1
|
Ciccone V, Simonis V, Del Gaudio C, Cucini C, Ziche M, Morbidelli L, Donnini S. ALDH1A1 confers resistance to RAF/MEK inhibitors in melanoma cells by maintaining stemness phenotype and activating PI3K/AKT signaling. Biochem Pharmacol 2024; 224:116252. [PMID: 38701866 DOI: 10.1016/j.bcp.2024.116252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/16/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
The mitogen-activated protein kinase (MAPK/ERK) pathway is pivotal in controlling the proliferation and survival of melanoma cells. Several mutations, including those in BRAF, exhibit an oncogenic effect leading to increased cellular proliferation. As a result, the combination therapy of a MEK inhibitor with a BRAF inhibitor demonstrated higher efficacy and lower toxicity than BRAF inhibitor alone. This combination has become the preferred standard of care for tumors driven by BRAF mutations. Aldehyde dehydrogenase 1A1 (ALDH1A1) is a known marker of stemness involved in drug resistance in several type of tumors, including melanoma. This study demonstrates that melanoma cells overexpressing ALDH1A1 displayed resistance to vemurafenib and trametinib through the activation of PI3K/AKT signaling instead of MAPK axis. Inhibition of PI3K/AKT signaling partially rescued sensitivity to the drugs. Consistently, pharmacological inhibition of ALDH1A1 activity downregulated the activation of AKT and partially recovered responsiveness to vemurafenib and trametinib. We propose ALDH1A1 as a new potential target for treating melanoma resistant to MAPK/ERK inhibitors.
Collapse
Affiliation(s)
- Valerio Ciccone
- Department of Life Sciences, University of Siena, Siena I-53100, Italy
| | - Vittoria Simonis
- Department of Life Sciences, University of Siena, Siena I-53100, Italy
| | - Cinzia Del Gaudio
- Department of Life Sciences, University of Siena, Siena I-53100, Italy
| | - Claudio Cucini
- Department of Life Sciences, University of Siena, Siena I-53100, Italy
| | - Marina Ziche
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena I‑53100, Italy
| | - Lucia Morbidelli
- Department of Life Sciences, University of Siena, Siena I-53100, Italy
| | - Sandra Donnini
- Department of Life Sciences, University of Siena, Siena I-53100, Italy.
| |
Collapse
|
2
|
Radtke F, Palladino VS, McNeill RV, Chiocchetti AG, Haslinger D, Leyh M, Gersic D, Frank M, Grünewald L, Klebe S, Brüstle O, Günther K, Edenhofer F, Kranz TM, Reif A, Kittel-Schneider S. ADHD-associated PARK2 copy number variants: A pilot study on gene expression and effects of supplementary deprivation in patient-derived cell lines. Am J Med Genet B Neuropsychiatr Genet 2022; 189:257-270. [PMID: 35971782 DOI: 10.1002/ajmg.b.32918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 07/10/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023]
Abstract
Recent studies show an association of Parkin RBR E3 ubiquitin protein ligase (PARK2) copy number variations (CNVs) with attention deficit hyperactivity disorder (ADHD). The aim of our pilot study to investigate gene expression associated with PARK2 CNVs in human-derived cellular models. We investigated gene expression in fibroblasts, hiPSC and dopaminergic neurons (DNs) of ADHD PARK2 deletion and duplication carriers by qRT PCR compared with healthy and ADHD cell lines without PARK2 CNVs. The selected 10 genes of interest were associated with oxidative stress response (TP53, NQO1, and NFE2L2), ubiquitin pathway (UBE3A, UBB, UBC, and ATXN3) and with a function in mitochondrial quality control (PINK1, MFN2, and ATG5). Additionally, an exploratory RNA bulk sequencing analysis in DNs was conducted. Nutrient deprivation as a supplementary deprivation stress paradigm was used to enhance potential genotype effects. At baseline, in fibroblasts, hiPSC, and DNs, there was no significant difference in gene expression after correction for multiple testing. After nutrient deprivation in fibroblasts NAD(P)H-quinone-dehydrogenase 1 (NQO1) expression was significantly increased in PARK2 CNV carriers. In a multivariate analysis, ubiquitin C (UBC) was significantly upregulated in fibroblasts of PARK2 CNV carriers. RNA sequencing analysis of DNs showed the strongest significant differential regulation in Neurontin (NNAT) at baseline and after nutrient deprivation. Our preliminary results suggest differential gene expression in pathways associated with oxidative stress, ubiquitine-proteasome, immunity, inflammation, cell growth, and differentiation, excitation/inhibition modulation, and energy metabolism in PARK2 CNV carriers compared to wildtype healthy controls and ADHD patients.
