1
|
Airaksinen M, Gallen A, Taylor E, de Sena S, Palsa T, Haataja L, Vanhatalo S. Assessing Infant Gross Motor Performance With an At-Home Wearable. Pediatrics 2025; 155:e2024068647. [PMID: 40049221 DOI: 10.1542/peds.2024-068647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/03/2024] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Early development of gross motor skills is foundational for the upcoming neurocognitive performance. Here, we studied whether at-home wearable measurements performed by the parents could be used to quantify and track infants' developing motor abilities. METHODS Unsupervised at-home measurements of the infants' spontaneous activity were made repeatedly by the parents using a multisensor wearable suit (altogether 620 measurements from 134 infants at age 4-22 months). Machine learning-based algorithms were developed to detect the reaching of gross motor milestones (GMM), to measure times spent in key postures, and to track the overall motor development longitudinally. Parental questionnaires regarding GMMs were used for developing the algorithms, and the results were benchmarked with the interrater agreement levels established by World Health Organization (WHO). A total of 97 infants were used for the algorithm development and cross-validation, whereas an external validation was done using 37 infants from an independent recruitment in the same hospital. RESULTS The algorithms detected the reaching of GMMs very accurately (cross-validation: accuracy, 90.9%-95.5%; external validation, 92.4%-96.8%), which compares well with the human experts in the WHO reference study. The wearable-derived postural times showed strong correlation to parental assessments (ρ = .48-.81). Individual trajectories of motor maturation showed strong correlation to infants' age (ρ = .93). CONCLUSIONS These findings suggest that infants' gross motor skills can be quantified reliably and automatically from unsupervised at-home wearable recordings. Such methodology could be used in health care practice and in all developmental studies for gaining real-world quantitation and tracking of infants' motor abilities.
Collapse
Affiliation(s)
- Manu Airaksinen
- BABA Center, Pediatric Research Center, Department of Clinical Neurophysiology, New Children's Hospital and HUS Imaging, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Anastasia Gallen
- BABA Center, Pediatric Research Center, Department of Clinical Neurophysiology, New Children's Hospital and HUS Imaging, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Elisa Taylor
- BABA Center, Pediatric Research Center, Department of Clinical Neurophysiology, New Children's Hospital and HUS Imaging, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Sofie de Sena
- BABA Center, Pediatric Research Center, Department of Clinical Neurophysiology, New Children's Hospital and HUS Imaging, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Taru Palsa
- BABA Center, Pediatric Research Center, Department of Clinical Neurophysiology, New Children's Hospital and HUS Imaging, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Leena Haataja
- BABA Center, Pediatric Research Center, Department of Clinical Neurophysiology, New Children's Hospital and HUS Imaging, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Department of Pediatric Neurology, Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Sampsa Vanhatalo
- BABA Center, Pediatric Research Center, Department of Clinical Neurophysiology, New Children's Hospital and HUS Imaging, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Department of Physiology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Costa CIS, Madanelo L, Wang JYT, da Silva Campos G, De Sanctis Girardi AC, Scliar M, Monfardini F, de Cássia Mingroni Pavanello R, Cória VR, Vibranovski MD, Krepischi AC, Lourenço NCV, Zatz M, Yamamoto GL, Zachi EC, Passos-Bueno MR. Understanding rare variant contributions to autism: lessons from dystrophin-deficient model. NPJ Genom Med 2025; 10:18. [PMID: 40050609 PMCID: PMC11885547 DOI: 10.1038/s41525-025-00469-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 01/28/2025] [Indexed: 03/09/2025] Open
Abstract
Duchenne and Becker Muscular Dystrophy are dystrophinopathies with a prevalence of 1:5000-6000 males, caused by pathogenic variants in DMD. These conditions are often accompanied by neurodevelopmental disorders (NDDs) like autism (ASD; ~20%) and intellectual disability (ID; ~30%). However, their low penetrance in dystrophinopathies suggests additional contributing factors. In our study, 83 individuals with dystrophinopathies were clinically evaluated and categorized based on ASD (36 individuals), ID risk (12 individuals), or controls (35 individuals). Exome sequencing analysis revealed an enrichment of risk de novo variants (DNVs) in ASD-DMD individuals (adjusted p value = 0.0356), with the number of DNVs correlating with paternal age (p value = 0.0133). Additionally, DMD-ASD individuals showed a higher average of rare risk variants (RRVs) compared to DMD-Controls (adjusted p value = 0.0285). Gene ontology analysis revealed an enrichment of extracellular matrix-related genes, especially collagens, and Ehlers-Danlos syndrome genes in ASD-DMD and DMD-ID groups. These findings support an oligogenic model for ASD in dystrophinopathies, highlighting the importance of investigating homogenized samples to elucidate ASD's genetic architecture.
Collapse
Affiliation(s)
- Claudia Ismania Samogy Costa
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Luciana Madanelo
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Jaqueline Yu Ting Wang
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Gabriele da Silva Campos
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Ana Cristina De Sanctis Girardi
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Marília Scliar
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Frederico Monfardini
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Rita de Cássia Mingroni Pavanello
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Vivian Romanholi Cória
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Maria Dulcetti Vibranovski
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Ana Cristina Krepischi
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Naila Cristina Vilaça Lourenço
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Mayana Zatz
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Guilherme Lopes Yamamoto
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Elaine Cristina Zachi
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Maria Rita Passos-Bueno
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil.
| |
Collapse
|
3
|
Yoon DY, Daniels MJ, Willcocks RJ, Triplett WT, Morales JF, Walter GA, Rooney WD, Vandenborne K, Kim S. Five multivariate Duchenne muscular dystrophy progression models bridging six-minute walk distance and MRI relaxometry of leg muscles. J Pharmacokinet Pharmacodyn 2024; 51:671-683. [PMID: 38609673 PMCID: PMC11470134 DOI: 10.1007/s10928-024-09910-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/15/2024] [Indexed: 04/14/2024]
Abstract
The study aimed to provide quantitative information on the utilization of MRI transverse relaxation time constant (MRI-T2) of leg muscles in DMD clinical trials by developing multivariate disease progression models of Duchenne muscular dystrophy (DMD) using 6-min walk distance (6MWD) and MRI-T2. Clinical data were collected from the prospective and longitudinal ImagingNMD study. Disease progression models were developed by a nonlinear mixed-effect modeling approach. Univariate models of 6MWD and MRI-T2 of five muscles were developed separately. Age at assessment was the time metric. Multivariate models were developed by estimating the correlation of 6MWD and MRI-T2 model variables. Full model estimation approach for covariate analysis and five-fold cross validation were conducted. Simulations were performed to compare the models and predict the covariate effects on the trajectories of 6MWD and MRI-T2. Sigmoid Imax and Emax models best captured the profiles of 6MWD and MRI-T2 over age. Steroid use, baseline 6MWD, and baseline MRI-T2 were significant covariates. The median age at which 6MWD is half of its maximum decrease in the five models was similar, while the median age at which MRI-T2 is half of its maximum increase varied depending on the type of muscle. The models connecting 6MWD and MRI-T2 successfully quantified how individual characteristics alter disease trajectories. The models demonstrate a plausible correlation between 6MWD and MRI-T2, supporting the use of MRI-T2. The developed models will guide drug developers in using the MRI-T2 to most efficient use in DMD clinical trials.
