1
|
Naylor RN, Patel KA, Kettunen JLT, Männistö JME, Støy J, Beltrand J, Polak M, Vilsbøll T, Greeley SAW, Hattersley AT, Tuomi T. Precision treatment of beta-cell monogenic diabetes: a systematic review. COMMUNICATIONS MEDICINE 2024; 4:145. [PMID: 39025920 PMCID: PMC11258280 DOI: 10.1038/s43856-024-00556-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Beta-cell monogenic forms of diabetes have strong support for precision medicine. We systematically analyzed evidence for precision treatments for GCK-related hyperglycemia, HNF1A-, HNF4A- and HNF1B-diabetes, and mitochondrial diabetes (MD) due to m.3243 A > G variant, 6q24-transient neonatal diabetes mellitus (TND) and SLC19A2-diabetes. METHODS The search of PubMed, MEDLINE, and Embase for individual and group level data for glycemic outcomes using inclusion (English, original articles written after 1992) and exclusion (VUS, multiple diabetes types, absent/aggregated treatment effect measures) criteria. The risk of bias was assessed using NHLBI study-quality assessment tools. Data extracted from Covidence were summarized and presented as descriptive statistics in tables and text. RESULTS There are 146 studies included, with only six being experimental studies. For GCK-related hyperglycemia, the six studies (35 individuals) assessing therapy discontinuation show no HbA1c deterioration. A randomized trial (18 individuals per group) shows that sulfonylureas (SU) were more effective in HNF1A-diabetes than in type 2 diabetes. Cohort and case studies support SU's effectiveness in lowering HbA1c. Two cross-over trials (each with 15-16 individuals) suggest glinides and GLP-1 receptor agonists might be used in place of SU. Evidence for HNF4A-diabetes is limited. Most reported patients with HNF1B-diabetes (N = 293) and MD (N = 233) are on insulin without treatment studies. Limited data support oral agents after relapse in 6q24-TND and for thiamine improving glycemic control and reducing/eliminating insulin requirement in SLC19A2-diabetes. CONCLUSION There is limited evidence, and with moderate or serious risk of bias, to guide monogenic diabetes treatment. Further evidence is needed to examine the optimum treatment in monogenic subtypes.
Collapse
Affiliation(s)
- Rochelle N Naylor
- Departments of Pediatrics and Medicine, University of Chicago, Chicago, IL, USA
| | - Kashyap A Patel
- University of Exeter Medical School, Department of Clinical and Biomedical Sciences, Exeter, Devon, UK
| | - Jarno L T Kettunen
- Helsinki University Hospital, Abdominal Centre/Endocrinology, Helsinki, Finland
- Folkhalsan Research Center, Helsinki, Finland
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
| | - Jonna M E Männistö
- Departments of Pediatrics and Clinical Genetics, Kuopio University Hospital, Kuopio, Finland
- Department of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Julie Støy
- Steno diabetes center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Jacques Beltrand
- APHP Centre Hôpital Necker Enfants Malades Université Paris Cité, Paris, France
| | - Michel Polak
- Inserm U1016 Institut Cochin, Paris, France
- Department of Pediatric Endocrinology, Gynecology and Diabetology, Hôpital Universitaire Necker Enfants Malades, Paris, France
- Université Paris Cité, Paris, France
| | - Tina Vilsbøll
- Department of Clinical Medicine, University of Copenhagen, København, Denmark
| | - Siri A W Greeley
- Departments of Pediatrics and Medicine, University of Chicago, Chicago, IL, USA
| | - Andrew T Hattersley
- University of Exeter Medical School, Department of Clinical and Biomedical Sciences, Exeter, Devon, UK
| | - Tiinamaija Tuomi
- Helsinki University Hospital, Abdominal Centre/Endocrinology, Helsinki, Finland.
- Folkhalsan Research Center, Helsinki, Finland.
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland.