Collapse
Affiliation(s)
- Franziska Radtke
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital, University of Würzburg, Würzburg, Germany
| | - Viola Stella Palladino
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital, Goethe University, Frankfurt, Germany
| | - Rhiannon V McNeill
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital, University of Würzburg, Würzburg, Germany
| | - Andreas G Chiocchetti
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Denise Haslinger
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Matthias Leyh
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital, Goethe University, Frankfurt, Germany
| | - Danijel Gersic
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital, University of Würzburg, Würzburg, Germany
| | - Markus Frank
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital, University of Würzburg, Würzburg, Germany
| | - Lena Grünewald
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital, Goethe University, Frankfurt, Germany
| | - Stephan Klebe
- Department of Neurology, University Hospital Essen, Essen, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, University of Bonn, Bonn, Germany
| | - Katharina Günther
- Department of Genomics, Stem Cell Biology and Regenerative Medicine, Institute of Molecular Biology & CMBI, University of Innsbruck, Innsbruck, Austria
| | - Frank Edenhofer
- Department of Genomics, Stem Cell Biology and Regenerative Medicine, Institute of Molecular Biology & CMBI, University of Innsbruck, Innsbruck, Austria
| | - Thorsten M Kranz
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital, Goethe University, Frankfurt, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital, Goethe University, Frankfurt, Germany
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital, Goethe University, Frankfurt, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital, University of Würzburg, Würzburg, Germany
| |
Collapse
|
3
|
Zheng J, Su G, Wang W, Zhao X, Liu M, Bi J, Zhao Z, Shi J, Lu W, Zhang L. Two Enhancers Regulate HoxB Genes Expression During Retinoic Acid-Induced Early Embryonic Stem Cells Differentiation Through Long-Range Chromatin Interactions. Stem Cells Dev 2021; 30:683-695. [PMID: 34030475 DOI: 10.1089/scd.2021.0020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Homeobox B cluster (HoxB) genes play important roles in retinoic acid (RA)-induced early embryonic stem cells (ESCs) differentiation. Knowledge of regulation network of HoxB is important to further unveil the mechanism of ESCs differentiation. In this study, we identified two enhancers that were activated by RA treatment and 4C data showed long-range interactions between HoxB genes and the two enhancers. CRISPR/Cas9-mediated individual or compound deletion of the two enhancers significantly inhibits HoxB gene expression, and transcriptome analysis revealed that RA-induced early ESCs differentiation was blocked in the enhancer KO cells. We propose new mechanism by which two enhancers regulate HoxB gene expression by different regulation modes during RA-induced early ESCs differentiation through long-range chromatin interactions.
