1
|
Bianchi E, Bhattacharya B, Bowling AJ, Pence HE, Mundy PC, Jones G, Muriana A, Grever WE, Pappas-Garton A, Sriram S, LaRocca J, Bondesson M. Applications of Zebrafish Embryo Models to Predict Developmental Toxicity for Agrochemical Product Development. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18132-18145. [PMID: 39087946 DOI: 10.1021/acs.jafc.4c00970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The development of safe crop protection products is a complex process that traditionally relies on intensive animal use for hazard identification. Methods that capture toxicity in early stages of agrochemical discovery programs enable a more efficient and sustainable product development pipeline. Here, we explored whether the zebrafish model can be leveraged to identify mammalian-relevant toxicity. We used transgenic zebrafish to assess developmental toxicity following exposures to known mammalian teratogens and captured larval morphological malformations, including bone and vascular perturbations. We further applied toxicogenomics to identify common biomarker signatures of teratogen exposure. The results show that the larval malformation assay predicted teratogenicity with 82.35% accuracy, 87.50% specificity, and 77.78% sensitivity. Similar and slightly lower accuracies were obtained with the vascular and bone assays, respectively. A set of 20 biomarkers were identified that efficiently segregated teratogenic chemicals from nonteratogens. In conclusion, zebrafish are valuable, robust, and cost-effective models for toxicity testing in the early stages of product development.
Collapse
Affiliation(s)
- Enrica Bianchi
- Corteva Agriscience, Indianapolis, Indiana 46268, United States
| | | | | | - Heather E Pence
- Corteva Agriscience, Indianapolis, Indiana 46268, United States
| | - Paige C Mundy
- Corteva Agriscience, Indianapolis, Indiana 46268, United States
| | - Gabe Jones
- Corteva Agriscience, Indianapolis, Indiana 46268, United States
| | | | | | | | | | - Jessica LaRocca
- Corteva Agriscience, Indianapolis, Indiana 46268, United States
| | - Maria Bondesson
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana 47408, United States
| |
Collapse
|
2
|
Zito F, Bonaventura R, Costa C, Russo R. Carbonic anhydrases in development: morphological observations and gene expression profiling in sea urchin embryos exposed to acetazolamide. Open Biol 2023; 13:220254. [PMID: 36597694 PMCID: PMC9811153 DOI: 10.1098/rsob.220254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Carbonic anhydrases (CANs) are conserved metalloenzymes catalysing the reversible hydration of carbon dioxide into protons and bicarbonate, with important roles in cells physiology. Some CAN-coding genes were found in sea urchin genome, although only one involved in embryonic skeletogenesis was described in Paracentrotus lividus. Here, we investigated gene expression patterns of P. lividus embryos cultured in the presence of acetazolamide (AZ), a CAN inhibitor, to combine morphological defects with their molecular underpinning. CAN inhibition blocked skeletogenesis, affected the spatial/temporal expression of some biomineralization-related genes, inhibited embryos swimming. A comparative analysis on the expression of 127 genes in control and 3 h/24 h AZ-treated embryos, using NanoString technology, showed the differential expression of genes encoding for structural/regulatory proteins, with different embryonic roles: biomineralization, transcriptional regulation, signalling, development and defence response. The study of the differentially expressed genes and the signalling pathways affected, besides in silico analyses and a speculative 'interactomic model', leads to predicting the presence of various CAN isoforms, possibly involved in different physiological processes/activities in sea urchin embryo, and their potential target genes/proteins. Our findings provide new valuable molecular data for further studies in several biological fields: developmental biology (biomineralization, axes patterning), cell differentiation (neural development) and drug toxicology (AZ effects on embryos/tissues).