Collapse
Affiliation(s)
- Deok Yong Yoon
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - Michael J Daniels
- Department of Statistics, University of Florida, Gainesville, FL, USA
| | | | - William T Triplett
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Juan Francisco Morales
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - Glenn A Walter
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Krista Vandenborne
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Sarah Kim
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, FL, USA.
| |
Collapse
|
4
|
Hoskens J, Vandekerckhove I, De Waele L, Feys H, Goemans N, Klingels K. How do fine and gross motor skills develop in preschool boys with Duchenne Muscular Dystrophy? RESEARCH IN DEVELOPMENTAL DISABILITIES 2024; 154:104845. [PMID: 39340934 DOI: 10.1016/j.ridd.2024.104845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Boys with Duchenne Muscular Dystrophy (DMD) experience both fine and gross motor problems. Nowadays, early intervention focuses almost exclusively on gross motor skills. AIMS We aimed to explore early motor development in preschool boys with DMD and investigate the influence of cognition. METHODS AND PROCEDURES Seventeen boys with DMD (11 months- 6 years) were compared to typically developing (TD) peers and followed-up with the Bayley Scales of Infant and Toddler Development (Bayley-III); Peabody developmental motor scales (PDMS-II) and Motor Function Measure (MFM-20). The longitudinal evolution of fine and gross motor skills was investigated using linear mixed effect models (LMM). Cognition was added to the LMM as a covariate. OUTCOMES AND RESULTS Preschool boys with DMD scored lower compared to TD peers on both fine and gross motor skills (p<0.001). The evolution of motor development was subscale-dependent. A significant influence of cognition was found on different subscales (p= 0.002-0.04). CONCLUSIONS AND IMPLICATIONS Preschool boys with DMD do not achieve the same functioning level as TD boys. Cognition plays a crucial role in the evolution of motor skills. Our results suggest a shift to a broader psychomotor approach including both fine and gross motor skills, also considering the impact of cognition. WHAT THIS PAPER ADDS?: Our study provides a detailed mapping of early fine and gross motor development in preschool boys with Duchenne Muscular Dystrophy (DMD) and describes the influence of cognition on both fine and gross motor skills. Preschool boys with DMD do not achieve the same functioning level compared to typically developing boys. They score significantly lower on both fine and gross motor skills. The evolution of fine and gross motor development was subscale-dependent e.g. a negative-positive evolution was seen for grasping skills, with a tipping point around the age of four; stationary scaled scores decreased followed by a stabilization around the age four to five and locomotion scaled scores remained stable over time. Finally, we also found that cognition plays a crucial role in the evolution of both fine and gross motor skills. These new insights in the evolution of early motor development could be of added value for future clinical trials in young boys with DMD. Subsequently, increased alertness to early symptoms, e.g. developmental delay, may advance the age of diagnosis, as well as associated early intervention.
Collapse
Affiliation(s)
- Jasmine Hoskens
- KU Leuven, Department of Rehabilitation Sciences, Research Group for Neurorehabilitation (eNRGy), Herestraat 49, Leuven 3000, Belgium; UHasselt, Faculty of Rehabilitation Sciences, Rehabilitation Research Centre (REVAL), Campus Diepenbeek, Agoralaan, Diepenbeek, Hasselt 3590, Belgium.
| | - Ines Vandekerckhove
- KU Leuven, Department of Rehabilitation Sciences, Research Group for Neurorehabilitation (eNRGy), Herestraat 49, Leuven 3000, Belgium.
| | - Liesbeth De Waele
- University Hospitals Leuven, Department of Child Neurology, Herestraat 49, Leuven 3000, Belgium; KU Leuven, Department of Development and Regeneration, Herestraat 49, Leuven 3000, Belgium.
| | - Hilde Feys
- KU Leuven, Department of Rehabilitation Sciences, Research Group for Neurorehabilitation (eNRGy), Herestraat 49, Leuven 3000, Belgium.
| | - Nathalie Goemans
- University Hospitals Leuven, Department of Child Neurology, Herestraat 49, Leuven 3000, Belgium.
| | - Katrijn Klingels
- UHasselt, Faculty of Rehabilitation Sciences, Rehabilitation Research Centre (REVAL), Campus Diepenbeek, Agoralaan, Diepenbeek, Hasselt 3590, Belgium.
| |
Collapse
|
5
|
Hoskens J, Paulussen S, Goemans N, Feys H, De Waele L, Klingels K. Early motor, cognitive, language, behavioural and social emotional development in infants and young boys with Duchenne Muscular Dystrophy- A systematic review. Eur J Paediatr Neurol 2024; 52:29-51. [PMID: 39003996 DOI: 10.1016/j.ejpn.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/11/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
Duchenne Muscular Dystrophy (DMD) is an X-linked recessive disorder caused by mutations in the dystrophin gene. Deficiency of the dystrophin protein causes not only motor, but also cognitive, language, behavioural and social emotional problems. This is the first systematic review investigating five early developmental domains in boys with DMD between 0 and 6 years old. Interactions between different domains and links with mutation types and sites were explored. A systematic search was performed in PubMed, Web of Science and Scopus. An adapted version of the Scottish Intercollegiate Guidelines Network (SIGN) Checklists for case-control and cohort studies was used to evaluate quality. Fifty-five studies of high or acceptable quality were included. One was an RCT of level 1b; 50 were cohort studies of level 2b; and four were an aggregation of case-control and cohort studies receiving levels 2b and 3b. We found that young boys with DMD experienced problems in all five developmental domains, with significant interactions between these. Several studies also showed relationships between mutation sites and outcomes. We conclude that DMD is not only characterised by motor problems but by a more global developmental delay with a large variability between boys. Our results emphasise the need for harmonisation in evaluation and follow-up of young boys with DMD. More high-quality research is needed on the different early developmental domains in young DMD to facilitate early detection of difficulties and identification of associated early intervention strategies.