Collapse
Affiliation(s)
- Jian Zheng
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Guangsong Su
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Wenbin Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xueyuan Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Man Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jinfang Bi
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhongfang Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jiandang Shi
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Wange Lu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Lei Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
4
|
Nehila T, Ferguson JW, Atit RP. Polycomb Repressive Complex 2: a Dimmer Switch of Gene Regulation in Calvarial Bone Development. Curr Osteoporos Rep 2020; 18:378-387. [PMID: 32748325 PMCID: PMC7467536 DOI: 10.1007/s11914-020-00603-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Epigenetic regulation is a distinct mechanism of gene regulation that functions by modulating chromatin structure and accessibility. Polycomb Repressive Complex 2 (PRC2) is a conserved chromatin regulator that is required in the developing embryo to control the expression of key developmental genes. An emerging feature of PRC2 is that it not only allows for binary ON/OFF states of gene expression but can also modulate gene expression in feed-forward loops to change the outcome of gene regulatory networks. This striking feature of epigenetic modulation has improved our understanding of musculoskeletal development. RECENT FINDINGS Recent advances in mouse embryos unravel a range of phenotypes that demonstrate the tissue-specific, temporal, and spatial role of PRC2 during organogenesis and cell fate decisions in vivo. Here, we take a detailed view of how PRC2 functions during the development of calvarial bone and skin. Based on the emerging evidence, we propose that PRC2 serves as a "dimmer switch" to modulate gene expression of target genes by altering the expression of activators and inhibitors. This review highlights the findings from contemporary research that allow us to investigate the unique developmental potential of intramembranous calvarial bones.
Collapse
Affiliation(s)
- Timothy Nehila
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - James W Ferguson
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Radhika P Atit
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA.
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA.
- Department of Dermatology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
5
|
Zhao H, Wang Y, Ren X. Nicotine promotes the development of non-small cell lung cancer through activating LINC00460 and PI3K/Akt signaling. Biosci Rep 2019; 39:BSR20182443. [PMID: 31123168 PMCID: PMC6554215 DOI: 10.1042/bsr20182443] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 05/08/2019] [Accepted: 05/21/2019] [Indexed: 12/24/2022] Open
Abstract
Objective: Nicotine, the main ingredient in tobacco, is identified to facilitate tumorigenesis and accelerate metastasis in tumor. Studies in recent years have reported that long intergenic non-protein coding RNA 460 (LINC00460) is strongly associated with lung cancer poor prognosis and nicotine dependence. Nonetheless, it is unclear whether nicotine promotes the development of lung cancer through activation of LINC00460. Methods: We determined that LINC00460 expression in lung cancer tissues and the prognosis in patients with non-small cell lung carcinoma (NSCLC) using Gene Expression Profiling Interactive Analysis (GEPIA) website and The Cancer Genome Atlas (TCGA) database. Through in vitro experiments, we studied the effects of nicotine on LINC00460 in NSCLC cells lines using Cell Counting Kit-8 (CCK-8), transwell test, flow cytometry, quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and Western blot assays. Results: We identified the significant up-regulated expression level of LINC00460 in NSCLC tissues and cell lines, especially, the negative correlation of LINC00460 expression level with overall survival (OS). In in vitro experiments, LINC00460 was overexpressed in NSCLC cell lines under nicotine stimulation. Nicotine could relieve the effect of LINC00460 knockdown on NSCLC cell proliferation, migration and apoptosis. The same influence was observed on PI3K/Akt signaling pathway. Conclusions: In summary, this is the first time to examine the potential roles of LINC00460 in lung cancer cell proliferation, migration and apoptosis induced by nicotine. This may help to develop novel therapeutic strategies for the prevention and treatment of metastatic tumors from cigarette smoke-caused lung cancer by blocking the nicotine-activated LINC00460 pathway.