Collapse
Affiliation(s)
- Francesca Zito
- Istituto per la Ricerca e l'Innovazione Biomedica, Consiglio Nazionale delle Ricerche, via Ugo La Malfa 153, Palermo 90146, Italy
| | - Rosa Bonaventura
- Istituto per la Ricerca e l'Innovazione Biomedica, Consiglio Nazionale delle Ricerche, via Ugo La Malfa 153, Palermo 90146, Italy
| | - Caterina Costa
- Istituto per la Ricerca e l'Innovazione Biomedica, Consiglio Nazionale delle Ricerche, via Ugo La Malfa 153, Palermo 90146, Italy
| | - Roberta Russo
- Istituto per la Ricerca e l'Innovazione Biomedica, Consiglio Nazionale delle Ricerche, via Ugo La Malfa 153, Palermo 90146, Italy
| |
Collapse
|
3
|
Martino C, Chianese T, Chiarelli R, Roccheri MC, Scudiero R. Toxicological Impact of Rare Earth Elements (REEs) on the Reproduction and Development of Aquatic Organisms Using Sea Urchins as Biological Models. Int J Mol Sci 2022; 23:ijms23052876. [PMID: 35270017 PMCID: PMC8911218 DOI: 10.3390/ijms23052876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023] Open
Abstract
The growing presence of lanthanides in the environment has drawn the attention of the scientific community on their safety and toxicity. The sources of lanthanides in the environment include diagnostic medicine, electronic devices, permanent magnets, etc. Their exponential use and the poor management of waste disposal raise serious concerns about the quality and safety of the ecosystems at a global level. This review focused on the impact of lanthanides in marine organisms on reproductive fitness, fertilization and embryonic development, using the sea urchin as a biological model system. Scientific evidence shows that exposure to lanthanides triggers a wide variety of toxic insults, including reproductive performance, fertilization, redox metabolism, embryogenesis, and regulation of embryonic gene expression. This was thoroughly demonstrated for gadolinium, the most widely used lanthanide in diagnostic medicine, whose uptake in sea urchin embryos occurs in a time- and concentration-dependent manner, correlates with decreased calcium absorption and primarily affects skeletal growth, with incorrect regulation of the skeletal gene regulatory network. The results collected on sea urchin embryos demonstrate a variable sensitivity of the early life stages of different species, highlighting the importance of testing the effects of pollution in different species. The accumulation of lanthanides and their emerging negative effects make risk assessment and consequent legislative intervention on their disposal mandatory.
Collapse
Affiliation(s)
- Chiara Martino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Building 16, 90128 Palermo, Italy; (C.M.); (R.C.); (M.C.R.)
| | - Teresa Chianese
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy;
| | - Roberto Chiarelli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Building 16, 90128 Palermo, Italy; (C.M.); (R.C.); (M.C.R.)
| | - Maria Carmela Roccheri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Building 16, 90128 Palermo, Italy; (C.M.); (R.C.); (M.C.R.)
| | - Rosaria Scudiero
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy;
- Correspondence:
| |
Collapse
|
4
|
Sharker MR, Sukhan ZP, Sumi KR, Choi SK, Choi KS, Kho KH. Molecular Characterization of Carbonic Anhydrase II (CA II) and Its Potential Involvement in Regulating Shell Formation in the Pacific Abalone, Haliotis discus hannai. Front Mol Biosci 2021; 8:669235. [PMID: 34026840 PMCID: PMC8138131 DOI: 10.3389/fmolb.2021.669235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/14/2021] [Indexed: 12/31/2022] Open
Abstract
Carbonic anhydrases (CAs) are a family of metalloenzymes that can catalyze the reversible interconversion of CO2/HCO3–, ubiquitously present in both prokaryotes and eukaryotes. In the present study, a CA II (designated as HdhCA II) was sequenced and characterized from the mantle tissue of the Pacific abalone. The complete sequence of HdhCA II was 1,169 bp, encoding a polypeptide of 349 amino acids with a NH2-terminal signal peptide and a CA architectural domain. The predicted protein shared 98.57% and 68.59% sequence identities with CA II of Haliotis gigantea and Haliotis tuberculata, respectively. Two putative N-linked glycosylation motifs and two cysteine residues could potentially form intramolecular disulfide bond present in HdhCA II. The phylogenetic analysis indicated that HdhCA II was placed in a gastropod clade and robustly clustered with CA II of H. gigantea and H. tuberculata. The highest level of HdhCA II mRNA expression was detected in the shell forming mantle tissue. During ontogenesis, the mRNA of HdhCA II was detected in all stages, with larval shell formation stage showing the highest expression level. The in situ hybridization results detected the HdhCA II mRNA expression in the epithelial cells of the dorsal mantle pallial, an area known to express genes involved in the formation of a nacreous layer in the shell. This is the first report of HdhCA II in the Pacific abalone, and the results of this study indicate that this gene might play a role in the shell formation of abalone.
