1
|
Baudouin Gonzalez L, Schönauer A, Harper A, Arif S, Leite DJ, Steinhoff POM, Pechmann M, Telizhenko V, Pande A, Schultz ZX, Kosiol C, Aase-Remedios M, McGregor AP, Sumner-Rooney L. Development and patterning of a highly versatile visual system in spiders. Proc Biol Sci 2025; 292:20242069. [PMID: 40068820 PMCID: PMC11896711 DOI: 10.1098/rspb.2024.2069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/29/2024] [Accepted: 01/20/2025] [Indexed: 03/15/2025] Open
Abstract
Visual systems provide a key interface between organisms and their surroundings, and have evolved in many forms to perform diverse functions across the animal kingdom. Spiders exhibit a range of visual abilities and ecologies, the diversity of which is underpinned by a highly versatile, modular visual system architecture. This typically includes eight eyes of two developmentally distinct types, but the number, size, location and function of the eyes can vary dramatically between lineages. Previous studies of visual system development in spiders have confirmed that many components of the retinal determination gene (RDG) network are conserved with other arthropods, but so far, comparative studies among spiders are lacking. We characterized visual system development in seven species of spiders representing a range of morphologies, visual ecologies and phylogenetic positions, to determine how these diverse configurations are formed, and how they might evolve. Combining transcriptomics, in situ hybridization, and selection analyses, we characterize the repertoires and expression of key RDGs in relation to adult morphology. We identify key molecular players, timepoints and developmental events that may contribute to adult diversity, in particular the molecular and developmental underpinnings of eye size, number, position and identity across spiders.
Collapse
Affiliation(s)
- Luis Baudouin Gonzalez
- Oxford University Museum of Natural History, University of Oxford, Parks Road, OxfordOX1 3PW, UK
- Department of Biological and Biomedical Sciences, Oxford Brookes University, Gipsy Lane, OxfordOX3 0BP, UK
- Enara Bio, Science Park, Bellhouse Building Level 3, Sanders Rd, Littlemore, OxfordOX4 4GA, UK
| | - Anna Schönauer
- Department of Biological and Biomedical Sciences, Oxford Brookes University, Gipsy Lane, OxfordOX3 0BP, UK
| | - Amber Harper
- Department of Biological and Biomedical Sciences, Oxford Brookes University, Gipsy Lane, OxfordOX3 0BP, UK
| | - Saad Arif
- Department of Biological and Biomedical Sciences, Oxford Brookes University, Gipsy Lane, OxfordOX3 0BP, UK
| | - Daniel J. Leite
- Department of Biosciences, Durham University, Stockton Road, DurhamDH1 3LE, UK
| | - Philip O. M. Steinhoff
- Zoologisches Institut und Museum, Universität Greifswald, Loitzer Strasse 26, Greifswald17489, Germany
| | - Matthias Pechmann
- Department of Developmental Biology, Universität zu Köln, Zuelpicher Strasse 47B, Köln50674, Germany
| | | | - Atal Pande
- Leibniz Institute for Biodiversity and Evolution, Museum für Naturkunde, Invalidenstrasse 43, Berlin10115, Germany
| | - Zoe X. Schultz
- Department of Biosciences, Durham University, Stockton Road, DurhamDH1 3LE, UK
| | - Carolin Kosiol
- School of Biology, St Andrews University, St AndrewsKY16 9ST, UK
| | | | - Alistair P. McGregor
- Department of Biological and Biomedical Sciences, Oxford Brookes University, Gipsy Lane, OxfordOX3 0BP, UK
- Department of Biosciences, Durham University, Stockton Road, DurhamDH1 3LE, UK
| | - Lauren Sumner-Rooney
- Oxford University Museum of Natural History, University of Oxford, Parks Road, OxfordOX1 3PW, UK
- Leibniz Institute for Biodiversity and Evolution, Museum für Naturkunde, Invalidenstrasse 43, Berlin10115, Germany
| |
Collapse
|
2
|
Watanabe T, Ugajin A, Tateishi K, Watanabe H, Mizunami M. Identification of an additional periplanone receptor family gene preferentially expressed in the male antennae of the American cockroach. Sci Rep 2025; 15:3949. [PMID: 39890892 PMCID: PMC11785976 DOI: 10.1038/s41598-025-87978-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/23/2025] [Indexed: 02/03/2025] Open
Abstract
Periplaneta cockroaches use periplanone analogs as female sex pheromones to attract males. We previously identified two periplanone receptor genes, PameOR1 and PameOR2, in the American cockroach Periplaneta americana. Here, we report the identification of PameOR1-like, an additional olfactory receptor resembling PameOR1 in P. americana. PameOR1-like showed high-level sequence similarity to PameOR1, and is preferentially expressed in the male antennae. Quantitative expression analysis revealed that, in the adult male antennae, the expression level of PameOR1 is 2.4-fold higher than that of PameOR1-like. Fluorescent in situ hybridization revealed that PameOR1 and PameOR1-like are co-expressed in the periplanone-A-responsive sensory neurons within the single walled-B sensilla on the male adult antennae. These data support the idea that PameOR1 and PameOR1-like are generated by a recent gene duplication event and play a redundant function in sex pheromone reception in P. americana.
