1
|
Kreten F. Convective stability of the critical waves of an FKPP-type model for self-organized growth. J Math Biol 2025; 90:33. [PMID: 39961832 PMCID: PMC11832597 DOI: 10.1007/s00285-025-02189-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 10/21/2024] [Accepted: 01/22/2025] [Indexed: 02/20/2025]
Abstract
We construct the traveling wave solutions of an FKPP growth process of two densities of particles, and prove that the critical traveling waves are locally stable in a space where the perturbations can grow exponentially at the back of the wave. The considered reaction-diffusion system was introduced by Hannezo et al. (Cell 171(1):242-255, 2017) in the context of branching morphogenesis: active, branching particles accumulate inactive particles, which do not react. Thus, the system features a continuum of steady state solutions, complicating the analysis. We adopt a result by Faye and Holzer (J Differ Equ 269(9):6559-6601, 2020) for proving the stability of the critical traveling waves, and modify the semi-group estimates to spaces with unbounded weights. We use a Feynman-Kac formula to get an exponential a priori estimate for the tail of the PDE, a novel and simple approach.
Collapse
Affiliation(s)
- Florian Kreten
- Institut für Angewandte Mathematik, Rheinische Friedrich-Wilhelms-Universität, Endenicher Allee 60, Bonn, 53115, Germany.
| |
Collapse
|
2
|
Proshchina AE, Krivova YS, Godovalova OS, Saveliev SV. PDX1 as a Marker of Early Differentiation of Human Pancreatic Duct Cells. Bull Exp Biol Med 2024:10.1007/s10517-024-06292-9. [PMID: 39578277 DOI: 10.1007/s10517-024-06292-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Indexed: 11/24/2024]
Abstract
Epithelial progenitor cells of the primitive pancreatic ducts differentiate in 3 directions, which is accompanied by changes in cell phenotype. We analyze the distribution of the pancreatic and duodenal homeobox 1 (PDX1) in the epithelial cells of pancreatic ducts during the prenatal development in order to determine the potential use of this marker as an indicator of pancreatic cell maturation. Pancreatic autopsies from human fetuses (gestation weeks 17-23) were examined by immunohistochemical methods. In general, PDX1 was detected in the epithelial cells that are involved in various morphogenetic processes related to the growth and branching of the fetal pancreatic ducts. The intensive positive reaction to PDX1/cytokeratin 19 indicates immature (progenitor) polypotent ductal cells.
Collapse
Affiliation(s)
- A E Proshchina
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia.
| | - Yu S Krivova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - O S Godovalova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - S V Saveliev
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia
| |
Collapse
|
3
|
Kreten F, Büttner R, Peifer M, Harder C, Hillmer AM, Abedpour N, Bovier A, Tolkach Y. Tumor architecture and emergence of strong genetic alterations are bottlenecks for clonal evolution in primary prostate cancer. Cell Syst 2024; 15:1061-1074.e7. [PMID: 39541986 DOI: 10.1016/j.cels.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 08/20/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024]
Abstract
Prostate cancer (PCA) exhibits high levels of intratumoral heterogeneity. In this study, we developed a mathematical model to study the growth and genetic evolution of PCA. We explored the possible evolutionary patterns and demonstrated that tumor architecture represents a major bottleneck for divergent clonal evolution. Early consecutive acquisition of strong genetic alterations serves as a proxy for the formation of aggressive tumors. A limited number of clonal hierarchy patterns were identified. A biopsy study of synthetic tumors shows complex spatial intermixing of clones and delineates the importance of biopsy extent. Deep whole-exome multiregional next-generation DNA sequencing of the primary tumors from five patients was performed to validate the results, supporting our main findings from mathematical modeling. In conclusion, our model provides qualitatively realistic predictions of PCA genomic evolution, closely aligned with the evidence available from patient samples. We share the code of the model for further studies. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Florian Kreten
- Institute for Applied Mathematics, University of Bonn, Bonn 53115, Germany; Institute of Pathology, University Hospital Cologne, Cologne 50937, Germany.
| | - Reinhard Büttner
- Institute of Pathology, University Hospital Cologne, Cologne 50937, Germany
| | - Martin Peifer
- University of Cologne, Medical Faculty, Cologne 50937, Germany
| | - Christian Harder
- Institute of Pathology, University Hospital Cologne, Cologne 50937, Germany
| | - Axel M Hillmer
- Institute of Pathology, University Hospital Cologne, Cologne 50937, Germany
| | - Nima Abedpour
- University of Cologne, Medical Faculty, Cologne 50937, Germany
| | - Anton Bovier
- Institute for Applied Mathematics, University of Bonn, Bonn 53115, Germany
| | - Yuri Tolkach
- Institute of Pathology, University Hospital Cologne, Cologne 50937, Germany.