Collapse
Affiliation(s)
- Md Rajib Sharker
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu, South Korea.,Department of Fisheries Biology and Genetics, Faculty of Fisheries, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Zahid Parvez Sukhan
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu, South Korea
| | - Kanij Rukshana Sumi
- Department of Aquaculture, Faculty of Fisheries, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Sang Ki Choi
- Department of Biological Sciences, College of Life Industry and Science, Sunchon National University, Jeonnam, South Korea
| | - Kap Seong Choi
- Department of Food Science and Technology, Sunchon National University, Jeonnam, South Korea
| | - Kang Hee Kho
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu, South Korea
| |
Collapse
|
5
|
Bonaventura R, Zito F, Russo R, Costa C. A preliminary gene expression analysis on Paracentrotus lividus embryos exposed to UVB, Cadmium and their combination. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 232:105770. [PMID: 33581547 DOI: 10.1016/j.aquatox.2021.105770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/18/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Paracentrotus lividus is a Mediterranean and Eastern Atlantic sea urchin species, very sensitive to chemical and physical environmental changes and widely used in eco-toxicological studies. Here, we applied a high throughput screening approach on P. lividus embryos exposed to UVB radiation (UV), Cadmium Chloride (Cd) and their combination (Cd/UV), to deeply characterize the molecular responses adopted by embryos to cope with these stressors. in vitro eco-toxicological assays were performed by exposing embryos to Cd (10-4 M) soon after fertilization, to UV (200 and 400J/m2) at early stage of development, while in co-exposure experiments, Cd-exposed embryos were irradiated with UV at 200 J/m2. By NanoString nCounter technology, custom-made probes were developed and hybridized on total RNA extracted from exposed embryos at 51h after fertilization. By in silico analyses, we selected and retrieved at the NCBI nucleotide database a panel of P. lividus transcripts encoding for many regulatory and structural proteins that we ranked in categories, i.e., Apoptosis, Biomineralization, Defense, Development, Immunity, Signaling and Transcription Factors. The analysis of 127 transcripts highlighted the dysregulation of many genes, some specifically activated to cope with stress agents, others involved in the complex molecular network of genes that regulate embryo development. We revealed the downregulation of Biomineralization and Development genes and the upregulation of Defensive genes in Cd and Cd/UV embryos. Our approach, using sea urchin embryo as an in vivomodel, contributes to advance our knowledge about cellular responses to UV, Cd and their combination.
Collapse
Affiliation(s)
- Rosa Bonaventura
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l'Innovazione Biomedica, Via Ugo La Malfa 153, Palermo, 90146, Italy.
| | - Francesca Zito
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l'Innovazione Biomedica, Via Ugo La Malfa 153, Palermo, 90146, Italy
| | - Roberta Russo
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l'Innovazione Biomedica, Via Ugo La Malfa 153, Palermo, 90146, Italy.