Collapse
Affiliation(s)
- Jasmine Hoskens
- Faculty of Rehabilitation Sciences, Rehabilitation Research Centre (REVAL), UHasselt, Campus Diepenbeek, Agoralaan, 3590, Diepenbeek, Hasselt, Belgium; Department of Rehabilitation Sciences, Research Group for Neurorehabilitation (eNRGy), KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Silke Paulussen
- Faculty of Rehabilitation Sciences, Rehabilitation Research Centre (REVAL), UHasselt, Campus Diepenbeek, Agoralaan, 3590, Diepenbeek, Hasselt, Belgium
| | - Nathalie Goemans
- Department of Child Neurology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Hilde Feys
- Department of Rehabilitation Sciences, Research Group for Neurorehabilitation (eNRGy), KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Liesbeth De Waele
- Department of Child Neurology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium; Department of Development and Regeneration, KU Leuven, 3000, Leuven, Belgium
| | - Katrijn Klingels
- Faculty of Rehabilitation Sciences, Rehabilitation Research Centre (REVAL), UHasselt, Campus Diepenbeek, Agoralaan, 3590, Diepenbeek, Hasselt, Belgium; Department of Rehabilitation Sciences, Research Group for Neurorehabilitation (eNRGy), KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
6
|
van Dommelen P, van Dijk O, de Wilde JA, Verkerk PH. Short developmental milestone risk assessment tool to identify Duchenne muscular dystrophy in primary care. Orphanet J Rare Dis 2024; 19:192. [PMID: 38730494 PMCID: PMC11088161 DOI: 10.1186/s13023-024-03208-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/05/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND In patients without a family history, Duchenne muscular dystrophy (DMD) is typically diagnosed at around 4-5 years of age. It is important to diagnose DMD during infancy or toddler stage in order to have timely access to treatment, opportunities for reproductive options, prevention of potential fatal reactions to inhaled anesthetics, awareness of a child's abilities needed for good parenting, and opportunities for enrolment in clinical trials. METHOD We aimed to develop a short risk assessment tool based on developmental milestones that may contribute to the early detection of boys with DMD in primary care. As part of the case-control 4D-DMD study (Detection by Developmental Delay in Dutch boys with DMD), data on developmental milestones, symptoms and therapies for 76 boys with DMD and 12,414 boys from a control group were extracted from the health records of youth health care services and questionnaires. Multiple imputation, diagnostic validity and pooled backward logistic regression analyses with DMD (yes/no) as the dependent variable and attainment of 26 milestones until 36 months of age (yes/no) as the independent variable were performed. Descriptive statistics on symptoms and therapies were provided. RESULTS A tool with seven milestones assessed at specific ages between 12 and 36 months resulted in a sensitivity of 79% (95CI:67-88%), a specificity of 95.8% (95%CI:95.3-96.2), and a positive predictive value of 1:268 boys. Boys with DMD often had symptoms (e.g. 43% had calf muscle pseudohypertrophy) and were referred to therapy (e.g. 59% for physical therapy) before diagnosis. DISCUSSION This tool followed by the examination of other DMD-related symptoms could be used by youth health care professionals during day-to-day health assessments in the general population to flag children who require further action. CONCLUSIONS The majority of boys (79%) with DMD can be identified between 12 and 36 months of age with this tool. It increases the initial a priori risk of DMD from 1 in 5,000 to approximately 1 in 268 boys. We expect that other neuromuscular disorders and disabilities can also be found with this tool.
Collapse
Affiliation(s)
- Paula van Dommelen
- Department of Child Health, The Netherlands Organization for Applied Scientific Research TNO, Leiden, The Netherlands.
| | - Oisín van Dijk
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen A de Wilde
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
| | - Paul H Verkerk
- Department of Child Health, The Netherlands Organization for Applied Scientific Research TNO, Leiden, The Netherlands
| |
Collapse
|
7
|
Loscalzo E, See J, Bharill S, Yousefzadeh N, Gough E, Wu M, Crane JL. Growth hormone and testosterone delay vertebral fractures in boys with muscular dystrophy on chronic glucocorticoids. Osteoporos Int 2024; 35:327-338. [PMID: 37872346 PMCID: PMC10837224 DOI: 10.1007/s00198-023-06951-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023]
Abstract
Glucocorticoid use in Duchenne and Becker muscular dystrophy prolongs ambulation but cause significant skeletal toxicity. Our analysis has immediate clinical implications, suggesting that growth hormone and testosterone have a stronger effect prior to first and subsequent vertebral fracture, respectively, relative to bisphosphonates alone in children with dystrophinopathies on chronic glucocorticoids. PURPOSE Glucocorticoids prolong ambulation in boys with Duchenne muscular dystrophy; however, they have significant endocrine side effects. We assessed the impact of growth hormone (GH), testosterone, and/or zoledronic acid (ZA) on vertebral fracture (VF) incidence in patients with dystrophinopathies on chronic glucocorticoids. METHODS We conducted a longitudinal retrospective review of 27 males with muscular dystrophy. Accelerated failure time (AFT) models were used to estimate the relative time to VF while on GH, testosterone, and/or ZA compared to ZA alone. Results are reported as failure time ratio, where >1 indicates prolonged time versus <1 indicates shorter time to next VF. RESULTS The prevalence of growth impairment was 96% (52% utilized GH), pubertal delay was 86% (72% utilized testosterone), and low trauma fractures were 87% (72% utilized ZA). Multivariable analysis of the AFT models showed that participants on either GH or testosterone treatment relative to ZA alone experienced prolonged time to next VF (1.253, P<0.001), with GH being the significant contributor when analyzed independently from testosterone (1.229, P<0.001). Use of ZA with GH or testosterone relative to ZA alone resulted in prolonged time to next VF (1.171, P<0.001), with testosterone being a significant contributor (1.130, P=0.033). CONCLUSION GH and testosterone each decreased VF risk in patients independent of or in combination with ZA, respectively.