Collapse
Affiliation(s)
- Takayuki Watanabe
- Research Center for Integrative Evolutionary Science, The Graduate University for Advanced Studies, Shonan Village, Hayama, 240-0193, Kanagawa, Japan.
| | | | - Kosuke Tateishi
- Department of Earth System Science, Faculty of Science, Fukuoka University, Fukuoka, Fukuoka, 814-0180, Japan
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, 669-1330, Hyogo, Japan
| | - Hidehiro Watanabe
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, 669-1330, Hyogo, Japan
| | - Makoto Mizunami
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 060-0811, Japan
| |
Collapse
|
3
|
Prpic NM, Pechmann M. Extraembryonic tissue in chelicerates: a review and outlook. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210269. [PMID: 36252223 PMCID: PMC9574639 DOI: 10.1098/rstb.2021.0269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/16/2022] [Indexed: 01/03/2023] Open
Abstract
The formation of extraembryonic membranes (EEMs) contributes to the proper development of many animals. In arthropods, the formation and function of EEMs have been studied best in insects. Regarding the development of extraembryonic tissue in chelicerates (spiders and relatives), most information is available for spiders (Araneae). Especially two populations of cells have been considered to represent EEMs in spiders. The first of these potential EEMs develops shortly after egg deposition, opposite to a radially symmetrical germ disc that forms in one hemisphere of the egg and encloses the yolk. The second tissue, which has been described as being extraembryonic is the so-called dorsal field, which is required to cover the dorsal part of the developing spider germ rudiment before proper dorsal closure. In this review, we summarize the current knowledge regarding the formation of potential extraembryonic structures in the Chelicerata. We describe the early embryogenesis of spiders and other chelicerates, with a special focus on the formation of the potential extraembryonic tissues. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.
Collapse
Affiliation(s)
- Nikola-Michael Prpic
- Justus-Liebig-Universitaet Giessen, Institut für Allgemeine Zoologie und Entwicklungsbiologie, AG Zoologie mit dem Schwerpunkt Molekulare Entwicklungsbiologie, Heinrich-Buff-Ring 38, 35392 Giessen, Germany
| | - Matthias Pechmann
- Institute for Zoology, University of Cologne, Biocenter, Zuelpicher Strasse 47b, 50674 Cologne, Germany
| |
Collapse
|
4
|
Iwasaki-Yokozawa S, Nanjo R, Akiyama-Oda Y, Oda H. Lineage-specific, fast-evolving GATA-like gene regulates zygotic gene activation to promote endoderm specification and pattern formation in the Theridiidae spider. BMC Biol 2022; 20:223. [PMID: 36203191 PMCID: PMC9535882 DOI: 10.1186/s12915-022-01421-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background
The process of early development varies across the species-rich phylum Arthropoda. Owing to the limited research strategies for dissecting lineage-specific processes of development in arthropods, little is known about the variations in early arthropod development at molecular resolution. The Theridiidae spider, Parasteatoda tepidariorum, has its genome sequenced and could potentially contribute to dissecting early embryonic processes. Results We present genome-wide identification of candidate genes that exhibit locally restricted expression in germ disc forming stage embryos of P. tepidariorum, based on comparative transcriptomes of isolated cells from different regions of the embryo. A subsequent pilot screen by parental RNA interference identifies three genes required for body axis formation. One of them is a GATA-like gene that has been fast evolving after duplication and divergence from a canonical GATA family gene. This gene is designated fuchi nashi (fuchi) after its knockdown phenotypes, where the cell movement toward the formation of a germ disc was reversed. fuchi expression occurs in cells outside a forming germ disc and persists in the endoderm. Transcriptome and chromatin accessibility analyses of fuchi pRNAi embryos suggest that early fuchi activity regulates chromatin state and zygotic gene activation to promote endoderm specification and pattern formation. We also show that there are many uncharacterized genes regulated by fuchi. Conclusions Our genome-based research using an arthropod phylogenetically distant from Drosophila identifies a lineage-specific, fast-evolving gene with key developmental roles in one of the earliest, genome-wide regulatory events, and allows for molecular exploration of the developmental variations in early arthropod embryos. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01421-0.