| | - Caterina Costa
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l'Innovazione Biomedica, Via Ugo La Malfa 153, Palermo, 90146, Italy
| |
Collapse
|
6
|
Lichitsky BV, Komogortsev AN, Dudinov AA, Krayushkin MM, Khodot EN, Samet AV, Silyanova EA, Konyushkin LD, Karpov AS, Gorses D, Radimerski T, Semenova MN, Kiselyov AS, Semenov VV. Benzimidazolyl-pyrazolo[3,4- b]pyridinones, Selective Inhibitors of MOLT-4 Leukemia Cell Growth and Sea Urchin Embryo Spiculogenesis: Target Quest. ACS COMBINATORIAL SCIENCE 2019; 21:805-816. [PMID: 31689077 DOI: 10.1021/acscombsci.9b00135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1,3-Substituted pyrazolo[3,4-b]pyridinones 11-18 were synthesized by a three-component condensation of Meldrum's acid with aryl aldehydes and 1,3-substituted 5-aminopyrazoles. Their biological activity was evaluated using the in vivo phenotypic sea urchin embryo assay and the in vitro cytotoxicity screen against human cancer cell lines. In the sea urchin embryo model, 1-benzimidazolyl-pyrazolo[3,4-b]pyridinones 11 caused inhibition of hatching and spiculogenesis at sub-micromolar concentrations. These compounds also selectively and potently inhibited growth of the MOLT-4 leukemia cell line. Subsequent structure-activity relationship studies determined the benzimidazolyl fragment as an essential pharmacophore for both effects. We applied numerous techniques for target identification. A preliminary QSAR target identification search did not result in tangible leads. Attempts to prepare a relevant photoaffinity probe that retained potency in both assays were not successful. Compounds 11 were further characterized for their activity in a wild-type versus Notch-mutant leukemia cell lines, and in in vitro panels of kinases and matrix metalloproteinases. Using a series of diverse modulators of spiculogenesis as standards, we excluded multiple signaling networks including Notch, Wnt/β-catenin, receptor tyrosine kinases (VEGF/VEGFR, FGF/FGFR), PI3K, and Raf-MEK-ERK as possible targets of 11. On the other hand, matrix metalloproteinase-9/hatching enzyme was identified as one potential target.
Collapse
Affiliation(s)
- Boris V. Lichitsky
- N. D. Zelinsky Institute of Organic Chemistry, RAS, Leninsky Prospect, 47, 119991 Moscow, Russian Federation
| | - Andrey N. Komogortsev
- N. D. Zelinsky Institute of Organic Chemistry, RAS, Leninsky Prospect, 47, 119991 Moscow, Russian Federation
| | - Arkady A. Dudinov
- N. D. Zelinsky Institute of Organic Chemistry, RAS, Leninsky Prospect, 47, 119991 Moscow, Russian Federation
| | - Mikhail M. Krayushkin
- N. D. Zelinsky Institute of Organic Chemistry, RAS, Leninsky Prospect, 47, 119991 Moscow, Russian Federation
| | - Evgenii N. Khodot
- N. D. Zelinsky Institute of Organic Chemistry, RAS, Leninsky Prospect, 47, 119991 Moscow, Russian Federation
| | - Alexander V. Samet
- N. D. Zelinsky Institute of Organic Chemistry, RAS, Leninsky Prospect, 47, 119991 Moscow, Russian Federation
| | - Eugenia A. Silyanova
- N. D. Zelinsky Institute of Organic Chemistry, RAS, Leninsky Prospect, 47, 119991 Moscow, Russian Federation
| | - Leonid D. Konyushkin
- N. D. Zelinsky Institute of Organic Chemistry, RAS, Leninsky Prospect, 47, 119991 Moscow, Russian Federation
| | - Alexei S. Karpov
- Novartis Institutes for BioMedical Research, CH-4056 Basel, Switzerland
| | - Delphine Gorses
- Novartis Institutes for BioMedical Research, CH-4056 Basel, Switzerland
| | - Thomas Radimerski
- Novartis Institutes for BioMedical Research, CH-4056 Basel, Switzerland
| | - Marina N. Semenova
- N. K. Kol’tsov Institute of Developmental Biology, RAS, Vavilov Street, 26, 119334 Moscow, Russian Federation
| | - Alex S. Kiselyov
- Myocea, Inc., 9833 Pacific Heights Blvd., San Diego, California 92121, United States
| | - Victor V. Semenov
- N. D. Zelinsky Institute of Organic Chemistry, RAS, Leninsky Prospect, 47, 119991 Moscow, Russian Federation
| |
Collapse
|
7
|
PI3K inhibition highlights new molecular interactions involved in the skeletogenesis of Paracentrotus lividus embryos. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118558. [PMID: 31525406 DOI: 10.1016/j.bbamcr.2019.118558] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 02/02/2023]
Abstract
The sea urchin embryo develops a well-defined biomineralized endoskeleton, synthesized exclusively by the skeletogenic cells, supported by ectodermal cues for the correct skeleton patterning. The biomineralization process is tightly regulated via a hierarchical order of gene expression, including transcription and growth factors, biomineralization proteins. Recently, the role of kinases and intracellular signaling pathways in sea urchin skeletogenesis has been addressed, although the downstream components still remain unknown. In this study, we investigated the role of phosphatidylinositide 3-kinase (PI3K)-mediated signaling pathway in Paracentrotus lividus, to identify its genes/proteins targets. The effects of LY294002 (LY), a PI3K-specific inhibitor, were evaluated at morphological and molecular levels. Treatment with 40 μM LY from the blastula stage completely blocked skeleton deposition, which was reversed by wash out experiments. Besides, LY