Collapse
Affiliation(s)
- Emely Loscalzo
- Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Julia See
- Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Sonum Bharill
- Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Nazanin Yousefzadeh
- Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Ethan Gough
- Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Malinda Wu
- Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Janet L Crane
- Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Orthopedic Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
8
|
García I, Martínez O, López-Paz JF, García M, Rodríguez AA, Amayra I. Difficulties in social cognitive functioning among pediatric patients with muscular dystrophies. Front Psychol 2024; 14:1296532. [PMID: 38239460 PMCID: PMC10794305 DOI: 10.3389/fpsyg.2023.1296532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/12/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction Pediatric muscular dystrophies (MDs) are a heterogeneous group of rare neuromuscular diseases characterized by progressive muscle degeneration. A neuropsychosocial approach is crucial for these patients due to associated cognitive, behavioral, and psychiatric comorbidities; however, the social cognitive domain has not been adequately addressed. Methods This study aimed to analyze on social cognition performance in a pediatric MD patient cohort. This cross-sectional study included 32 pediatric patients with MD and 32 matched-healthy controls. The Social Perception Domain of the NEPSY-II, the Reading the Mind in the Eyes Test-Child and Happé's Strange Stories Test were administered. General intelligence and behavioral and emotional symptoms were controlled for to eliminate covariables' possible influence. The assessments were performed remotely. Results Children with MDs performed significantly worse on most of the social cognition tasks. The differences found between the groups could be explained by the level of general intelligence for some aspects more related to theory of mind (ToM) (TM NEPSY-II: F = 1.703, p = .197; Verbal task: F = 2.411, p = .125; RMET-C: F = 2.899, p = .094), but not for emotion recognition. Furthermore, these differences were also independent of behavioral and emotional symptoms. Discussion In conclusion, social cognition is apparently impaired in pediatric patients with MD, both for emotion recognition and ToM. Screening assessment in social cognition should be considered to promote early interventions aimed at improving these patient's quality of life.
Collapse
|
9
|
van Dommelen P, van Buren LP, Eekhout I, Verkerk PH. Key developmental milestones helped to identify children with special educational needs and disabilities at an early stage. Acta Paediatr 2023; 112:2572-2582. [PMID: 37724923 DOI: 10.1111/apa.16973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 08/22/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023]
Abstract
AIM Responding to developmental delay promptly is important, as it helps children to reach their full potential. This study investigated how developmental milestones predicted primary school children with special educational needs and disabilities (SEND) at an early stage. METHODS We obtained data about 36 milestones between 12 and 45 months using the Dutch Development Instrument. Development, primary school classification and background characteristics were collected from the Dutch Preventive Child Healthcare system in Utrecht from 2008 to 2016. We investigated SEND classifications and the primary schools that the children attended at 4-12 years of age. The findings include area under the curve (AUC) data. RESULTS Data on 30 579 children in mainstream schools and 1055 children with SEND were available. Different milestones predicted SEND classifications. Fourteen milestones and parental education predicted attendance at special needs schools with smaller classes (AUC 0.913). Nine milestones, sex, migration background and parental education predicted attendance at schools for severe communication problems (AUC 0.963). Ten milestones and parental education predicted attendance at schools for severe learning difficulties (AUC 0.995). Milestones did not accurately predict attendance at schools for severe behavioural or psychiatric problems. CONCLUSION Milestones at 12-45 months predicted most SEND classifications at primary school age, except severe behavioural or psychiatric problems.
Collapse
Affiliation(s)
- Paula van Dommelen
- Department of Child Health, Netherlands Organization for Applied Scientific Research TNO, Leiden, The Netherlands
| | | | - Iris Eekhout
- Department of Child Health, Netherlands Organization for Applied Scientific Research TNO, Leiden, The Netherlands
| | - Paul H Verkerk
- Department of Child Health, Netherlands Organization for Applied Scientific Research TNO, Leiden, The Netherlands
| |
Collapse
|
10
|
Mercuri E, Pane M, Cicala G, Brogna C, Ciafaloni E. Detecting early signs in Duchenne muscular dystrophy: comprehensive review and diagnostic implications. Front Pediatr 2023; 11:1276144. [PMID: 38027286 PMCID: PMC10667703 DOI: 10.3389/fped.2023.1276144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Despite the early onset of clinical signs suggestive of Duchenne muscular dystrophy (DMD), a diagnosis is often not made until four years of age or older, with a diagnostic delay of up to two years from the appearance of the first symptoms. As disease-modifying therapies for DMD become available that are ideally started early before irreversible muscle damage occurs, the importance of avoiding diagnostic delay increases. Shortening the time to a definite diagnosis in DMD allows timely genetic counseling and assessment of carrier status, initiation of multidisciplinary standard care, timely initiation of appropriate treatments, and precise genetic mutation characterization to assess suitability for access to drugs targeted at specific mutations while reducing the emotional and psychological family burden of the disease. This comprehensive literature review describes the early signs of impairment in DMD and highlights the bottlenecks related to the different diagnostic steps. In summary, the evidence suggests that the best mitigation strategy for improving the age at diagnosis is to increase awareness of the early symptoms of DMD and encourage early clinical screening with an inexpensive and sensitive serum creatine kinase test in all boys who present signs of developmental delay and specific motor test abnormality at routine pediatrician visits.