Collapse
Affiliation(s)
- Hongying Zhao
- Oncology Department, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China
| | - Yu Wang
- Department of Gerneral Surgery, Xuzhou Cancer Hospital, Xuzhou, 221000 Jiangsu, P.R. China
| | - Xiubao Ren
- Oncology Department, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China
| |
Collapse
|
6
|
Chen C, Tan H, Bi J, Li L, Rong T, Lin Y, Sun P, Liang J, Jiao Y, Li Z, Sun L, Shen J. LncRNA-SULT1C2A regulates Foxo4 in congenital scoliosis by targeting rno-miR-466c-5p through PI3K-ATK signalling. J Cell Mol Med 2019; 23:4582-4591. [PMID: 31044535 PMCID: PMC6584475 DOI: 10.1111/jcmm.14355] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/31/2019] [Accepted: 04/10/2019] [Indexed: 12/17/2022] Open
Abstract
Congenital scoliosis (CS) is the result of anomalous vertebrae development, but the pathogenesis of CS remains unclear. Long non‐coding RNAs (lncRNAs) have been implicated in embryo development, but their role in CS remains unknown. In this study, we investigated the role and mechanisms of a specific lncRNA, SULT1C2A, in somitogenesis in a rat model of vitamin A deficiency (VAD)‐induced CS. Bioinformatics analysis and quantitative real‐time PCR (qRT‐PCR) indicated that SULT1C2A expression was down‐regulated in VAD group, accompanied by increased expression of rno‐miR‐466c‐5p but decreased expression of Foxo4 and somitogenesis‐related genes such as Pax1, Nkx3‐2 and Sox9 on gestational day (GD) 9. Luciferase reporter and small interfering RNA (siRNA) assays showed that SULT1C2A functioned as a competing endogenous RNA to inhibit rno‐miR‐466c‐5p expression by direct binding, and rno‐miR‐466c‐5p inhibited Foxo4 expression by binding to its 3′ untranslated region (UTR). The spatiotemporal expression of SULT1C2A, rno‐miR‐466c‐5p and Foxo4 axis was dynamically altered on GDs 3, 8, 11, 15 and 21 as detected by qRT‐PCR and northern blot analyses, with parallel changes in Protein kinase B (AKT) phosphorylation and PI3K expression. Taken together, our findings indicate that SULT1C2A enhanced Foxo4 expression by negatively modulating rno‐miR‐466c‐5p expression via the PI3K‐ATK signalling pathway in the rat model of VAD‐CS. Thus, SULT1C2A may be a potential target for treating CS.
Collapse
Affiliation(s)
- Chong Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Haining Tan
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jiaqi Bi
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Lin Li
- Beijing Zhongke Jingyun Technology Company Ltd., Beijing, China
| | - Tianhua Rong
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Youxi Lin
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Peiyu Sun
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Department of Orthopedics Surgery, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Jinqian Liang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yang Jiao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zheng Li
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Liang Sun
- Beijing Zhongke Jingyun Technology Company Ltd., Beijing, China
| | - Jianxiong Shen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Ferguson JW, Devarajan M, Atit RP. Stage-specific roles of Ezh2 and Retinoic acid signaling ensure calvarial bone lineage commitment. Dev Biol 2018; 443:173-187. [PMID: 30222957 PMCID: PMC6217976 DOI: 10.1016/j.ydbio.2018.09.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/07/2018] [Accepted: 09/13/2018] [Indexed: 01/10/2023]
Abstract
Development of the skull bones requires the coordination of two stem progenitor populations, the cranial neural crest cells (CNCC) and head paraxial mesoderm (PM), to ensure cell fate selection and morphogenesis. The epigenetic methyltransferase, Ezh2, plays a role in skull bone formation, but the spatiotemporal function of Ezh2 between the CNCC- and PM-derived bone formation in vivo remains undefined. Here, using a temporally-inducible conditional deletion of Ezh2 in both the CNCC- and PM- derived cranial mesenchyme between E8.5 and E9.5, we find a reduction of the CNCC-derived calvarial bones and a near complete loss of the PM-derived calvarial bones due to an arrest in calvarial bone fate commitment. In contrast, deletion of Ezh2 after E9.5 permits PM-derived skull bone development, suggesting that Ezh2 is required early to guide calvarial bone progenitor commitment. Furthermore, exposure to all-trans Retinoic acid at E10.0 can mimic the Ezh2 mutant calvarial phenotype, and administration of the pan retinoic acid receptor (RAR) antagonist, BMS-453, to Ezh2 mutants partially restores the commitment to the calvarial bone lineage and PM-derived bone development in vivo. Exogenous RA signaling activation in the Ezh2 mutants leads to synergistic activation of the anti-osteogenic factors in the cranial mesenchyme in vivo. Thus, RA signaling and EZH2 can function in parallel to guide calvarial bone progenitor commitment by balancing the suppression of anti-osteogenic factors.