caused a slight delay in the tripartite gut development. Despite the skeleton absence, a few skeleton-specific proteins/mRNAs were regularly expressed and localized in LY-treated embryos, as shown for MSP130 and SM50 by immunofluorescence and in situ hybridization experiments. QPCR analyses showed that LY differently affected the expression of genes coding for other biomineralization proteins, transcription and growth factors. SM30 and carbonic anhydrase expression was severely downregulated, while almost all the transcription factors analyzed were upregulated. Based on the present results and in silico analyses, we propose an "interactomic" model simulating PI3K connections in P. lividus embryos. Our findings define a novel regulatory step in the embryonic skeletogenesis, and provide valuable molecular data for further studies on the role of PI3K signaling in invertebrate biomineralization.
Collapse
|
8
|
Brennan RS, Garrett AD, Huber KE, Hargarten H, Pespeni MH. Rare genetic variation and balanced polymorphisms are important for survival in global change conditions. Proc Biol Sci 2019; 286:20190943. [PMID: 31185858 PMCID: PMC6571474 DOI: 10.1098/rspb.2019.0943] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/17/2019] [Indexed: 12/14/2022] Open
Abstract
Standing genetic variation is important for population persistence in extreme environmental conditions. While some species may have the capacity to adapt to predicted average future global change conditions, the ability to survive extreme events is largely unknown. We used single-generation selection experiments on hundreds of thousands of Strongylocentrotus purpuratus sea urchin larvae generated from wild-caught adults to identify adaptive genetic variation responsive to moderate (pH 8.0) and extreme (pH 7.5) low-pH conditions. Sequencing genomic DNA from pools of larvae, we identified consistent changes in allele frequencies across replicate cultures for each pH condition and observed increased linkage disequilibrium around selected loci, revealing selection on recombined standing genetic variation. We found that loci responding uniquely to either selection regime were at low starting allele frequencies while variants that responded to both pH conditions (11.6% of selected variants) started at high frequencies. Loci under selection performed functions related to energetics, pH tolerance, cell growth and actin/cytoskeleton dynamics. These results highlight that persistence in future conditions will require two classes of genetic variation: common, pH-responsive variants maintained by balancing selection in a heterogeneous environment, and rare variants, particularly for extreme conditions, that must be maintained by large population sizes.
Collapse
|
9
|
Martino C, Chiarelli R, Roccheri MC, Matranga V, Byrne M. Effects of magnesium deprivation on development and biomineralization in the sea urchin Arbacia lixula. INVERTEBR REPROD DEV 2019. [DOI: 10.1080/07924259.2019.1611670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Chiara Martino
- Dipartimento Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Palermo, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare “Alberto Monroy”, Palermo, Italy
| | - Roberto Chiarelli
- Dipartimento Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Palermo, Italy
| | - Maria Carmela Roccheri
- Dipartimento Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Palermo, Italy
| | - Valeria Matranga
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare “Alberto Monroy”, Palermo, Italy
| | - Maria Byrne
- Department of Anatomy and Histology, F13, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
10
|
Shashikant T, Khor JM, Ettensohn CA. From genome to anatomy: The architecture and evolution of the skeletogenic gene regulatory network of sea urchins and other echinoderms. Genesis 2018; 56:e23253. [PMID: 30264451 PMCID: PMC6294693 DOI: 10.1002/dvg.23253] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/14/2018] [Accepted: 09/23/2018] [Indexed: 01/19/2023]
Abstract
The skeletogenic gene regulatory network (GRN) of sea urchins and other echinoderms is one of the most intensively studied transcriptional networks in any developing organism. As such, it serves as a preeminent model of GRN architecture and evolution. This review summarizes our current understanding of this developmental network. We describe in detail the most comprehensive model of the skeletogenic GRN, one developed for the euechinoid sea urchin Strongylocentrotus purpuratus, including its initial deployment by maternal inputs, its elaboration and stabilization through regulatory gene interactions, and its control of downstream effector genes that directly drive skeletal morphogenesis. We highlight recent comparative studies that have leveraged the euechinoid GRN model to examine the evolution of skeletogenic programs in diverse echinoderms, studies that have revealed both conserved and divergent features of skeletogenesis within the phylum. Last, we summarize the major insights that have emerged from analysis of the structure and evolution of the echinoderm skeletogenic GRN and identify key, unresolved questions as a guide for future work.