Collapse
Affiliation(s)
- Eugenio Mercuri
- Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, Italy
- Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Marika Pane
- Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, Italy
- Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Gianpaolo Cicala
- Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, Italy
- Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Claudia Brogna
- Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, Italy
- Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Emma Ciafaloni
- Department of Neurology, University of Rochester, Rochester, NY, United States
| |
Collapse
|
11
|
Wijekoon N, Gonawala L, Ratnayake P, Amaratunga D, Hathout Y, Mohan C, Steinbusch HWM, Dalal A, Hoffman EP, de Silva KRD. Duchenne Muscular Dystrophy from Brain to Muscle: The Role of Brain Dystrophin Isoforms in Motor Functions. J Clin Med 2023; 12:5637. [PMID: 37685704 PMCID: PMC10488491 DOI: 10.3390/jcm12175637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/26/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Brain function and its effect on motor performance in Duchenne muscular dystrophy (DMD) is an emerging concept. The present study explored how cumulative dystrophin isoform loss, age, and a corticosteroid treatment affect DMD motor outcomes. A total of 133 genetically confirmed DMD patients from Sri Lanka were divided into two groups based on whether their shorter dystrophin isoforms (Dp140, Dp116, and Dp71) were affected: Group 1, containing patients with Dp140, Dp116, and Dp71 affected (n = 98), and Group 2, containing unaffected patients (n = 35). A subset of 52 patients (Group 1, n = 38; Group 2, n = 14) was followed for up to three follow-ups performed in an average of 28-month intervals. The effect of the cumulative loss of shorter dystrophin isoforms on the natural history of DMD was analyzed. A total of 74/133 (56%) patients encountered developmental delays, with 66/74 (89%) being in Group 1 and 8/74 (11%) being in Group 2 (p < 0.001). Motor developmental delays were predominant. The hip and knee muscular strength, according to the Medical Research Council (MRC) scale and the North Star Ambulatory Assessment (NSAA) activities, "standing on one leg R", "standing on one leg L", and "walk", declined rapidly in Group 1 (p < 0.001 In the follow-up analysis, Group 1 patients became wheelchair-bound at a younger age than those of Group 2 (p = 0.004). DMD motor dysfunction is linked to DMD mutations that affect shorter dystrophin isoforms. When stratifying individuals for clinical trials, considering the DMD mutation site and its impact on a shorter dystrophin isoform is crucial.
Collapse
Affiliation(s)
- Nalaka Wijekoon
- Interdisciplinary Center for Innovation in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka; (N.W.); (L.G.)
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6200 Maastricht, The Netherlands;
| | - Lakmal Gonawala
- Interdisciplinary Center for Innovation in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka; (N.W.); (L.G.)
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6200 Maastricht, The Netherlands;
| | | | | | - Yetrib Hathout
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY 13902, USA; (Y.H.); (E.P.H.)
| | - Chandra Mohan
- Department of Bioengineering, University of Houston, Houston, TX 77204, USA;
| | - Harry W. M. Steinbusch
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6200 Maastricht, The Netherlands;
| | - Ashwin Dalal
- Diagnostics Division, Center for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India;
| | - Eric P. Hoffman
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY 13902, USA; (Y.H.); (E.P.H.)
| | - K. Ranil D. de Silva
- Interdisciplinary Center for Innovation in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka; (N.W.); (L.G.)
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6200 Maastricht, The Netherlands;
- Institute for Combinatorial Advanced Research and Education (KDU-CARE), General Sir John Kotelawala Defence University, Ratmalana 10390, Sri Lanka
| |
Collapse
|
12
|
Houwen-van Opstal SLS, Tak RO, Pelsma M, van den Heuvel FMA, van Duyvenvoorde HA, Cup EHC, Sie LTL, Vles JSH, de Groot IJM, Voermans NC, Willemsen MAAP. Long-term outcomes for females with early-onset dystrophinopathy. Dev Med Child Neurol 2023; 65:1093-1104. [PMID: 36562406 DOI: 10.1111/dmcn.15496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022]
Abstract
AIM To study long-term disease course for females with early-onset dystrophinopathy, including common (female) symptoms, challenges in social participation, the need for care, and current healthcare management to support guideline development. METHOD Twelve females with early-onset dystrophinopathy were followed for a median period of more than 17 years (range 1-36). RESULTS One patient died owing to end-stage cardiac failure. Cardiac abnormalities were observed in three of the remaining 11 participants. Respiratory function was reduced in seven of 10 participants. Fatigue, myalgia, lower back pain, and arthralgia were reported in more than six of the participants. Functional status varied from exercise intolerance to wheelchair dependency. Most or all of the 10 participants reported restrictions in participation in work (n = 10), household duties (n = 10), sports (n = 9), and education (n = 8). Only a few participants received followed-up pulmonary (n = 2) or rehabilitation (n = 3) care. INTERPRETATION Females with early-onset dystrophinopathy experience a wide range of impairments, comorbidities, limitations in activities, and restrictions in social participation. The whole spectrum should be acknowledged in the healthcare setting. Neuromuscular and cardiac follow-up are indispensable. Additional respiratory assessment and rehabilitation care are expected to improve health status and support daily activities and participation. WHAT THIS PAPER ADDS No standard diagnostic procedures seem to exist for female patients suspected for dystrophinopathy. Female participants with early-onset dystrophinopathy experienced a broad scope of burdening symptoms, such as fatigue, myalgia, lower back pain, and arthralgia. None of participants worked full time, all felt restricted in paid work, and most felt restricted in education. Most participants showed decreased lung function, while only one was symptomatic. Availability of rehabilitation care may improve support for daily activities and participation for females with early-onset dystrophinopathy.
Collapse
Affiliation(s)
- Saskia L S Houwen-van Opstal
- Department of Rehabilitation, Amalia Children's Hospital, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ramon O Tak
- Department of Paediatrics, Sint Antonius Hospital, Nieuwegein, the Netherlands
| | - Maaike Pelsma
- Department of Rehabilitation, Amalia Children's Hospital, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | | | - Edith H C Cup
- Department of Rehabilitation, Amalia Children's Hospital, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lilian T L Sie
- Department of Pediatric Neurology, Juliana Children's Hospital/Haga Teaching Hospital, The Hague, the Netherlands
| | - Johan S H Vles
- Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Imelda J M de Groot
- Department of Rehabilitation, Amalia Children's Hospital, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nicol C Voermans
- Department of Neurology, Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Michel A A P Willemsen
- Department of Pediatric Neurology, Donders Centre for Neuroscience, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
13
|
Mercuri E, Seferian A, Servais L, Deconinck N, Stevenson H, Ni X, Zhang W, East L, Yonren S, Muntoni F, Deconinck N, Van Coster R, Vanlander A, Seferian A, De Lucia S, Gidaro T, Brande LV, Servais L, Kirschner J, Borell S, Mercuri E, Brogna C, Pane M, Fanelli L, Norcia G, Muntoni F, Brusa C, Chesshyre M, Maresh K, Pitchforth J, Schottlaender L, Scoto M, Silwal A, Trucco F. Safety, tolerability and pharmacokinetics of eteplirsen in young boys aged 6–48 months with Duchenne muscular dystrophy amenable to exon 51 skipping. Neuromuscul Disord 2023; 33:476-483. [PMID: 37207382 DOI: 10.1016/j.nmd.2023.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/07/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023]
Abstract
Eteplirsen is FDA-approved for the treatment of Duchenne muscular dystrophy (DMD) in exon 51 skip-amenable patients. Previous studies in boys > 4 years of age indicate eteplirsen is well tolerated and attenuates pulmonary and ambulatory decline compared with matched natural history cohorts. Here the safety, tolerability and pharmacokinetics of eteplirsen in boys aged 6-48 months is evaluated. In this open-label, multicenter, dose-escalation study (NCT03218995), boys with a confirmed mutation of the DMD gene amenable to exon 51 skipping (Cohort 1: aged 24-48 months, n = 9; Cohort 2: aged 6 to < 24 months, n = 6) received ascending doses (2, 4, 10, 20, 30 mg/kg) of once-weekly eteplirsen intravenously over 10 weeks, continuing at 30 mg/kg up to 96 weeks. Endpoints included safety (primary) and pharmacokinetics (secondary). All 15 participants completed the study. Eteplirsen was well tolerated with no treatment-related discontinuations, deaths or evidence of kidney toxicity. Most treatment-emergent adverse events were mild; most common were pyrexia, cough, nasopharyngitis, vomiting, and diarrhea. Eteplirsen pharmacokinetics were consistent between both cohorts and with previous clinical experience in boys with DMD > 4 years of age. These data support the safety and tolerability of eteplirsen at the approved 30-mg/kg dose in boys as young as 6 months old.
