1
|
Sakagami K, Igawa T, Saikawa K, Sakaguchi Y, Hossain N, Kato C, Kinemori K, Suzuki N, Suzuki M, Kawaguchi A, Ochi H, Tajika Y, Ogino H. Development of a heat-stable alkaline phosphatase reporter system for cis-regulatory analysis and its application to 3D digital imaging of Xenopus embryonic tissues. Dev Growth Differ 2024; 66:256-265. [PMID: 38439617 PMCID: PMC11457516 DOI: 10.1111/dgd.12919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024]
Abstract
Xenopus is one of the essential model systems for studying vertebrate development. However, one drawback of this system is that, because of the opacity of Xenopus embryos, 3D imaging analysis is limited to surface structures, explant cultures, and post-embryonic tadpoles. To develop a technique for 3D tissue/organ imaging in whole Xenopus embryos, we identified optimal conditions for using placental alkaline phosphatase (PLAP) as a transgenic reporter and applied it to the correlative light microscopy and block-face imaging (CoMBI) method for visualization of PLAP-expressing tissues/organs. In embryos whose endogenous alkaline phosphatase activities were heat-inactivated, PLAP staining visualized various tissue-specific enhancer/promoter activities in a manner consistent with green fluorescent protein (GFP) fluorescence. Furthermore, PLAP staining appeared to be more sensitive than GFP fluorescence as a reporter, and the resulting expression patterns were not mosaic, in striking contrast to the mosaic staining pattern of β-galactosidase expressed from the lacZ gene that was introduced by the same transgenesis method. Owing to efficient penetration of alkaline phosphatase substrates, PLAP activity was detected in deep tissues, such as the developing brain, spinal cord, heart, and somites, by whole-mount staining. The stained embryos were analyzed by the CoMBI method, resulting in the digital reconstruction of 3D images of the PLAP-expressing tissues. These results demonstrate the efficacy of the PLAP reporter system for detecting enhancer/promoter activities driving deep tissue expression and its combination with the CoMBI method as a powerful approach for 3D digital imaging analysis of specific tissue/organ structures in Xenopus embryos.
Collapse
Affiliation(s)
- Kiyo Sakagami
- Department of Animal BioscienceNagahama Institute of Bio‐Science and TechnologyNagahamaJapan
| | - Takeshi Igawa
- Amphibian Research Center, Graduate School of Integrated Sciences for LifeHiroshima UniversityHiroshimaJapan
| | - Kaori Saikawa
- Department of Animal BioscienceNagahama Institute of Bio‐Science and TechnologyNagahamaJapan
| | - Yusuke Sakaguchi
- Amphibian Research Center, Graduate School of Integrated Sciences for LifeHiroshima UniversityHiroshimaJapan
| | - Nusrat Hossain
- Amphibian Research Center, Graduate School of Integrated Sciences for LifeHiroshima UniversityHiroshimaJapan
- Department of Pharmaceutical SciencesNorth South UniversityDhakaBangladesh
| | - Chiho Kato
- Department of Animal BioscienceNagahama Institute of Bio‐Science and TechnologyNagahamaJapan
| | - Kazuhito Kinemori
- Amphibian Research Center, Graduate School of Integrated Sciences for LifeHiroshima UniversityHiroshimaJapan
| | - Nanoka Suzuki
- Amphibian Research Center, Graduate School of Integrated Sciences for LifeHiroshima UniversityHiroshimaJapan
| | - Makoto Suzuki
- Amphibian Research Center, Graduate School of Integrated Sciences for LifeHiroshima UniversityHiroshimaJapan
| | - Akane Kawaguchi
- Department of Genomics and Evolutionary BiologyNational Institute of GeneticsShizuokaJapan
| | - Haruki Ochi
- Institute for Promotion of Medical Science Research, Faculty of MedicineYamagata UniversityYamagataJapan
| | - Yuki Tajika
- Department of Radiological TechnologyGunma Prefectural College of Health SciencesMaebashiJapan
| | - Hajime Ogino
- Amphibian Research Center, Graduate School of Integrated Sciences for LifeHiroshima UniversityHiroshimaJapan
| |
Collapse
|
2
|
Katano W, Mori S, Sasaki S, Tajika Y, Tomita K, Takeuchi JK, Koshiba-Takeuchi K. Sall1 and Sall4 cooperatively interact with Myocd and SRF to promote cardiomyocyte proliferation by regulating CDK and cyclin genes. Development 2023; 150:dev201913. [PMID: 38014633 DOI: 10.1242/dev.201913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