- Lund University Diabetes Center, Malmo, Sweden.
| |
Collapse
|
2
|
Naylor RN, Patel KA, Kettunen JL, Männistö JM, Støy J, Beltrand J, Polak M, ADA/EASD PMDI, Vilsbøll T, Greeley SA, Hattersley AT, Tuomi T. Systematic Review of Treatment of Beta-Cell Monogenic Diabetes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.12.23289807. [PMID: 37214872 PMCID: PMC10197799 DOI: 10.1101/2023.05.12.23289807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Background Beta-cell monogenic forms of diabetes are the area of diabetes care with the strongest support for precision medicine. We reviewed treatment of hyperglycemia in GCK-related hyperglycemia, HNF1A-HNF4A- and HNF1B-diabetes, Mitochondrial diabetes (MD) due to m.3243A>G variant, 6q24-transient neonatal diabetes (TND) and SLC19A2-diabetes. Methods Systematic reviews with data from PubMed, MEDLINE and Embase were performed for the different subtypes. Individual and group level data was extracted for glycemic outcomes in individuals with genetically confirmed monogenic diabetes. Results 147 studies met inclusion criteria with only six experimental studies and the rest being single case reports or cohort studies. Most studies had moderate or serious risk of bias.For GCK-related hyperglycemia, six studies (N=35) showed no deterioration in HbA1c on discontinuing glucose lowering therapy. A randomized trial (n=18 per group) showed that sulfonylureas (SU) were more effective in HNF1A-diabetes than in type 2 diabetes, and cohort and case studies supported SU effectiveness in lowering HbA1c. Two crossover trials (n=15 and n=16) suggested glinides and GLP-1 receptor agonists might be used in place of SU. Evidence for HNF4A-diabetes was limited. While some patients with HNF1B-diabetes (n=301) and MD (n=250) were treated with oral agents, most were on insulin. There was some support for the use of oral agents after relapse in 6q24-TND, and for thiamine improving glycemic control and reducing insulin requirement in SLC19A2-diabetes (less than half achieved insulin-independency). Conclusion There is limited evidence to guide the treatment in monogenic diabetes with most studies being non-randomized and small. The data supports: no treatment in GCK-related hyperglycemia; SU for HNF1A-diabetes. Further evidence is needed to examine the optimum treatment in monogenic subtypes.
Collapse
Affiliation(s)
- Rochelle N. Naylor
- Departments of Pediatrics and Medicine, University of Chicago, Chicago, Illinois, USA
| | - Kashyap A. Patel
- University of Exeter Medical School, Department of Clinical and Biomedical Sciences, Exeter, Devon, UK
| | - Jarno L.T. Kettunen
- Helsinki University Hospital, Abdominal Centre/Endocrinology, Helsinki, Finland; Folkhalsan Research Center, Helsinki, Finland; Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
| | - Jonna M.E. Männistö
- Departments of Pediatrics and Clinical Genetics, Kuopio University Hospital, Kuopio, Finland; Department of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Julie Støy
- Steno diabetes center Aarhus, Aarhus university hospital, Aarhus, Denmark
| | - Jacques Beltrand
- APHP Centre Hôpital Necker Enfants Malades Université Paris Cité, Paris France; Inserm U1016 Institut Cochin Paris France
| | - Michel Polak
- Department of pediatric endocrinology gynecology and diabetology, Hôpital Universitaire Necker Enfants Malades, IMAGINE institute, INSERM U1016, Paris, France; Université Paris Cité, Paris, France
| | - ADA/EASD PMDI
- American Diabetes Association/European Association for the Study of Diabetes Precision Medicine Initiative
| | - Tina Vilsbøll
- Department of Clinical Medicine, University of Copenhagen
| | - Siri A.W. Greeley
- Departments of Pediatrics and Medicine, University of Chicago, Chicago, Illinois, USA
| | - Andrew T. Hattersley
- University of Exeter Medical School, Department of Clinical and Biomedical Sciences, Exeter, Devon, UK
| | | |
Collapse
|
3
|
Xu Q, Kan CX, Hou NN, Sun XD. Novel HNF1A gene mutation in maturity-onset diabetes of the young: A case report. World J Clin Cases 2022; 10:1909-1913. [PMID: 35317157 PMCID: PMC8891774 DOI: 10.12998/wjcc.v10.i6.1909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/26/2021] [Accepted: 01/14/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Maturity-onset diabetes of the young 3 (MODY3), caused by mutations in the HNF1A gene, is the most common subtype of MODY. The diagnosis of MODY3 is critical because a low dose of sulfonylurea agents can achieve glucose control. CASE SUMMARY We describe a patient with MODY3 involving a novel splicing mutation, in whom low-dose gliclazide was sufficient to control clinically significant hyperglycemia. Sanger sequencing identified a splicing HNF1A mutation in 12q24 NM_000545.5 Intron5 c.1108-1G>A. Glycemic control has been maintained without insulin therapy for 28 mo after the diagnosis of diabetes. CONCLUSION This case report highlights a novel HNF1A gene mutation in MODY3 that is responsive to sulfonylurea therapy.
