1
|
More KJ, Kaur H, Simpson AGB, Spiegel FW, Dacks JB. Contractile vacuoles: a rapidly expanding (and occasionally diminishing?) understanding. Eur J Protistol 2024; 94:126078. [PMID: 38688044 DOI: 10.1016/j.ejop.2024.126078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 05/02/2024]
Abstract
Osmoregulation is the homeostatic mechanism essential for the survival of organisms in hypoosmotic and hyperosmotic conditions. In freshwater or soil dwelling protists this is frequently achieved through the action of an osmoregulatory organelle, the contractile vacuole. This endomembrane organelle responds to the osmotic challenges and compensates by collecting and expelling the excess water to maintain the cellular osmolarity. As compared with other endomembrane organelles, this organelle is underappreciated and under-studied. Here we review the reported presence or absence of contractile vacuoles across eukaryotic diversity, as well as the observed variability in the structure, function, and molecular machinery of this organelle. Our findings highlight the challenges and opportunities for constructing cellular and evolutionary models for this intriguing organelle.
Collapse
Affiliation(s)
- Kiran J More
- Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Harpreet Kaur
- Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Alastair G B Simpson
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, Canada; Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Frederick W Spiegel
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Joel B Dacks
- Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; Centre for Life's Origins and Evolution, Department of Genetics, Evolution, & Environment, University College, London, United Kingdom.
| |
Collapse
|
2
|
Jimenez V, Miranda K, Ingrid A. The old and the new about the contractile vacuole of Trypanosoma cruzi. J Eukaryot Microbiol 2022; 69:e12939. [PMID: 35916682 PMCID: PMC11178379 DOI: 10.1111/jeu.12939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022]
Abstract
Osmoregulation is a conserved cellular process required for the survival of all organisms. In protists, the need for robust compensatory mechanisms that can maintain cell volume and tonicity within physiological range is even more relevant, as their life cycles are often completed in different environments. Trypanosoma cruzi, the protozoan pathogen responsible for Chagas disease, is transmitted by an insect vector to multiple types of mammalian hosts. The contractile vacuole complex (CVC) is an organelle that senses and compensates osmotic changes in the parasites, ensuring their survival upon ionic and osmotic challenges. Recent work shows that the contractile vacuole is also a key component of the secretory and endocytic pathways, regulating the selective targeting of surface proteins during differentiation. Here we summarize our current knowledge of the mechanisms involved in the osmoregulatory processes that take place in the vacuole, and we explore the new and exciting functions of this organelle in cell trafficking and signaling.
Collapse
Affiliation(s)
- Veronica Jimenez
- Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA
| | - Kildare Miranda
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Augusto Ingrid
- Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|