Sall1 and Sall4 (Sall1/4), zinc-finger transcription factors, are expressed in the progenitors of the second heart field (SHF) and in cardiomyocytes during the early stages of mouse development. To understand the function of Sall1/4 in heart development, we generated heart-specific Sall1/4 functionally inhibited mice by forced expression of the truncated form of Sall4 (ΔSall4) in the heart. The ΔSall4-overexpression mice exhibited a hypoplastic right ventricle and outflow tract, both of which were derived from the SHF, and a thinner ventricular wall. We found that the numbers of proliferative SHF progenitors and cardiomyocytes were reduced in ΔSall4-overexpression mice. RNA-sequencing data showed that Sall1/4 act upstream of the cyclin-dependent kinase (CDK) and cyclin genes, and of key transcription factor genes for the development of compact cardiomyocytes, including myocardin (Myocd) and serum response factor (Srf). In addition, ChIP-sequencing and co-immunoprecipitation analyses revealed that Sall4 and Myocd form a transcriptional complex with SRF, and directly bind to the upstream regulatory regions of the CDK and cyclin genes (Cdk1 and Ccnb1). These results suggest that Sall1/4 are critical for the proliferation of cardiac cells via regulation of CDK and cyclin genes that interact with Myocd and SRF.
Collapse
Affiliation(s)
- Wataru Katano
- Graduate School of Life Sciences, Toyo University, 1-1-1, Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
| | - Shunta Mori
- Faculty of Life Sciences, Department of Applied Biosciences, Toyo University, 1-1-1, Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
| | - Shun Sasaki
- Graduate School of Life Sciences, Toyo University, 1-1-1, Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
| | - Yuki Tajika
- Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
- Department of Radiological Technology, Gunma Prefectural College of Health Sciences, 323-1, Kamioki-machi, Maebashi, Gunma 371-0052, Japan
| | - Koichi Tomita
- Graduate School of Biomedical Sciences, Tokushima University, 3-18-15, Kuramoto-cho, Tokushima 770-8503, Japan
| | - Jun K Takeuchi
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8510, Japan
| | - Kazuko Koshiba-Takeuchi
- Graduate School of Life Sciences, Toyo University, 1-1-1, Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
- Faculty of Life Sciences, Department of Applied Biosciences, Toyo University, 1-1-1, Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
| |
Collapse
|
3
|
Correlative microscopy and block-face imaging (CoMBI): a 3D imaging method with wide applicability in the field of biological science. Anat Sci Int 2023:10.1007/s12565-023-00705-x. [PMID: 36853492 DOI: 10.1007/s12565-023-00705-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/14/2023] [Indexed: 03/01/2023]
Abstract
Correlative microscopy and block-face imaging (CoMBI) is an imaging method, which is characterized by the ability to obtain both serial block-face images as a 3-dimentional (3D) dataset and sections for 2-dimentional (2D) light microscopic analysis. These 3D and 2D morphological data can be correlated with each other to facilitate data interpretation. CoMBI is an easy-to-install and low-cost 3D imaging method since its system can be assembled by the researcher using a regular microtome, consumer digital camera, and some self-made devices, and its installation and instruction manuals are open-source. After the first release of CoMBI method from our laboratory, CoMBI systems have been installed in more than a dozen laboratories and are used for 3D analysis of various biological specimens. Typical application of CoMBI is 3D anatomical analysis using the natural color and contrast of the specimen. We have been using CoMBI for analyzing human brain to obtain the fine 3D anatomy as a reference to determine the causes of neurological diseases and to improve the effectiveness of surgery. Recently, we have been using CoMBI for detecting the colors of chromogens, which are used for labeling specific molecules. Mouse embryos colored with X-gal, a conventional chromogen for detecting LacZ products, were imaged using CoMBI, and the 3D distribution of X-gal was successfully visualized. Thus, CoMBI can now be used for many purposes, including 3D anatomical analysis, 2D microscopy using sections, and 3D distribution of specific molecules. These suggest that CoMBI should be more widely used in the field of biological research.
Collapse
|