Collapse
Affiliation(s)
- James W Ferguson
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Mahima Devarajan
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Radhika P Atit
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, United States; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, United States; Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, United States.
| |
Collapse
|
8
|
Pan LY, Han YQ, Wang YZ, Chen QQ, Wu Y, Sun Y. Mechanism of Yanghe Pingchuan granules treatment for airway remodeling in asthma. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:1941-1951. [PMID: 29983548 PMCID: PMC6027695 DOI: 10.2147/dddt.s159428] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Purpose Yanghe Pingchuan granules (YPG), a hospital preparation developed by The First Affiliated Hospital, Anhui University of Chinese Medicine, has been used for the clinical treatment of bronchial asthma (BA) for several decades. This study aimed to explore the mechanism of action of YPG in the treatment of BA. Materials and methods Male Sprague Dawley rats (n=60) were randomly divided into six groups (n=10 per group): control, a BA model, positive drug control (Guilong Kechuanning capsules; a proven effective treatment for BA), and model rats treated with a high, medium, or low dose of YPG. H&E staining was used to detect pathological changes in the bronchial tubes. The mRNA expression levels of PI3K, PKB, PCNA, and AR were determined by real-time PCR, and the protein levels of phospho- (p-)PI3K, p-PKB, p-PCNA, and p-AR were detected by Western blotting. ELISAs were used to detect the expression of PIP2, PIP3 IL-6, IL-8, IL-1β, and epinephrine (EPI). Results H&E staining demonstrated that BA can be ameliorated using YPG. Real-time PCR, Western blotting, and ELISA indicated that use of YPG decreased expression of the phosphoinositide 3-kinase (PI3K) signaling pathway and PCNA, and can also ameliorate the condition kidney Yang deficiency, which is associated with BA in Chinese traditional medicine. Conclusion YPG can attenuate BA therapeutically in a dose-dependent manner. The mechanism underlying its therapeutic effect comprises influences on three features that contribute to BA: the PI3K signaling pathway, cell proliferation, and “kidney-Yang deficiency”.
Collapse
Affiliation(s)
- Ling Yu Pan
- Grade 3 Preparation Laboratory of State Administration of TCM, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, China,
| | - Yan Quan Han
- Grade 3 Preparation Laboratory of State Administration of TCM, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, China,
| | - Yong Zhong Wang
- Grade 3 Preparation Laboratory of State Administration of TCM, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, China,
| | - Qian Qian Chen
- Anhui University of Chinese Medicine, Hefei, Anhui 230031, China
| | - Ying Wu
- Anhui University of Chinese Medicine, Hefei, Anhui 230031, China
| | - Yuan Sun
- Anhui University of Chinese Medicine, Hefei, Anhui 230031, China
| |
Collapse
|
9
|
Ruiz A, Dror E, Handschin C, Furrer R, Perez-Schindler J, Bachmann C, Treves S, Zorzato F. Over-expression of a retinol dehydrogenase (SRP35/DHRS7C) in skeletal muscle activates mTORC2, enhances glucose metabolism and muscle performance. Sci Rep 2018; 8:636. [PMID: 29330505 PMCID: PMC5766524 DOI: 10.1038/s41598-017-18844-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/18/2017] [Indexed: 12/31/2022] Open
Abstract
SRP-35 is a short-chain dehydrogenase/reductase belonging to the DHRS7C dehydrogenase/ reductase family 7. Here we show that its over-expression in mouse skeletal muscles induces enhanced muscle performance in vivo, which is not related to alterations in excitation-contraction coupling but rather linked to enhanced glucose metabolism. Over-expression of SRP-35 causes increased phosphorylation of AktS473, triggering plasmalemmal targeting of GLUT4 and higher glucose uptake into muscles. SRP-35 signaling involves RARα and RARγ (non-genomic effect), PI3K and mTORC2. We also demonstrate that all-trans retinoic acid, a downstream product of the enzymatic activity of SRP-35, mimics the effect of SRP-35 in skeletal muscle, inducing a synergistic effect with insulin on AKTS473 phosphorylation. These results indicate that SRP-35 affects skeletal muscle metabolism and may represent an important target for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Alexis Ruiz
- Departments of Anesthesia and of Biomedicine, Basel University Hospital, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Erez Dror
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | | | - Regula Furrer
- Biozentrum, University of Basel, CH-4056, Basel, Switzerland
| | | | - Christoph Bachmann
- Departments of Anesthesia and of Biomedicine, Basel University Hospital, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Susan Treves
- Departments of Anesthesia and of Biomedicine, Basel University Hospital, Hebelstrasse 20, 4031, Basel, Switzerland.,Department of Life Sciences, General Pathology section, University of Ferrara, Via Borsari 46, 44100, Ferrara, Italy
| | - Francesco Zorzato
- Departments of Anesthesia and of Biomedicine, Basel University Hospital, Hebelstrasse 20, 4031, Basel, Switzerland. .,Department of Life Sciences, General Pathology section, University of Ferrara, Via Borsari 46, 44100, Ferrara, Italy.