Collapse
|
14
|
Gosselin MRF, Mournetas V, Borczyk M, Verma S, Occhipinti A, Róg J, Bozycki L, Korostynski M, Robson SC, Angione C, Pinset C, Gorecki DC. Loss of full-length dystrophin expression results in major cell-autonomous abnormalities in proliferating myoblasts. eLife 2022; 11:e75521. [PMID: 36164827 PMCID: PMC9514850 DOI: 10.7554/elife.75521] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 09/02/2022] [Indexed: 12/05/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) affects myofibers and muscle stem cells, causing progressive muscle degeneration and repair defects. It was unknown whether dystrophic myoblasts-the effector cells of muscle growth and regeneration-are affected. Using transcriptomic, genome-scale metabolic modelling and functional analyses, we demonstrate, for the first time, convergent abnormalities in primary mouse and human dystrophic myoblasts. In Dmdmdx myoblasts lacking full-length dystrophin, the expression of 170 genes was significantly altered. Myod1 and key genes controlled by MyoD (Myog, Mymk, Mymx, epigenetic regulators, ECM interactors, calcium signalling and fibrosis genes) were significantly downregulated. Gene ontology analysis indicated enrichment in genes involved in muscle development and function. Functionally, we found increased myoblast proliferation, reduced chemotaxis and accelerated differentiation, which are all essential for myoregeneration. The defects were caused by the loss of expression of full-length dystrophin, as similar and not exacerbated alterations were observed in dystrophin-null Dmdmdx-βgeo myoblasts. Corresponding abnormalities were identified in human DMD primary myoblasts and a dystrophic mouse muscle cell line, confirming the cross-species and cell-autonomous nature of these defects. The genome-scale metabolic analysis in human DMD myoblasts showed alterations in the rate of glycolysis/gluconeogenesis, leukotriene metabolism, and mitochondrial beta-oxidation of various fatty acids. These results reveal the disease continuum: DMD defects in satellite cells, the myoblast dysfunction affecting muscle regeneration, which is insufficient to counteract muscle loss due to myofiber instability. Contrary to the established belief, our data demonstrate that DMD abnormalities occur in myoblasts, making these cells a novel therapeutic target for the treatment of this lethal disease.
Collapse
Affiliation(s)
- Maxime RF Gosselin
- School of Pharmacy and Biomedical Sciences, University of PortsmouthPortsmouthUnited Kingdom
| | | | - Malgorzata Borczyk
- Laboratory of Pharmacogenomics, Maj Institute of Pharmacology PASKrakowPoland
| | - Suraj Verma
- School of Computing, Engineering and Digital Technologies, Teesside UniversityMiddlesbroughUnited Kingdom
| | - Annalisa Occhipinti
- School of Computing, Engineering and Digital Technologies, Teesside UniversityMiddlesbroughUnited Kingdom
| | - Justyna Róg
- School of Pharmacy and Biomedical Sciences, University of PortsmouthPortsmouthUnited Kingdom
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental BiologyWarsawPoland
| | - Lukasz Bozycki
- School of Pharmacy and Biomedical Sciences, University of PortsmouthPortsmouthUnited Kingdom
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental BiologyWarsawPoland
| | - Michal Korostynski
- Laboratory of Pharmacogenomics, Maj Institute of Pharmacology PASKrakowPoland
| | - Samuel C Robson
- School of Pharmacy and Biomedical Sciences, University of PortsmouthPortsmouthUnited Kingdom
- Centre for Enzyme Innovation, University of PortsmouthPortsmouthUnited Kingdom
| | - Claudio Angione
- School of Computing, Engineering and Digital Technologies, Teesside UniversityMiddlesbroughUnited Kingdom
| | | | - Dariusz C Gorecki
- School of Pharmacy and Biomedical Sciences, University of PortsmouthPortsmouthUnited Kingdom
| |
Collapse
|
15
|
Improving Recognition of Treatable Rare Neuromuscular Disorders in Primary Care: A Pilot Feasibility Study. CHILDREN 2022; 9:children9071063. [PMID: 35884047 PMCID: PMC9317909 DOI: 10.3390/children9071063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 12/01/2022]
Abstract
Innovative targeted treatments for neuromuscular disorders (NMDs) can dramatically improve the course of illness. Diagnostic delay, however, is a major impediment. Here, we present a pilot project aimed at assessing the feasibility of a screening program to identify children at high risk for NMDs within the first 30 months of life. The Promoting Early Diagnosis for Neuromuscular Disorders (PEDINE) project implemented a three-step sequential screening in an area of about 300,000 people with (1) an assessment of the motor development milestones to identify “red flags” for NMDs by primary care pediatricians (PCPs) as part of the routine Health Status Check visits; (2) for the children who screened positive, a community neuropsychiatric assessment, with further referral of suspected NMD cases to (3) a hospital-based specialized tertiary care center. In the first-year feasibility study, a total of 10,032 PCP visits were conducted, and twenty children (0.2% of the total Health Status Check visits) screened positive and were referred to the community neuropsychiatrist. Of these, four had elevated creatine kinase (CK) serum levels. This pilot study shows that screening for NMDs in primary care settings is feasible and allows children at high risk for muscular disorder to be promptly identified.