| |
Collapse
|
4
|
Githaka JM, Pirayeshfard L, Goping IS. Cancer invasion and metastasis: Insights from murine pubertal mammary gland morphogenesis. Biochim Biophys Acta Gen Subj 2023; 1867:130375. [PMID: 37150225 DOI: 10.1016/j.bbagen.2023.130375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Cancer invasion and metastasis accounts for the majority of cancer related mortality. A better understanding of the players that drive the aberrant invasion and migration of tumors cells will provide critical targets to inhibit metastasis. Postnatal pubertal mammary gland morphogenesis is characterized by highly proliferative, invasive, and migratory normal epithelial cells. Identifying the molecular regulators of pubertal gland development is a promising strategy since tumorigenesis and metastasis is postulated to be a consequence of aberrant reactivation of developmental stages. In this review, we summarize the pubertal morphogenesis regulators that are involved in cancer metastasis and revisit pubertal mammary gland transcriptome profiling to uncover both known and unknown metastasis genes. Our updated list of pubertal morphogenesis regulators shows that most are implicated in invasion and metastasis. This review highlights molecular linkages between development and metastasis and provides a guide for exploring novel metastatic drivers.
Collapse
Affiliation(s)
- John Maringa Githaka
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Leila Pirayeshfard
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ing Swie Goping
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
5
|
Leng S, Zhang X, Li X, Wang S, Peng J. Lineage tracing reveals the dynamic contribution of Id2+ progenitor cells to branching morphogenesis. Stem Cells Dev 2022; 31:67-77. [PMID: 35018833 DOI: 10.1089/scd.2021.0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Branching morphogenesis is an important process in shaping the arborized structures of several organs. However, the driving force that directs this process from progenitor pools remains incompletely understood. In this lineage tracing study, we investigated the role of Id2+ embryonic progenitor cells in branching organs such as the pancreas, kidney, mammary gland, thyroid gland, and salivary gland. We found that a subset of Id2+ distal progenitor cells in the embryonic pancreas and kidney can give rise to multiple lineages of progeny cells during branching morphogenesis. Id2-labelled cells also supported the postnatal development of the mammary glands. However, Id2+ cells did not contribute to the development of the salivary and thyroid glands. We found the Id2+ cells located in the tip progenitor pools of pancreas and kidney have self-renewal potential and contribute descendents to multiple epithelial cell lineages. Our findings enrich the current model of distal progenitor pools driving branching morphogenesis and provide a new marker to investigate the regularity of branching in these organs.
Collapse
Affiliation(s)
- Shaoqiu Leng
- Shandong University Qilu Hospital, 91623, Department of Hematology, Jinan, China, 250012;
| | - Xiaoyu Zhang
- Shandong University Qilu Hospital, 91623, Department of Hematology, Jinan, China;
| | - Xin Li
- Shandong University Qilu Hospital, 91623, Jinan, China, 250012;
| | - Shuwen Wang
- Shandong University Qilu Hospital, 91623, Department of Hematology, Jinan, China, 250012;
| | - Jun Peng
- Shandong University Qilu Hospital, 91623, Department of Hematology, Jinan, Shandong, China.,Shandong University Qilu Hospital, 91623, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Jinan, Shandong, China;
| |
Collapse
|
6
|
Al-Izzi SC, Morris RG. Active flows and deformable surfaces in development. Semin Cell Dev Biol 2021; 120:44-52. [PMID: 34266757 DOI: 10.1016/j.semcdb.2021.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022]
Abstract
We review progress in active hydrodynamic descriptions of flowing media on curved and deformable manifolds: the state-of-the-art in continuum descriptions of single-layers of epithelial and/or other tissues during development. First, after a brief overview of activity, flows and hydrodynamic descriptions, we highlight the generic challenge of identifying the dependence on dynamical variables of so-called active kinetic coefficients- active counterparts to dissipative Onsager coefficients. We go on to describe some of the subtleties concerning how curvature and active flows interact, and the issues that arise when surfaces are deformable. We finish with a broad discussion around the utility of such theories in developmental biology. This includes limitations to analytical techniques, challenges associated with numerical integration, fitting-to-data and inference, and potential tools for the future, such as discrete differential geometry.