Collapse
Affiliation(s)
- Sawa Iwasaki-Yokozawa
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, Takatsuki, Osaka, 569-1125, Japan
| | - Ryota Nanjo
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, Takatsuki, Osaka, 569-1125, Japan.,Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Yasuko Akiyama-Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, Takatsuki, Osaka, 569-1125, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan.,Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Hiroki Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, Takatsuki, Osaka, 569-1125, Japan. .,Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan.
| |
Collapse
|
5
|
Akiyama-Oda Y, Akaiwa T, Oda H. Reconstruction of the Global Polarity of an Early Spider Embryo by Single-Cell and Single-Nucleus Transcriptome Analysis. Front Cell Dev Biol 2022; 10:933220. [PMID: 35938158 PMCID: PMC9353575 DOI: 10.3389/fcell.2022.933220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/22/2022] [Indexed: 01/07/2023] Open
Abstract
Patterning along an axis of polarity is a fundamental step in the development of a multicellular animal embryo. In the cellular field of an early spider embryo, Hedgehog signaling operates to specify a "fuzzy" French-flag-like pattern along the primary axis, which is related to the future anterior-posterior (A-P) axis. However, details regarding the generation and development of a diversity of cell states based on the embryo polarity are not known. To address this issue, we applied single-cell RNA sequencing to the early spider embryo consisting of approximately 2,000 cells. Our results confirmed that this technique successfully detected 3 cell populations corresponding to the germ layers and some transient cell states. We showed that the data from dissociated cells had sufficient information for reconstruction of a correct global A-P polarity of the presumptive ectoderm, without clear segregation of specific cell states. This outcome is explained by the varied but differentially overlapping expression of Hedgehog-signal target genes and newly identified marker genes. We also showed that the data resources generated by the transcriptome analysis are applicable to a genome-wide search for genes whose expression is spatially regulated, based on the detection of pattern similarity. Furthermore, we performed single-nucleus RNA sequencing, which was more powerful in detecting emerging cell states. The single-cell and single-nucleus transcriptome techniques will help investigate the pattern-forming processes in the spider model system in an unbiased, comprehensive manner. We provided web-based resources of these transcriptome datasets for future studies of pattern formation and cell differentiation.
Collapse
Affiliation(s)
- Yasuko Akiyama-Oda
- JT Biohistory Research Hall, Takatsuki, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Takanori Akaiwa
- JT Biohistory Research Hall, Takatsuki, Japan
- Department of Biological Science, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Hiroki Oda
- JT Biohistory Research Hall, Takatsuki, Japan
- Department of Biological Science, Graduate School of Science, Osaka University, Toyonaka, Japan
| |
Collapse
|
6
|
Sato Y, Shibata N, Hashimoto C, Agata K. Migratory regulation by MTA homologous genes is essential for the uniform distribution of planarian adult pluripotent stem cells. Dev Growth Differ 2022; 64:150-162. [PMID: 35124813 DOI: 10.1111/dgd.12773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/09/2021] [Accepted: 12/19/2021] [Indexed: 12/31/2022]
Abstract
The migration of adult stem cells in vivo is an important issue, but the complex tissue structures involved, and limited accessibility of the cells hinder a detailed investigation. To overcome these problems, the freshwater planarian Dugesia japonica was used because it has a simple body plan and abundant adult pluripotent stem cells (neoblasts) distributed uniformly throughout its body. To investigate the migratory mechanisms of neoblasts, two planarian homologous genes of metastatic tumor antigen (MTA-A and MTA-B), a protein involved in cancer metastasis that functions through histone deacetylation, were identified, and their function was analyzed using RNA interference (RNAi). MTA-A or MTA-B knockdown disrupted homeostatic tissue turnover and regeneration in planarians. Whereas neoblasts in MTA-A (RNAi) and MTA-B (RNAi) animals were maintained, neoblast differentiation was inhibited. Furthermore, the normal uniform neoblast distribution pattern changed to a branch-like pattern in MTA-A (RNAi) and MTA-B (RNAi) animals. To examine the neoblast migratory ability, a partial X-ray irradiation assay was performed in D. japonica. Using this assay system, the MTA-A knockdown neoblasts migrated collectively in a branch-like pattern, and the MTA-B knockdown neoblasts were not able to migrate. These results indicated that MTA-A was required for the exit of neoblasts from the branch-like region, and that MTA-B was required for neoblast migration. Thus, the migration mediated by MTA-A and MTA-B enabled uniform neoblast distribution and was required for neoblast differentiation to achieve tissue homeostasis and regeneration.
Collapse
Affiliation(s)
- Yuki Sato
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.,Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, Japan
| | - Norito Shibata
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.,Department of Integrated Science and Technology, National Institute of Technology, Tsuyama College, Tsuyama, Japan
| | - Chikara Hashimoto
- JT Biohistory Research Hall, Takatsuki, Japan.,Department of Biology, Graduate School of Science, Osaka University, Osaka, Japan
| | - Kiyokazu Agata
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.,Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, Japan
| |
Collapse
|
7
|
Sato Y, Umesono Y, Kuroki Y, Agata K, Hashimoto C. Proliferation maintains the undifferentiated status of stem cells: The role of the planarian cell cycle regulator Cdh1. Dev Biol 2021; 482:55-66. [PMID: 34922934 DOI: 10.1016/j.ydbio.2021.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/29/2021] [Accepted: 12/12/2021] [Indexed: 11/03/2022]
Abstract
The coincidence of cell cycle exit and differentiation has been described in a wide variety of stem cells and organisms for decades, but the causal relationship is still unclear due to the complicated regulation of the cell cycle. Here, we used the planarian Dugesia japonica since they may possess a simple cell cycle regulation in which Cdh1 is one of the factors responsible for exiting the cell cycle. When cdh1 was functionally inhibited, the planarians could not maintain their tissue homeostasis and could not regenerate their missing body parts. While the knockdown of cdh1 caused pronounced accumulation of the stem cells, the progenitor and differentiated cells were decreased. Further analyses indicated that the stem cells with cdh1 knockdown did not undergo differentiation even though they received ERK signaling activation as an induction signal. These results suggested that stem cells could not acquire differentiation competence without cell cycle exit. Thus, we propose that cell cycle regulation determines the differentiation competence and that cell cycle exit to G0 enables stem cells to undergo differentiation.