| |
Collapse
|
10
|
Hoxa5 increases mitochondrial apoptosis by inhibiting Akt/mTORC1/S6K1 pathway in mice white adipocytes. Oncotarget 2017; 8:95332-95345. [PMID: 29221131 PMCID: PMC5707025 DOI: 10.18632/oncotarget.20521] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/04/2017] [Indexed: 12/11/2022] Open
Abstract
Homeobox A5(Hoxa5), a member of the Hox family, plays a important role in the regulation of proliferation and apoptosis in cancer cells. The dysregulation of the adipocyte apoptosis in vivo leads to obesity and metabolic disorders. However, the effects of Hoxa5 on adipocyte apoptosis are still unknown. In this study, palmitic acid (PA) significantly increased the mRNA level of Hoxa5 and triggered white adipocyte apoptosis in vivo and in vitro. Further analysis revealed that Hoxa5 enhanced the early and late apoptotic cells and fragmentation of genomic DNA in adipocytes from inguinal white adipose tissue (iWAT) of mice. Moreover, Hoxa5 aggravated white adipocyte apoptosis through mitochondrial pathway rather than endoplasmic reticulum stress (ERS)-induced or death receptor (DR)-mediated pathway. Our data also confirmed that Hoxa5 promoted mitochondrial apoptosis pathway by elevating the transcription activity of Bax and inhibiting the protein kinase B (Akt)/mammalian target of rapamycin complex 1 (mTORC1) signaling pathway. In summary, these findings revealed a novel mechanism that linked Hoxa5 to white adipocyte apoptosis, which provided some potential possibilities to prevent and treat obesity and some metabolic diseases.
Collapse
|
11
|
New Insights Into the Roles of Retinoic Acid Signaling in Nervous System Development and the Establishment of Neurotransmitter Systems. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 330:1-84. [PMID: 28215529 DOI: 10.1016/bs.ircmb.2016.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Secreted chiefly from the underlying mesoderm, the morphogen retinoic acid (RA) is well known to contribute to the specification, patterning, and differentiation of neural progenitors in the developing vertebrate nervous system. Furthermore, RA influences the subtype identity and neurotransmitter phenotype of subsets of maturing neurons, although relatively little is known about how these functions are mediated. This review provides a comprehensive overview of the roles played by RA signaling during the formation of the central and peripheral nervous systems of vertebrates and highlights its effects on the differentiation of several neurotransmitter systems. In addition, the evolutionary history of the RA signaling system is discussed, revealing both conserved properties and alternate modes of RA action. It is proposed that comparative approaches should be employed systematically to expand our knowledge of the context-dependent cellular mechanisms controlled by the multifunctional signaling molecule RA.