Collapse
|
16
|
Rumney RMH, Róg J, Chira N, Kao AP, Al-Khalidi R, Górecki DC. P2X7 Purinoceptor Affects Ectopic Calcification of Dystrophic Muscles. Front Pharmacol 2022; 13:935804. [PMID: 35910348 PMCID: PMC9333129 DOI: 10.3389/fphar.2022.935804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Ectopic calcification (EC) of myofibers is a pathological feature of muscle damage in Duchenne muscular dystrophy (DMD). Mineralisation of muscle tissue occurs concomitantly with macrophage infiltration, suggesting a link between ectopic mineral deposition and inflammation. One potential link is the P2X7 purinoceptor, a key trigger of inflammation, which is expressed on macrophages but also up-regulated in dystrophic muscle cells. To investigate the role of P2X7 in dystrophic calcification, we utilised the Dmd mdx-βgeo dystrophin-null mouse model of DMD crossed with a global P2X7 knockout (P2rx7 -/- ) or with our novel P2X7 knockin-knockout mouse (P2x7 KiKo ), which expresses P2X7 in macrophages but not muscle cells. Total loss of P2X7 increased EC, indicating that P2X7 overexpression is a protective mechanism against dystrophic mineralisation. Given that muscle-specific P2X7 ablation did not affect dystrophic EC, this underlined the role of P2X7 receptor expression on the inflammatory cells. Serum phosphate reflected dystrophic calcification, with the highest serum phosphate levels found in genotypes with the most ectopic mineral. To further investigate the underlying mechanisms, we measured phosphate release from cells in vitro, and found that dystrophic myoblasts released less phosphate than non-dystrophic cells. Treatment with P2X7 antagonists increased phosphate release from both dystrophic and control myoblasts indicating that muscle cells are a potential source of secreted phosphate while macrophages protect against ectopic mineralisation. Treatment of cells with high phosphate media engendered mineral deposition, which was decreased in the presence of the P2X7 agonist BzATP, particularly in cultures of dystrophic cells, further supporting a protective role for P2X7 against ectopic mineralisation in dystrophic muscle.
Collapse
Affiliation(s)
- Robin M. H. Rumney
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Justyna Róg
- Department of Biochemistry, Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Natalia Chira
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Alexander P. Kao
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, United Kingdom
| | - Rasha Al-Khalidi
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Dariusz C. Górecki
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
- Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| |
Collapse
|
17
|
Ma YL, Zhang WH, Chen GH, Song LF, Wang Y, Yuan RL, Wang Y, Cheng XY. Walking alone milestone combined reading-frame rule improves early prediction of Duchenne muscular dystrophy. Front Pediatr 2022; 10:985878. [PMID: 36034570 PMCID: PMC9417149 DOI: 10.3389/fped.2022.985878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/22/2022] [Indexed: 12/05/2022] Open
Abstract
OBJECTIVE To explore the potential of walking alone milestone combined reading-frame rule to improve the early diagnosis of Duchenne muscular dystrophy (DMD). METHOD To retrospectively describe the genotype and phenotype of Duchenne and Becker muscular dystrophies (BMD) patients with deletions and duplicates in the dystrophin gene. The sensitivity and specificity of the reading frame rule were calculated and compared to that of the combined reading frame rule and walking alone milestone. The diagnostic coincidence rate of two different methods was analyzed. RESULT One hundred sixty-nine male DMD/BMD patients were enrolled, including 17 cases of BMD and 152 cases of DMD. The diagnostic coincidence rate, diagnostic sensitivity, and specificity of the reading-frame rule for DMD/BMD were 85.2, 86.8, and 70.59%, respectively. The sensitivity and specificity of the reading frame principle combined with the walking alone milestone for DMD/BMD were 96.05 and 70.59%, respectively. The diagnostic coincidence rate increased to 93.49%, significantly different from that predicted by reading- frame rule (P < 0.05). CONCLUSION The reading-frame rule combined with the walking alone milestone significantly improved the early diagnosis rate of DMD.
Collapse
Affiliation(s)
- Yan-Li Ma
- Department of Neonatology, The First Affiliated Hospital of Zheng Zhou University, Zhengzhou, China.,Department of Neurology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Wei-Hua Zhang
- Department of Neurology, Beijing Children's Hospital, Beijing, China
| | - Guo-Hong Chen
- Department of Neurology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Li-Fang Song
- Department of Neurology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Yuan Wang
- Department of Neurology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Rui-Li Yuan
- Department of Neurology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Ying Wang
- Department of Neurology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Xiu-Yong Cheng
- Department of Neonatology, The First Affiliated Hospital of Zheng Zhou University, Zhengzhou, China
| |
Collapse
|
18
|
Zabłocka B, Górecki DC, Zabłocki K. Disrupted Calcium Homeostasis in Duchenne Muscular Dystrophy: A Common Mechanism behind Diverse Consequences. Int J Mol Sci 2021; 22:11040. [PMID: 34681707 PMCID: PMC8537421 DOI: 10.3390/ijms222011040] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 09/30/2021] [Accepted: 10/09/2021] [Indexed: 12/12/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) leads to disability and death in young men. This disease is caused by mutations in the DMD gene encoding diverse isoforms of dystrophin. Loss of full-length dystrophins is both necessary and sufficient for causing degeneration and wasting of striated muscles, neuropsychological impairment, and bone deformities. Among this spectrum of defects, abnormalities of calcium homeostasis are the common dystrophic feature. Given the fundamental role of Ca2+ in all cells, this biochemical alteration might be underlying all the DMD abnormalities. However, its mechanism is not completely understood. While abnormally elevated resting cytosolic Ca2+ concentration is found in all dystrophic cells, the aberrant mechanisms leading to that outcome have cell-specific components. We probe the diverse aspects of calcium response in various affected tissues. In skeletal muscles, cardiomyocytes, and neurons, dystrophin appears to serve as a scaffold for proteins engaged in calcium homeostasis, while its interactions with actin cytoskeleton influence endoplasmic reticulum organisation and motility. However, in myoblasts, lymphocytes, endotheliocytes, and mesenchymal and myogenic cells, calcium abnormalities cannot be clearly attributed to the loss of interaction between dystrophin and the calcium toolbox proteins. Nevertheless, DMD gene mutations in these cells lead to significant defects and the calcium anomalies are a symptom of the early developmental phase of this pathology. As the impaired calcium homeostasis appears to underpin multiple DMD abnormalities, understanding this alteration may lead to the development of new therapies. In fact, it appears possible to mitigate the impact of the abnormal calcium homeostasis and the dystrophic phenotype in the total absence of dystrophin. This opens new treatment avenues for this incurable disease.