Collapse
Affiliation(s)
| | | | - Yoshihito Kuroki
- Laboratory of Regeneration Biology, National Institute for Basic Biology, Japan; Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Japan
| | - Kiyokazu Agata
- Laboratory of Regeneration Biology, National Institute for Basic Biology, Japan
| | - Chikara Hashimoto
- JT Biohistory Research Hall, Japan; Department of Biology, Graduate School of Science, Osaka University, Japan.
| |
Collapse
|
8
|
Ugajin A, Ozaki K. Coexpression of Three Odorant-Binding Protein Genes in the Foreleg Gustatory Sensilla of Swallowtail Butterfly Visualized by Multicolor FISH Analysis. FRONTIERS IN INSECT SCIENCE 2021; 1:696179. [PMID: 38468877 PMCID: PMC10926539 DOI: 10.3389/finsc.2021.696179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/06/2021] [Indexed: 03/13/2024]
Abstract
Lepidopteran insects are mostly monophagous or oligophagous. Female butterflies distinguish their host plants by detecting a combination of specific phytochemicals through the gustatory sensilla densely distributed on their foreleg tarsi, thereby ensuring oviposition on appropriate host plants. In this study, to gain insight into the molecular mechanism underlying host plant recognition by the gustatory sensilla, using Asian swallowtail, Papilio xuthus, we focused on a family of small soluble ligand-binding molecules, odorant-binding proteins (OBPs), and found that three OBP genes showed enriched expression in the foreleg tarsus. Multicolor fluorescence in situ hybridization analyses demonstrated the coexpression of these three OBP genes at the bases of the foreleg gustatory sensilla. Further analyses on other appendages revealed that PxutOBP3 was exclusively expressed in the tissues which could have direct contact with the leaf surface, suggesting that this OBP gene specifically plays an important role in phytochemicals perception.
Collapse
|
9
|
Wang GT, Pan HY, Lang WH, Yu YD, Hsieh CH, Kuan YS. Three-dimensional multi-gene expression maps reveal cell fate changes associated with laterality reversal of zebrafish habenula. J Neurosci Res 2021; 99:1632-1645. [PMID: 33638209 DOI: 10.1002/jnr.24806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 11/09/2022]
Abstract
The conserved bilateral habenular nuclei (HA) in vertebrate diencephalon develop into compartmentalized structures containing neurons derived from different cell lineages. Despite extensive studies demonstrated that zebrafish larval HA display distinct left-right (L-R) asymmetry in gene expression and connectivity, the spatial gene expression domains were mainly obtained from two-dimensional (2D) snapshots of colorimetric RNA in situ hybridization staining which could not properly reflect different HA neuronal lineages constructed in three-dimension (3D). Combing the tyramide-based fluorescent mRNA in situ hybridization, confocal microscopy and customized imaging processing procedures, we have created spatial distribution maps of four genes for 4-day-old zebrafish and in sibling fish whose L-R asymmetry was spontaneously reversed. 3D volumetric analyses showed that ratios of cpd2, lov, ron, and nrp1a expression in L-R reversed HA were reversed according to the parapineal positions. However, the quantitative changes of gene expression in reversed larval brains do not mirror the gene expression level in the obverse larval brains. There were a total 87.78% increase in lov+ nrp1a+ and a total 12.45% decrease in lov+ ron+ double-positive neurons when the L-R asymmetry of HA was reversed. Thus, our volumetric analyses of the 3D maps indicate that changes of HA neuronal cell fates are associated with the reversal of HA laterality. These changes likely account for the behavior changes associated with HA laterality alterations.