Collapse
Affiliation(s)
- Tanvi Shashikant
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Jian Ming Khor
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| |
Collapse
|
11
|
Caricato R, Giordano ME, Schettino T, Lionetto MG. Functional Involvement of Carbonic Anhydrase in the Lysosomal Response to Cadmium Exposure in Mytilus galloprovincialis Digestive Gland. Front Physiol 2018; 9:319. [PMID: 29670538 PMCID: PMC5893636 DOI: 10.3389/fphys.2018.00319] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/15/2018] [Indexed: 12/31/2022] Open
Abstract
Carbonic anhydrase (CA) is a ubiquitous metalloenzyme, whose functions in animals span from respiration to pH homeostasis, electrolyte transport, calcification, and biosynthetic reactions. CA is sensitive to trace metals in a number of species. In mussels, a previous study demonstrated CA activity and protein expression to be enhanced in digestive gland by cadmium exposure. The aim of the present work was to investigate the functional meaning, if any, of this response. To this end the study addressed the possible involvement of CA in the lysosomal system response of digestive gland cells to metal exposure. The in vivo exposure to acetazolamide, specific CA inhibitor, significantly inhibited the acidification of the lysosomal compartment in the digestive gland cells charged with the acidotropic probe LysoSensor Green D-189, demonstrating in vivo the physiological contribution of CA to the acidification of the lysosomes. Under CdCl2 exposure, CA activity significantly increased in parallel to the increase of the fluorescence of LysoSensor Green charged cells, which is in turn indicative of proliferation and/or increase in size of lysosomes. Acetazolamide exposure was able to completely inhibit the cadmium induced Lysosensor fluorescence increase in digestive gland cells. In conclusion, our results demonstrated the functional role of CA in the lysosomal acidification of Mytilus galloprovincialis digestive gland and its involvement in the lysosomal activation following cadmium exposure. CA induction could physiologically respond to a prolonged increased requirement of H+ for supporting lysosomal acidification during lysosomal activation.
Collapse
Affiliation(s)
- Roberto Caricato
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - M Elena Giordano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Trifone Schettino
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - M Giulia Lionetto
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| |
Collapse
|
12
|
Martino C, Costa C, Roccheri MC, Koop D, Scudiero R, Byrne M. Gadolinium perturbs expression of skeletogenic genes, calcium uptake and larval development in phylogenetically distant sea urchin species. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 194:57-66. [PMID: 29156215 DOI: 10.1016/j.aquatox.2017.11.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 06/07/2023]
Abstract
Chelates of Gadolinium (Gd), a lanthanide metal, are employed as contrast agents for magnetic resonance imaging and are released into the aquatic environment where they are an emerging contaminant. We studied the effects of environmentally relevant Gd concentrations on the development of two phylogenetically and geographically distant sea urchin species: the Mediterranean Paracentrotus lividus and the Australian Heliocidaris tuberculata. We found a general delay of embryo development at 24h post-fertilization, and a strong inhibition of skeleton growth at 48h. Total Gd and Ca content in the larvae showed a time- and concentration-dependent increase in Gd, in parallel with a reduction in Ca. To investigate the impact of Gd on the expression of genes involved in the regulation of skeletogenesis, we performed comparative RT-PCR analysis and found a misregulation of several genes involved in the skeletogenic and left-right axis specification gene regulatory networks. Species-specific differences in the biomineralization response were evident, likely due to differences in the skeletal framework of the larvae and the amount of biomineral produced. Our results highlight the hazard of Gd for marine organisms.