Collapse
Affiliation(s)
- Barbara Zabłocka
- Molecular Biology Unit, Mossakowski Medical Research Institute Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Dariusz C. Górecki
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael’s Building, White Swan Road, Portsmouth PO1 2DT, UK
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
| | - Krzysztof Zabłocki
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology Polish Academy of Sciences, 02-093 Warsaw, Poland
| |
Collapse
|
19
|
Exploring the Effects of Environmental Factors on the Development of 0-4-Year Old Children in The Netherlands. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18157782. [PMID: 34360070 PMCID: PMC8345559 DOI: 10.3390/ijerph18157782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 11/17/2022]
Abstract
Air pollution, noise, and green space are important environmental exposures, having been linked to a variety of specific health outcomes. However, there are few studies addressing overall early life development. To assess their effects, associations between developmental milestones for a large population of 0–4-year old children in The Netherlands and environmental exposures were explored. Developmental milestones and background characteristics were provided by Preventive Child Health Care (PCHC) and supplemented with data from Statistics Netherlands. Milestones were summarized and standardized into an aggregate score measuring global development. Four age groups were selected. Environmental exposures were assigned to geocoded addresses using publicly available maps for PM2.5, PM10, PMcoarse, NO2, EC, road traffic noise, and green space. Associations were investigated using single and multiple-exposure logistic regression models. 43,916 PCHC visits by 29,524 children were available. No consistent associations were found for air pollution and road traffic noise. Green space was positively associated in single and multiple-exposure models although it was not significant in all age groups (OR 1.01 (0.95; 1.08) (1 year) to 1.07 (1.01; 1.14) (2 years)). No consistent associations were found between air pollution, road traffic noise, and global child development. A positive association of green space was indicated.
Collapse
|
20
|
Wang L, Lin J, Xiong F, Liang Y, Li H, Liao Z, Zhang C. A rare case of monozygotic triplets with Duchenne muscular dystrophy. Neuromuscul Disord 2021; 31:456-461. [PMID: 33741227 DOI: 10.1016/j.nmd.2021.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/23/2021] [Accepted: 02/04/2021] [Indexed: 11/24/2022]
Abstract
Twins with Duchenne muscular dystrophy (DMD) have been widely studied. We report the first rare case of monozygotic triplets with DMD who shared consistent phenotypes, including delayed motor and language milestones, muscle wasting and weakness, joint contracture, and lumbar lordosis. Muscle magnetic resonance imaging and biopsy revealed the similar muscle injury characteristics and dystrophin absence. Short tandem repeat analysis confirmed monozygosity. A de novo mutation (exon 49-52 deletion) was found in the triplets but not in their mother. Treatment included prednisone, idebenone, and rehabilitation management. At the 2-year follow-up, motor function had deteriorated, and muscle fatty infiltration was more extensive and severe. Our case offers a unique opportunity for genetic and therapeutic research. Furthermore, it highlights the critical role of genetic factors in DMD phenotypes and provides a potential choice for treatment observations.
Collapse
Affiliation(s)
- Liang Wang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology. Guangzhou, China
| | - Jinfu Lin
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology. Guangzhou, China
| | - Fu Xiong
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yingyin Liang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology. Guangzhou, China
| | - Huan Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology. Guangzhou, China
| | - Ziyu Liao
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology. Guangzhou, China
| | - Cheng Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology. Guangzhou, China.
| |
Collapse
|
21
|
Lamy F, Ferlini A, Evangelista T. Survey on patients' organisations' knowledge and position paper on screening for inherited neuromuscular diseases in Europe. Orphanet J Rare Dis 2021; 16:75. [PMID: 33568176 PMCID: PMC7874448 DOI: 10.1186/s13023-020-01670-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/23/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The development of new genetic testing methods and the approval of the first treatments raises questions regarding when and how to perform screening for inherited neuromuscular conditions. Screening directives and access to the different techniques is not uniform across Europe. The patient advisory board of the European reference network for rare neuromuscular diseases (NMD) conducted a qualitative study to understand the state of play of screening for inherited NMD in Europe and patients' needs. RESULTS We collected answers from 30 patient organisations (POs) from 18 European countries. Fifteen acknowledge the existence of pre-implantation genetic diagnosis in their country. Regarding prenatal screening, we had 25 positive answers and 5 negative ones. Twenty-four POs mentioned that newborn screening was available in their country. We had some contradictory answers from POs from the same country and in some cases; diseases said to be part of the screening programmes were not hereditary disorders. Twenty-eight organisations were in favour of screening tests. The reasons for the two negative answers were lack of reimbursement and treatment, religious beliefs and eventual insurance constrains. Most POs (21) were in favour of systematic screening with the option to opt-out. Regarding the timing for screening, "at birth", was the most consensual response. The main priority to perform screening for NMDs was early access to treatment, followed by shorter time to diagnostic, preventive care and genetic counselling. CONCLUSIONS This is the first study to assess knowledge and needs of POs concerning screening for NMDs. The knowledge of POs regarding screening techniques is quite uneven. This implies that, even in communities highly motivated and knowledgeable of the conditions they advocate for, there is a need for better information. Differences in the responses to the questions "how and when to screen" shows that the screening path depends on the disease and the presence of a disease modifying treatment. The unmet need for screening inherited NMDs should follow an adaptive pathway related to the fast moving medical landscape of NMDs. International coordination leading to a common policy would certainly be a precious asset tending to harmonize the situation amongst European countries.
Collapse
Affiliation(s)
- F Lamy
- Association Française contre les Myopathies, AFM-Téléthon, Evry, France
| | - A Ferlini
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Teresinha Evangelista
- Neuromuscular Morphology Unit, Myology Institute, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, 75013, Paris, France. .,AP-HP, Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile de France, Sorbonne Université - Inserm UMRS 974, Paris, France.
| |
Collapse
|