Collapse
Affiliation(s)
- Guo-Tzau Wang
- National Center for High-Performance Computing, Hsinchu, Taiwan R.O.C
| | - He-Yen Pan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan R.O.C
| | - Wei-Han Lang
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan R.O.C
| | - Yuan-Ding Yu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan R.O.C
| | - Chang-Huain Hsieh
- National Center for High-Performance Computing, Hsinchu, Taiwan R.O.C
| | - Yung-Shu Kuan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan R.O.C.,Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan R.O.C.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan R.O.C.,Neuroscience Program, Academia Sinica, Taipei, Taiwan R.O.C
| |
Collapse
|
10
|
Akiyama-Oda Y, Oda H. Hedgehog signaling controls segmentation dynamics and diversity via msx1 in a spider embryo. SCIENCE ADVANCES 2020; 6:eaba7261. [PMID: 32917677 PMCID: PMC11206446 DOI: 10.1126/sciadv.aba7261] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Hedgehog (Hh) signaling plays fundamental roles in animal body patterning. Understanding its mechanistic complexity requires simple tractable systems that can be used for these studies. In the early spider embryo, Hh signaling mediates the formation of overall anterior-posterior polarity, yet it remains unclear what mechanisms link the initial Hh signaling activity with body axis segmentation, in which distinct periodic stripe-forming dynamics occur depending on the body region. We performed genome-wide searches for genes that transcriptionally respond to altered states of Hh signaling. Characterization of genes negatively regulated by Hh signaling suggested that msx1, encoding a conserved transcription factor, functions as a key segmentation gene. Knockdown of msx1 prevented all dynamic processes causing spatial repetition of stripes, including temporally repetitive oscillations and bi-splitting, and temporally nonrepetitive tri-splitting. Thus, Hh signaling controls segmentation dynamics and diversity via msx1 These genome-wide data from an invertebrate illuminate novel mechanistic features of Hh-based patterning.
Collapse
Affiliation(s)
- Yasuko Akiyama-Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, Takatsuki, Osaka, Japan.
- Microbiology and Infection Control, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Hiroki Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, Takatsuki, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| |
Collapse
|
11
|
Oda H, Akiyama-Oda Y. The common house spider Parasteatoda tepidariorum. EvoDevo 2020; 11:6. [PMID: 32206294 PMCID: PMC7082966 DOI: 10.1186/s13227-020-00152-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/12/2020] [Indexed: 11/20/2022] Open
Abstract
The common house spider Parasteatoda tepidariorum, belonging to the Chelicerata in the phylum Arthropoda, has emerged as an experimental system for studying mechanisms of development from an evolutionary standpoint. In this article, we review the distinct characteristics of P. tepidariorum, the major research questions relevant to this organism, and the available key methods and resources. P. tepidariorum has a relatively short lifecycle and, once mated, periodically lays eggs. The morphogenetic field of the P. tepidariorum embryo is cellular from an early stage and exhibits stepwise symmetry-breaking events and stripe-forming processes that are associated with body axes formation and segmentation, respectively, before reaching the arthropod phylotypic stage. Self-regulatory capabilities of the embryonic field are a prominent feature in P. tepidariorum. The mechanisms and logic underlying the evolvability of heritable patterning systems at the phylum level could be one of the major avenues of research investigated using this animal. The sequenced genome reveals whole genome duplication (WGD) within chelicerates, which offers an invertebrate platform for investigating the potential roles of WGD in animal diversification and evolution. The development and evolution of lineage-specific organs, including the book lungs and the union of spinnerets and silk glands, are attractive subjects of study. Studies using P. tepidariorum can benefit from the use of parental RNA interference, microinjection applications (including cell labeling and embryonic RNA interference), multicolor fluorescence in situ hybridization, and laser ablation as well as rich genomic and transcriptomic resources. These techniques enable functional gene discoveries and the uncovering of cellular and molecular insights.![]()
Collapse
Affiliation(s)
- Hiroki Oda
- 1Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125 Japan.,2Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka Japan
| | - Yasuko Akiyama-Oda
- 1Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125 Japan.,3Microbiology and Infection Control, Osaka Medical College, Takatsuki, Osaka Japan
| |
Collapse
|
12
|
Oda H, Iwasaki-Yokozawa S, Usui T, Akiyama-Oda Y. Experimental duplication of bilaterian body axes in spider embryos: Holm's organizer and self-regulation of embryonic fields. Dev Genes Evol 2020; 230:49-63. [PMID: 30972574 PMCID: PMC7128006 DOI: 10.1007/s00427-019-00631-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/20/2019] [Indexed: 12/20/2022]
Abstract
Bilaterally symmetric body plans of vertebrates and arthropods are defined by a single set of two orthogonal axes, the anterior-posterior (or head-tail) and dorsal-ventral axes. In vertebrates, and especially amphibians, complete or partial doubling of the bilaterian body axes can be induced by two different types of embryological manipulations: transplantation of an organizer region or bi-sectioning of an embryo. Such axis doubling relies on the ability of embryonic fields to flexibly respond to the situation and self-regulate toward forming a whole body. This phenomenon has facilitated experimental efforts to investigate the mechanisms of vertebrate body axes formation. However, few studies have addressed the self-regulatory capabilities of embryonic fields associated with body axes formation in non-vertebrate bilaterians. The pioneer spider embryologist Åke Holm reported twinning of spider embryos induced by both types of embryological manipulations in 1952; yet, his experiments have not been replicated by other investigators, and access to spider or non-vertebrate twins has been limited. In this review, we provide a historical background on twinning experiments in spiders, and an overview of current twinning approaches in familiar spider species and related molecular studies. Moreover, we discuss the benefits of the spider model system for a deeper understanding of the ancestral mechanisms of body axes formation in arthropods, as well as in bilaterians.
Collapse
Affiliation(s)
- Hiroki Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan.