Collapse
Affiliation(s)
- Sami C Al-Izzi
- School of Physics and EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales - Sydney, 2052, Australia
| | - Richard G Morris
- School of Physics and EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales - Sydney, 2052, Australia.
| |
Collapse
|
7
|
Cai W, Wang Y, Zhang J, Zhang H, Luo T. Multi-scale simulation of early kidney branching morphogenesis. Phys Biol 2021; 18:026005. [PMID: 33395673 DOI: 10.1088/1478-3975/abd844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An important feature of the branch morphogenesis during kidney development is the termination of the tips on the outer surface of a kidney. This feature requires the avoidance of the intersection between the tips and existing ducts inside the kidney. Here, we started from a continuous model and implemented the coarse grained rules into a fast and discrete simulations. The ligand-receptor-based Turing mechanism suggests a repulsion that decreases exponentially with distance between interacting branches, preventing the intersection between neighboring branches. We considered this repulsive effect in numerical simulations and successfully reproduce the key features of the experimentally observed branch morphology for an E15.5 kidney. We examine the similarity of several geometrical parameters between the simulation results and experimental observations. The good agreement between the simulations and experiments suggests that the concentration decay caused by the absorption of glial cell line derived neurotrophic factor might be the key factor to affect the geometry in early kidney development.
Collapse
Affiliation(s)
- Wenran Cai
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, People's Republic of China
| | | | | | | | | |
Collapse
|
8
|
Myllymäki SM, Mikkola ML. Inductive signals in branching morphogenesis - lessons from mammary and salivary glands. Curr Opin Cell Biol 2019; 61:72-78. [PMID: 31387017 DOI: 10.1016/j.ceb.2019.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 12/30/2022]
Abstract
Branching morphogenesis is a fundamental developmental program that generates large epithelial surfaces in a limited three-dimensional space. It is regulated by inductive tissue interactions whose effects are mediated by soluble signaling molecules, and cell-cell and cell-extracellular matrix interactions. Here, we will review recent studies on inductive signaling interactions governing branching morphogenesis in light of phenotypes of mouse mutants and ex vivo organ culture studies with emphasis on developing mammary and salivary glands. We will highlight advances in understanding how cell fate decisions are intimately linked with branching morphogenesis. We will also discuss novel insights into the molecular control of cellular mechanisms driving the formation of these arborized ductal structures and reflect upon how distinct spatial patterns are generated.
Collapse
Affiliation(s)
- Satu-Marja Myllymäki
- Developmental Biology Program, Institute of Biotechnology, HiLIFE, P.O.B. 56, University of Helsinki, 00014 Helsinki, Finland.
| | - Marja L Mikkola
- Developmental Biology Program, Institute of Biotechnology, HiLIFE, P.O.B. 56, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
9
|
Yoshida S. Dynamic homeostasis: From development to aging. Dev Growth Differ 2018; 60:511. [PMID: 30556144 DOI: 10.1111/dgd.12590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Shosei Yoshida
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Japan
| |
Collapse
|
10
|
Hannezo E, Simons BD. Statistical theory of branching morphogenesis. Dev Growth Differ 2018; 60:512-521. [PMID: 30357803 PMCID: PMC6334508 DOI: 10.1111/dgd.12570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/13/2018] [Accepted: 09/18/2018] [Indexed: 12/11/2022]
Abstract
Branching morphogenesis remains a subject of abiding interest. Although much is known about the gene regulatory programs and signaling pathways that operate at the cellular scale, it has remained unclear how the macroscopic features of branched organs, including their size, network topology and spatial patterning, are encoded. Lately, it has been proposed that, these features can be explained quantitatively in several organs within a single unifying framework. Based on large-scale organ reconstructions and cell lineage tracing, it has been argued that morphogenesis follows from the collective dynamics of sublineage-restricted self-renewing progenitor cells, localized at ductal tips, that act cooperatively to drive a serial process of ductal elongation and stochastic tip bifurcation. By correlating differentiation or cell cycle exit with proximity to maturing ducts, this dynamic results in the specification of a complex network of defined density and statistical organization. These results suggest that, for several mammalian tissues, branched epithelial structures develop as a self-organized process, reliant upon a strikingly simple, but generic, set of local rules, without recourse to a rigid and deterministic sequence of genetically programmed events. Here, we review the basis of these findings and discuss their implications.
Collapse
Affiliation(s)
| | - Benjamin D. Simons
- The Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Wellcome Trust Centre for Stem Cell ResearchUniversity of CambridgeCambridgeUK
- Cavendish LaboratoryDepartment of PhysicsUniversity of CambridgeCambridgeUK
| |
Collapse
|