Collapse
|
12
|
Min H, Kong KA, Lee JY, Hong CP, Seo SH, Roh TY, Bae SS, Kim MH. CTCF-mediated Chromatin Loop for the Posterior Hoxc Gene Expression in MEF Cells. IUBMB Life 2016; 68:436-44. [PMID: 27080371 DOI: 10.1002/iub.1504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/15/2016] [Accepted: 03/25/2016] [Indexed: 01/06/2023]
Abstract
Modulation of chromatin structure has been proposed as a molecular mechanism underlying the spatiotemporal collinear expression of Hox genes during development. CCCTC-binding factor (CTCF)-mediated chromatin organization is now recognized as a crucial epigenetic mechanism for transcriptional regulation. Thus, we examined whether CTCF-mediated chromosomal conformation is involved in Hoxc gene expression by comparing wild-type mouse embryonic fibroblast (MEF) cells expressing anterior Hoxc genes with Akt1 null MEFs expressing anterior as well as posterior Hoxc genes. We found that CTCF binding between Hoxc11 and -c12 is important for CTCF-mediated chromosomal loop formation and concomitant posterior Hoxc gene expression. Hypomethylation at this site increased CTCF binding and recapitulated the chromosomal conformation and posterior Hoxc gene expression patterns observed in Akt1 null MEFs. From this work we found that CTCF at the C12|11 does not function as a barrier/boundary, instead let the posterior Hoxc genes switch their interaction from inactive centromeric to active telomeric genomic niche, and concomitant posterior Hoxc gene expression. Although it is not clear whether CTCF affects Hoxc gene expression solely through its looping activity, CTCF-mediated chromatin structural modulation could be an another tier of Hox gene regulation during development. © 2016 IUBMB Life, 68(6):436-444, 2016.
Collapse
Affiliation(s)
- Hyehyun Min
- Department of Anatomy, Embryology Laboratory, Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyoung-Ah Kong
- Department of Anatomy, Embryology Laboratory, Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji-Yeon Lee
- Department of Anatomy, Embryology Laboratory, Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chang-Pyo Hong
- Department of Life Sciences and Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Seong-Hye Seo
- Department of Life Sciences and Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Tae-Young Roh
- Department of Life Sciences and Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Sun Sik Bae
- Department of Pharmacology, MRC For Ischemic Tissue Regeneration, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Myoung Hee Kim
- Department of Anatomy, Embryology Laboratory, Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
13
|
Chen Y, Sakamuru S, Huang R, Reese DH, Xia M. Identification of compounds that modulate retinol signaling using a cell-based qHTS assay. Toxicol In Vitro 2016; 32:287-96. [PMID: 26820057 DOI: 10.1016/j.tiv.2016.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/15/2016] [Accepted: 01/20/2016] [Indexed: 01/12/2023]
Abstract
In vertebrates, the retinol (vitamin A) signaling pathway (RSP) controls the biosynthesis and catabolism of all-trans retinoic acid (atRA), which regulates transcription of genes essential for embryonic development. Chemicals that interfere with the RSP to cause abnormal intracellular levels of atRA are potential developmental toxicants. To assess chemicals for the ability to interfere with retinol signaling, we have developed a cell-based RARE (Retinoic Acid Response Element) reporter gene assay to identify RSP disruptors. To validate this assay in a quantitative high-throughput screening (qHTS) platform, we screened the Library of Pharmacologically Active Compounds (LOPAC) in both agonist and antagonist modes. The screens detected known RSP agonists, demonstrating assay reliability, and also identified novel RSP agonists including kenpaullone, niclosamide, PD98059 and SU4312, and RSP antagonists including Bay 11-7085, LY294002, 3,4-Methylenedioxy-β-nitrostyrene, and topoisomerase inhibitors (camptothecin, topotecan, amsacrine hydrochloride, and idarubicin). When evaluated in the P19 pluripotent cell, these compounds were found to affect the expression of the Hoxa1 gene that is essential for embryo body patterning. These results show that the RARE assay is an effective qHTS approach for screening large compound libraries to identify chemicals that have the potential to adversely affect embryonic development through interference with retinol signaling.
Collapse
Affiliation(s)
- Yanling Chen
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, United States.
| | - Srilatha Sakamuru
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, United States
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, United States
| | - David H Reese
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, United States
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|