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.
| | - Sawa Iwasaki-Yokozawa
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
| | | | - Yasuko Akiyama-Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
- Microbiology and Infection Control, Osaka Medical College, Takatsuki, Osaka, Japan
| |
Collapse
|
13
|
Pechmann M. Embryonic development and secondary axis induction in the Brazilian white knee tarantula Acanthoscurria geniculata, C. L. Koch, 1841 (Araneae; Mygalomorphae; Theraphosidae). Dev Genes Evol 2020; 230:75-94. [PMID: 32076811 PMCID: PMC7128004 DOI: 10.1007/s00427-020-00653-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/29/2020] [Indexed: 02/07/2023]
Abstract
Tarantulas represent some of the heaviest and most famous spiders. However, there is little information about the embryonic development of these spiders or their relatives (infraorder Mygalomorphae) and time-lapse recording of the embryonic development is entirely missing. I here describe the complete development of the Brazilian white knee tarantula, Acanthoscurria geniculata, in fixed and live embryos. The establishment of the blastoderm, the formation, migration and signalling of the cumulus and the shape changes that occur in the segment addition zone are analysed in detail. In addition, I show that there might be differences in the contraction process of early embryos of different theraphosid spider species. A new embryonic reference transcriptome was generated for this study and was used to clone and analyse the expression of several important developmental genes. Finally, I show that embryos of A. geniculata are amenable to tissue transplantation and bead insertion experiments. Using these functional approaches, I induced axis duplication in embryos via cumulus transplantation and ectopic activation of BMP signalling. Overall, the mygalomorph spider A. geniculata is a useful laboratory system to analyse evolutionary developmental questions, and the availability of such a system will help understanding conserved and divergent aspects of spider/chelicerate development.
Collapse
Affiliation(s)
- Matthias Pechmann
- Institute for Zoology, Department for Developmental Biology, Biocenter, University of Cologne, Zuelpicher Str. 47b, 50674, Cologne, Germany.
| |
Collapse
|
14
|
Bonatto Paese CL, Leite DJ, Schönauer A, McGregor AP, Russell S. Duplication and expression of Sox genes in spiders. BMC Evol Biol 2018; 18:205. [PMID: 30587109 PMCID: PMC6307133 DOI: 10.1186/s12862-018-1337-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 12/17/2018] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The Sox family of transcription factors is an important part of the genetic 'toolbox' of all metazoans examined to date and is known to play important developmental roles in vertebrates and insects. However, outside the commonly studied Drosophila model little is known about the repertoire of Sox family transcription factors in other arthropod species. Here we characterise the Sox family in two chelicerate species, the spiders Parasteatoda tepidariorum and Stegodyphus mimosarum, which have experienced a whole genome duplication (WGD) in their evolutionary history. RESULTS We find that virtually all of the duplicate Sox genes have been retained in these spiders after the WGD. Analysis of the expression of Sox genes in P. tepidariorum embryos suggests that it is likely that some of these genes have neofunctionalised after duplication. Our expression analysis also strengthens the view that an orthologue of vertebrate Group B1 genes, SoxNeuro, is implicated in the earliest events of CNS specification in both vertebrates and invertebrates. In addition, a gene in the Dichaete/Sox21b class is dynamically expressed in the spider segment addition zone, suggestive of an ancient regulatory mechanism controlling arthropod segmentation as recently suggested for flies and beetles. Together with the recent analysis of Sox gene expression in the embryos of other arthropods, our findings support the idea of conserved functions for some of these genes, including a potential role for SoxC and SoxD genes in CNS development and SoxF in limb development. CONCLUSIONS Our study provides a new chelicerate perspective to understanding the evolution and function of Sox genes and how the retention of duplicates of such important tool-box genes after WGD has contributed to different aspects of spider embryogenesis. Future characterisation of the function of these genes in spiders will help us to better understand the evolution of the regulation of important developmental processes in arthropods and other metazoans including neurogenesis and segmentation.
Collapse
Affiliation(s)
- Christian L Bonatto Paese
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Daniel J Leite
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Anna Schönauer
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
| | - Steven Russell
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
| |
Collapse
|
15
|
Paese CLB, Schoenauer A, Leite DJ, Russell S, McGregor AP. A SoxB gene acts as an anterior gap gene and regulates posterior segment addition in a spider. eLife 2018; 7:e37567. [PMID: 30126532 PMCID: PMC6167052 DOI: 10.7554/elife.37567] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 08/10/2018] [Indexed: 01/08/2023] Open
Abstract
Sox genes encode a set of highly conserved transcription factors that regulate many developmental processes. In insects, the SoxB gene Dichaete is the only Sox gene known to be involved in segmentation. To determine if similar mechanisms are used in other arthropods, we investigated the role of Sox genes during segmentation in the spider Parasteatoda tepidariorum. While Dichaete does not appear to be involved in spider segmentation, we found that the closely related Sox21b-1 gene acts as a gap gene during formation of anterior segments and is also part of the segmentation clock for development of the segment addition zone and sequential addition of opisthosomal segments. Thus, we have found that two different mechanisms of segmentation in a non-mandibulate arthropod are regulated by a SoxB gene. Our work provides new insights into the function of an important and conserved gene family, and the evolution of the regulation of segmentation in arthropods.