Collapse
Affiliation(s)
- Chiara Martino
- Dipartimento Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, Ed. 16, 90128, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Via Ugo La Malfa 153, 90146, Palermo, Italy.
| | - Caterina Costa
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Maria Carmela Roccheri
- Dipartimento Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, Ed. 16, 90128, Palermo, Italy
| | - Demian Koop
- Department of Anatomy and Histology, F13, University of Sydney, NSW, Australia
| | - Rosaria Scudiero
- Dipartimento di Biologia, Università di Napoli Federico II, via Mezzocannone 8, 80134, Napoli, Italy
| | - Maria Byrne
- Department of Anatomy and Histology, F13, University of Sydney, NSW, Australia
| |
Collapse
|
13
|
Endocytosis in primary mesenchyme cells during sea urchin larval skeletogenesis. Exp Cell Res 2017; 359:205-214. [PMID: 28782554 DOI: 10.1016/j.yexcr.2017.07.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/26/2017] [Accepted: 07/22/2017] [Indexed: 12/18/2022]
Abstract
The sea urchin larval embryo elaborates two calcitic endoskeletal elements called spicules. Spicules are synthesized by the primary mesenchyme cells (PMCs) and begin to form at early gastrula stage. It is known that the calcium comprising the spicules comes from the seawater and we wish to further consider the mode of calcium transport from the extracellular seawater to the PMCs and then onto the forming spicules. We used PMC in vitro cultures, calcein, fluorescently labeled dextran, and fluorescently labeled Wheat Germ Agglutinin (WGA) to track calcium transport from the seawater into PMCs and spicules and to determine how molecules from the surface of PMCs interact with the incoming calcium. Labeling of PMC endocytic vesicles and forming spicules by both calcein and fluorescently tagged dextran indicate that calcium is taken up from the seawater by endocytosis and directly incorporated into spicules. Calcein labeling studies also indicate that calcium from the extracellular seawater begins to be incorporated into spicules within 30min of uptake. In addition, we demonstrate that fluorescently labeled WGA and calcein are taken up by many of the same endocytic vesicles and are incorporated into growing spicules. These findings suggest that PMC specific surface molecules accompany calcium ions as they enter PMCs via endocytosis and are incorporated together in the growing spicule. Using anti-spicule matrix protein antibodies, we pinpoint a subset of spicule matrix proteins that may accompany calcium ions from the surface of the PMCs until they are incorporated into spicules. Msp130 is identified as one of these spicule matrix proteins.
Collapse
|
14
|
Martino C, Bonaventura R, Byrne M, Roccheri M, Matranga V. Effects of exposure to gadolinium on the development of geographically and phylogenetically distant sea urchins species. MARINE ENVIRONMENTAL RESEARCH 2017; 128:98-106. [PMID: 27296320 DOI: 10.1016/j.marenvres.2016.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 06/06/2023]
Abstract
Gadolinium (Gd), a metal of the lanthanide series used as contrast agent for magnetic resonance imaging, is released into the aquatic environment. We investigated the effects of Gd on the development of four sea urchin species: two from Europe, Paracentrotus lividus and Arbacia lixula, and two from Australia, Heliocidaris tuberculata and Centrostephanus rodgersii. Exposure to Gd from fertilization resulted in inhibition or alteration of skeleton growth in the plutei. The similar morphological response to Gd in the four species indicates a similar mechanism underlying abnormal skeletogenesis. Sensitivity to Gd greatly varied, with the EC50 ranging from 56 nM to 132 μM across the four species. These different sensitivities highlight the importance of testing toxicity in several species for risk assessment. The strong negative effects of Gd on calcification in plutei, together with the plethora of marine species that have calcifying larvae, indicates that Gd pollution is urgent issue that needs to be addressed.
