MN, USA
| |
Collapse
|
10
|
Sun C, Fan Y, Li J, Wang G, Zhang H, Xi JJ. Efficient Production of a Gene Mutant Cell Line through Integrating TALENs and High-Throughput Cell Cloning. ACTA ACUST UNITED AC 2015; 20:46-50. [DOI: 10.1177/2211068214562628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Hiruta C, Ogino Y, Sakuma T, Toyota K, Miyagawa S, Yamamoto T, Iguchi T. Targeted gene disruption by use of transcription activator-like effector nuclease (TALEN) in the water flea Daphnia pulex. BMC Biotechnol 2014; 14:95. [PMID: 25404042 PMCID: PMC4239399 DOI: 10.1186/s12896-014-0095-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 10/28/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The cosmopolitan microcrustacean Daphnia pulex provides a model system for both human health research and monitoring ecosystem integrity. It is the first crustacean to have its complete genome sequenced, an unprecedented ca. 36% of which has no known homologs with any other species. Moreover, D. pulex is ideally suited for experimental manipulation because of its short reproductive cycle, large numbers of offspring, synchronization of oocyte maturation, and other life history characteristics. However, existing gene manipulation techniques are insufficient to accurately define gene functions. Although our previous investigations developed an RNA interference (RNAi) system in D. pulex, the possible time period of functional analysis was limited because the effectiveness of RNAi is transient. Thus, in this study, we developed a genome editing system for D. pulex by first microinjecting transcription activator-like effector nuclease (TALEN) mRNAs into early embryos and then evaluating TALEN activity and mutation phenotypes. RESULTS We assembled a TALEN construct specific to the Distal-less gene (Dll), which is a homeobox transcription factor essential for distal limb development in invertebrates and vertebrates, and evaluated its activity in vitro by single-strand annealing assay. Then, we injected TALEN mRNAs into eggs within 1 hour post-ovulation. Injected embryos presented with defects in the second antenna and altered appendage development, and indel mutations were detected in Dll loci, indicating that this technique successfully knocked out the target gene. CONCLUSIONS We succeeded, for the first time in D. pulex, in targeted mutagenesis by use of Platinum TALENs. This genome editing technique makes it possible to conduct reverse genetic analysis in D. pulex, making this species an even more appropriate model organism for environmental, evolutionary, and developmental genomics.
Collapse
Affiliation(s)
- Chizue Hiruta
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| | - Yukiko Ogino
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan. .,Faculty of Life Science, Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan.
| | - Kenji Toyota
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan. .,Faculty of Life Science, Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| | - Shinichi Miyagawa
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan. .,Faculty of Life Science, Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan.
| | - Taisen Iguchi
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan. .,Faculty of Life Science, Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
12
|
Sasaki H, Yoshida K, Hozumi A, Sasakura Y. CRISPR/Cas9-mediated gene knockout in the ascidian Ciona intestinalis. Dev Growth Differ 2014; 56:499-510. [PMID: 25212715 PMCID: PMC4231237 DOI: 10.1111/dgd.12149] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 06/18/2014] [Accepted: 06/22/2014] [Indexed: 01/25/2023]
Abstract
Knockout of genes with CRISPR/Cas9 is a newly emerged approach to investigate functions of genes in various organisms. We demonstrate that CRISPR/Cas9 can mutate endogenous genes of the ascidian Ciona intestinalis, a splendid model for elucidating molecular mechanisms for constructing the chordate body plan. Short guide RNA (sgRNA) and Cas9 mRNA, when they are expressed in Ciona embryos by means of microinjection or electroporation of their expression vectors, introduced mutations in the target genes. The specificity of target choice by sgRNA is relatively high compared to the reports from some other organisms, and a single nucleotide mutation at the sgRNA dramatically reduced mutation efficiency at the on-target site. CRISPR/Cas9-mediated mutagenesis will be a powerful method to study gene functions in Ciona along with another genome editing approach using TALE nucleases.
Collapse
Affiliation(s)
- Haruka Sasaki
- Shimoda Marine Research Center, University of TsukubaShimoda, Shizuoka, 415-0025, Japan
| | - Keita Yoshida
- Shimoda Marine Research Center, University of TsukubaShimoda, Shizuoka, 415-0025, Japan
| | - Akiko Hozumi
- Shimoda Marine Research Center, University of TsukubaShimoda, Shizuoka, 415-0025, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of TsukubaShimoda, Shizuoka, 415-0025, Japan
| |
Collapse
|
13
|
Lee JS, Kwak SJ, Kim J, Kim AK, Noh HM, Kim JS, Yu K. RNA-guided genome editing in Drosophila with the purified Cas9 protein. G3 (BETHESDA, MD.) 2014; 4:1291-5. [PMID: 24875628 PMCID: PMC4455777 DOI: 10.1534/g3.114.012179] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/19/2014] [Indexed: 12/14/2022]
Abstract
We report a method for generating Drosophila germline mutants effectively via injection of the complex of the purified Cas9 protein, tracrRNA, and gene-specific crRNAs, which may reduce delayed mutations because of the transient activity of the Cas9 protein, combined with the simple mutation detection in GO founders by the T7E1 assay.
Collapse
Affiliation(s)
- Jeong-Soo Lee
- Neurophysiology Research Group, Bionano Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Korea Functional Genomics Department, Korea University of Science and Technology (KUST), Daejeon 305-333, Korea
| | - Su-Jin Kwak
- Neurophysiology Research Group, Bionano Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Korea
| | - Jungeun Kim
- National Creative Research Initiatives Center for Genome Engineering and Department of Chemistry, Seoul National University, Seoul 151-747, Korea
| | - Ae-Kyeong Kim
- Neurophysiology Research Group, Bionano Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Korea
| | - Hae Min Noh
- Neurophysiology Research Group, Bionano Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Korea
| | - Jin-Soo Kim
- National Creative Research Initiatives Center for Genome Engineering and Department of Chemistry, Seoul National University, Seoul 151-747, Korea Center for Genome Engineering, Institute for Basic Science, Daejeon, Korea
| | - Kweon Yu
- Neurophysiology Research Group, Bionano Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Korea Functional Genomics Department, Korea University of Science and Technology (KUST), Daejeon 305-333, Korea
| |
Collapse
|
14
|
Abstract
Drosophila melanogaster has become a system of choice for functional genomic studies. Many resources, including online databases and software tools, are now available to support design or identification of relevant fly stocks and reagents or analysis and mining of existing functional genomic, transcriptomic, proteomic, etc. datasets. These include large community collections of fly stocks and plasmid clones, "meta" information sites like FlyBase and FlyMine, and an increasing number of more specialized reagents, databases, and online tools. Here, we introduce key resources useful to plan large-scale functional genomics studies in Drosophila and to analyze, integrate, and mine the results of those studies in ways that facilitate identification of highest-confidence results and generation of new hypotheses. We also discuss ways in which existing resources can be used and might be improved and suggest a few areas of future development that would further support large- and small-scale studies in Drosophila and facilitate use of Drosophila information by the research community more generally.
Collapse
|