Collapse
Affiliation(s)
- Christian Louis Bonatto Paese
- Laboratory of Evolutionary Developmental BiologyDepartment of Biological and Medical Sciences, Oxford Brookes UniversityOxfordUnited Kingdom
| | - Anna Schoenauer
- Laboratory of Evolutionary Developmental BiologyDepartment of Biological and Medical Sciences, Oxford Brookes UniversityOxfordUnited Kingdom
| | - Daniel J Leite
- Laboratory of Evolutionary Developmental BiologyDepartment of Biological and Medical Sciences, Oxford Brookes UniversityOxfordUnited Kingdom
| | - Steven Russell
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Alistair P McGregor
- Laboratory of Evolutionary Developmental BiologyDepartment of Biological and Medical Sciences, Oxford Brookes UniversityOxfordUnited Kingdom
| |
Collapse
|
16
|
Hemmi N, Akiyama-Oda Y, Fujimoto K, Oda H. A quantitative study of the diversity of stripe-forming processes in an arthropod cell-based field undergoing axis formation and growth. Dev Biol 2018; 437:84-104. [DOI: 10.1016/j.ydbio.2018.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/01/2018] [Accepted: 03/01/2018] [Indexed: 12/25/2022]
|
17
|
Garb JE, Sharma PP, Ayoub NA. Recent progress and prospects for advancing arachnid genomics. CURRENT OPINION IN INSECT SCIENCE 2018; 25:51-57. [PMID: 29602362 PMCID: PMC6658092 DOI: 10.1016/j.cois.2017.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/10/2017] [Indexed: 06/08/2023]
Abstract
Arachnids exhibit tremendous species richness and adaptations of biomedical, industrial, and agricultural importance. Yet genomic resources for arachnids are limited, with the first few spider and scorpion genomes becoming accessible in the last four years. We review key insights from these genome projects, and recommend additional genomes for sequencing, emphasizing taxa of greatest value to the scientific community. We suggest greater sampling of spiders whose genomes are understudied but hold important protein recipes for silk and venom production. We further recommend arachnid genomes to address significant evolutionary topics, including the phenotypic impact of genome duplications. A barrier to high-quality arachnid genomes are assemblies based solely on short-read data, which may be overcome by long-range sequencing and other emerging methods.
Collapse
Affiliation(s)
- Jessica E Garb
- Department of Biological Sciences, 198 Riverside Street, Olsen Hall 414, University of Massachusetts Lowell, Lowell, MA 01854, USA.
| | - Prashant P Sharma
- Department of Integrative Biology, 352 Birge Hall, 430 Lincoln Drive, University of Wisconsin-Madison, WI 53706, USA
| | - Nadia A Ayoub
- Department of Biology, 204 West Washington Street, Howe Hall, Washington and Lee University, Lexington, VA 24450, USA
| |
Collapse
|
18
|
Abstract
Zic family genes encode five C2H2-type zinc finger domain-containing proteins that have many roles in animal development and maintenance. Recent phylogenetic analyses showed that Zic family genes are distributed in metazoans (multicellular animals), except Porifera (sponges) and Ctenophora (comb jellies). The sequence comparisons revealed that the zinc finger domains were absolutely conserved among the Zic family genes. Zic zinc finger domains are similar to, but distinct from those of the Gli, Glis, and Nkl gene family, and these zinc finger protein families are proposed to have been derived from a common ancestor gene. The Gli-Glis-Nkl-Zic superfamily and some other eukaryotic zinc finger proteins share a tandem CWCH2 (tCWCH2) motif, a hallmark for inter-zinc finger interaction between two adjacent C2H2 zinc fingers. In Zic family proteins, there exist additional evolutionally conserved domains known as ZOC and ZFNC, both of which may have appeared before cnidarian-bilaterian divergence. Comparison of the exon-intron boundaries in the Zic zinc finger domains revealed an intron (A-intron) that was absolutely conserved in bilaterians (metazoans with bilateral symmetry) and a placozoan (a simple nonparasitic metazoan). In vertebrates, there are five to seven Zic paralogs among which Zic1, Zic2, and Zic3 are generated through a tandem gene duplication and carboxy-terminal truncation in a vertebrate common ancestor, sharing a conserved carboxy-terminal sequence. Several hypotheses have been proposed to explain the Zic family phylogeny, including their origin, unique features in the first and second zinc finger motif, evolution of the nuclear localization signal, significance of the animal taxa-selective degeneration, gene multiplication in the vertebrate lineage, and involvement in the evolutionary alteration of the animal body plan.