Collapse
Affiliation(s)
- Chiara Martino
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Via Ugo La Malfa 153, 90146 Palermo, Italy; Dipartimento Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, Ed. 16, 90128, Palermo, Italy.
| | - Rosa Bonaventura
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Maria Byrne
- Department of Anatomy and Histology, F13, University of Sydney, NSW, Australia.
| | - Maria Roccheri
- Dipartimento Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, Ed. 16, 90128, Palermo, Italy
| | - Valeria Matranga
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Via Ugo La Malfa 153, 90146 Palermo, Italy
| |
Collapse
|
15
|
Karakostis K, Costa C, Zito F, Brümmer F, Matranga V. Characterization of an Alpha Type Carbonic Anhydrase from Paracentrotus lividus Sea Urchin Embryos. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2016; 18:384-395. [PMID: 27230618 DOI: 10.1007/s10126-016-9701-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/10/2016] [Indexed: 06/05/2023]
Abstract
Carbonic anhydrases (CA) are zinc metalloenzymes that catalyze the reversible hydration of carbon dioxide to bicarbonate. In the sea urchin, CA has a role in the formation of the calcitic skeleton during embryo development. Here, we report a newly identified mRNA sequence from embryos of the sea urchin Paracentrotus lividus, referred to as Pl-can. The complete coding sequence was identified with the aid of both EST databases and experimental procedures. Pl-CAN is a 447 aa-long protein, with an estimated molecular mass of 48.5 kDa and an isoelectric point of 6.83. The in silico study of functional domains showed, in addition to the alpha type CA-specific domain, the presence of an unexpected glycine-rich region at the N-terminal of the molecule. This is not found in any other species described so far, but probably it is restricted to the sea urchins. The phylogenetic analysis indicated that Pl-CAN is evolutionarily closer to human among chordates than to other species. The putative role(s) of the identified domains is discussed. The Pl-can temporal and spatial expression profiles, analyzed throughout embryo development by comparative qPCR and whole-mount in situ hybridization (WMISH), showed that Pl-can mRNA is specifically expressed in the primary mesenchyme cells (PMC) of the embryo and levels increase along with the growth of the embryonic skeleton, reaching a peak at the pluteus stage. A recombinant fusion protein was produced in E. coli and used to raise specific antibodies in mice recognized the endogenous Pl-CAN by Western blot in embryo extracts from gastrula and pluteus.
Collapse
Affiliation(s)
- Konstantinos Karakostis
- Institute of Biomedicine and Molecular Immunology "A. Monroy", National Research Council, Via Ugo La Malfa, 153-90146, Palermo, Italy
- Institute for Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
- INSERM - UMR 1162, Institute de Génétique Moléculaire, Hôpital St. Louis, 27 rue Juliette Dodu, 75010, Paris, France
| | - Caterina Costa
- Institute of Biomedicine and Molecular Immunology "A. Monroy", National Research Council, Via Ugo La Malfa, 153-90146, Palermo, Italy.
| | - Francesca Zito
- Institute of Biomedicine and Molecular Immunology "A. Monroy", National Research Council, Via Ugo La Malfa, 153-90146, Palermo, Italy
| | - Franz Brümmer
- Institute for Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Valeria Matranga
- Institute of Biomedicine and Molecular Immunology "A. Monroy", National Research Council, Via Ugo La Malfa, 153-90146, Palermo, Italy
| |
Collapse
|
16
|
Karakostis K, Zanella-Cléon I, Immel F, Guichard N, Dru P, Lepage T, Plasseraud L, Matranga V, Marin F. A minimal molecular toolkit for mineral deposition? Biochemistry and proteomics of the test matrix of adult specimens of the sea urchin Paracentrotus lividus. J Proteomics 2016; 136:133-44. [DOI: 10.1016/j.jprot.2016.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/22/2015] [Accepted: 01/04/2016] [Indexed: 12/16/2022]
|
17
|
L. Flores R, Department of Biological Sciences, California State University, Long Beach, Long Beach, CA, USA, Gonzales K, W. Seaver R, T. Livingston B. The skeletal proteome of the brittle star <em>Ophiothrix spiculata</em> identifies C-type lectins and other proteins conserved in echinoderm skeleton formation. AIMS MOLECULAR SCIENCE 2016. [DOI: 10.3934/molsci.2016.3.357] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|