Collapse
|
19
|
Pechmann M, Benton MA, Kenny NJ, Posnien N, Roth S. A novel role for Ets4 in axis specification and cell migration in the spider Parasteatoda tepidariorum. eLife 2017; 6. [PMID: 28849761 PMCID: PMC5574703 DOI: 10.7554/elife.27590] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/13/2017] [Indexed: 11/13/2022] Open
Abstract
Organizers play important roles during the embryonic development of many animals. The most famous example is the Spemann organizer that sets up embryonic axes in amphibian embryos. In spiders, a group of BMP secreting mesenchymal cells (the cumulus) functions as an organizer of the dorsoventral axis. Similar to experiments performed with the Spemann organizer, transplantation of the cumulus is able to induce a secondary axis in spiders. Despite the importance of this structure, it is unknown which factors are needed to activate cumulus specific gene expression. To address this question, we performed a transcriptomic analysis of early embryonic development in the spider Parasteatoda tepidariorum. Through this work, we found that the transcription factor Pt-Ets4 is needed for cumulus integrity, dorsoventral patterning and for the activation of Pt-hunchback and Pt-twist expression. Furthermore, ectopic expression of Pt-Ets4 is sufficient to induce cell delamination and migration by inducing a mesoderm-like cell fate.
Collapse
Affiliation(s)
- Matthias Pechmann
- Developmental Biology, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Matthew A Benton
- Developmental Biology, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Nathan J Kenny
- Life Sciences Department, The Natural History Museum, London, United Kingdom
| | - Nico Posnien
- Department of Developmental Biology, University of Goettingen, Goettingen, Germany
| | - Siegfried Roth
- Developmental Biology, Institute of Zoology, University of Cologne, Cologne, Germany
| |
Collapse
|
20
|
Feitosa NM, Pechmann M, Schwager EE, Tobias-Santos V, McGregor AP, Damen WGM, Nunes da Fonseca R. Molecular control of gut formation in the spider Parasteatoda tepidariorum. Genesis 2017; 55. [PMID: 28432834 DOI: 10.1002/dvg.23033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/23/2017] [Accepted: 03/16/2017] [Indexed: 12/16/2022]
Abstract
The development of a digestive system is an essential feature of bilaterians. Studies of the molecular control of gut formation in arthropods have been studied in detail in the fruit fly Drosophila melanogaster. However, little is known in other arthropods, especially in noninsect arthropods. To better understand the evolution of arthropod alimentary system, we investigate the molecular control of gut development in the spider Parasteatoda tepidariorum (Pt), the primary chelicerate model species for developmental studies. Orthologs of the ectodermal genes Pt-wingless (Pt-wg) and Pt-hedgehog (Pt-hh), of the endodermal genes, Pt-serpent (Pt-srp) and Pt-hepatocyte-nuclear factor-4 (Pt-hnf4) and of the mesodermal gene Pt-twist (Pt-twi) are expressed in the same germ layers during spider gut development as in D. melanogaster. Thus, our expression data suggest that the downstream molecular components involved in gut development in arthropods are conserved. However, Pt-forkhead (Pt-fkh) expression and function in spiders is considerably different from its D. melanogaster ortholog. Pt-fkh is expressed before gastrulation in a cell population that gives rise to endodermal and mesodermal precursors, suggesting a possible role for this factor in specification of both germ layers. To test this hypothesis, we knocked down Pt-fkh via RNA interference. Pt-fkh RNAi embryos not only fail to develop a proper gut, but also lack the mesodermal Pt-twi expressing cells. Thus, in spiders Pt-fkh specifies endodermal and mesodermal germ layers. We discuss the implications of these findings for the evolution and development of gut formation in Ecdysozoans.
Collapse
Affiliation(s)
- Natália Martins Feitosa
- Laboratório Integrado de Ciências Morfofuncionais, Núcleo em Ecologia e Desenvolvimento Socio-Ambiental de Macaé (NUPEM), Campus Macaé, Universidade Federal do Rio de Janeiro (UFRJ), Macaé, Rio de Janeiro, 27920-560, Brazil
| | - Matthias Pechmann
- Institute for Developmental Biology, University of Cologne, Cologne, North-Rhine Westphalia, 50674, Germany
| | - Evelyn E Schwager
- Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Street, Lowell, Massachusetts, 01854
| | - Vitória Tobias-Santos
- Laboratório Integrado de Ciências Morfofuncionais, Núcleo em Ecologia e Desenvolvimento Socio-Ambiental de Macaé (NUPEM), Campus Macaé, Universidade Federal do Rio de Janeiro (UFRJ), Macaé, Rio de Janeiro, 27920-560, Brazil
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, United Kingdom
| | - Wim G M Damen
- Department of Genetics, Friedrich-Schiller-Universität Jena, Philosophenweg 12, Jena, 07743, Germany
| | - Rodrigo Nunes da Fonseca
- Laboratório Integrado de Ciências Morfofuncionais, Núcleo em Ecologia e Desenvolvimento Socio-Ambiental de Macaé (NUPEM), Campus Macaé, Universidade Federal do Rio de Janeiro (UFRJ), Macaé, Rio de Janeiro, 27920-560, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Universidade Federal do Rio de Janeiro (UFRJ), 21941-599 Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
21
|
Leite DJ, McGregor AP. Arthropod evolution and development: recent insights from chelicerates and myriapods. Curr Opin Genet Dev 2016; 39:93-100. [DOI: 10.1016/j.gde.2016.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 01/30/2023]
|