Collapse
Affiliation(s)
- Qian Xu
- Department of Endocrinology and Metabolism, Clinical Research Center, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Cheng-Xia Kan
- Department of Endocrinology and Metabolism, Clinical Research Center, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Ning-Ning Hou
- Department of Endocrinology and Metabolism, Clinical Research Center, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Xiao-Dong Sun
- Department of Endocrinology and Metabolism, Clinical Research Center, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| |
Collapse
|
4
|
Shepherd MH, Shields BM, Hudson M, Pearson ER, Hyde C, Ellard S, Hattersley AT, Patel KA. A UK nationwide prospective study of treatment change in MODY: genetic subtype and clinical characteristics predict optimal glycaemic control after discontinuing insulin and metformin. Diabetologia 2018; 61:2520-2527. [PMID: 30229274 PMCID: PMC6223847 DOI: 10.1007/s00125-018-4728-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/31/2018] [Indexed: 12/16/2022]
Abstract
AIMS/HYPOTHESIS Treatment change following a genetic diagnosis of MODY is frequently indicated, but little is known about the factors predicting future treatment success. We therefore conducted the first prospective study to determine the impact of a genetic diagnosis on individuals with GCK-, HNF1A- or HNF4A-MODY in the UK, and to identify clinical characteristics predicting treatment success (i.e. HbA1c ≤58 mmol/mol [≤7.5%]) with the recommended treatment at 2 years. METHODS This was an observational, prospective, non-selective study of individuals referred to the Exeter Molecular Genetic Laboratory for genetic testing from December 2010 to December 2012. Individuals from the UK with GCK- or HNF1A/HNF4A-MODY who were not on recommended treatment at the time of genetic diagnosis, and who were diagnosed below the age of 30 years and were currently aged less than 50 years, were eligible to participate. RESULTS A total of 44 of 58 individuals (75.9%) changed treatment following their genetic diagnosis. Eight individuals diagnosed with GCK-MODY stopped all diabetes medication without experiencing any change in HbA1c (49.5 mmol/mol [6.6%] both before the genetic diagnosis and at a median of 1.25 years' follow-up without treatment, p = 0.88). A total of 36 of 49 individuals (73.5%) diagnosed with HNF1A/HNF4A-MODY changed treatment; however, of the 21 of these individuals who were being managed with diet or sulfonylurea alone at 2 years, only 13 (36.1% of the population that changed treatment) had an HbA1c ≤58 mmol/mol (≤7.5%). These individuals had a shorter diabetes duration (median 4.6 vs 18.1 years), lower HbA1c (58 vs 73 mmol/mol [7.5% vs 8.8%]) and lower BMI (median 24.2 vs 26.0 kg/m2) at the time of genetic diagnosis, compared with individuals (n = 23/36) with an HbA1c >58 mmol/mol (>7.5%) (or <58 mmol/mol [<7.5%] on additional treatment) at the 2 year follow-up. Overall, 64% (7/11) individuals with a diabetes duration of ≤11 years and an HbA1c of ≤69 mmol/mol (≤8.5%) at time of the genetic test achieved good glycaemic control (HbA1c ≤58 mmol/mol [≤7.5%]) with diet or sulfonylurea alone at 2 years, compared with no participants with a diabetes duration of >11 years and an HbA1c of >69 mmol/mol (>8.5%) at the time of genetic diagnosis. CONCLUSIONS/INTERPRETATION In participants with GCK-MODY, treatment cessation was universally successful, with no change in HbA1c at follow-up. In those with HNF1A/HNF4A-MODY, a shorter diabetes duration, lower HbA1c and lower BMI at genetic diagnosis predicted successful treatment with sulfonylurea/diet alone, supporting the need for early genetic diagnosis and treatment change. Our study suggests that, in individuals with HNF1A/HNF4A-MODY with a longer duration of diabetes (>11 years) at time of genetic test, rather than ceasing current treatment, a sulfonylurea should be added to existing therapy, particularly in those who are overweight or obese and have a high HbA1c.
Collapse
Affiliation(s)
- Maggie H Shepherd
- NIHR Exeter Clinical Research Facility, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK.
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD, Barrack Road, Exeter, EX2 5DW, UK.
| | - Beverley M Shields
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD, Barrack Road, Exeter, EX2 5DW, UK
| | - Michelle Hudson
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD, Barrack Road, Exeter, EX2 5DW, UK
| | - Ewan R Pearson
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, UK
| | - Christopher Hyde
- Exeter Test Group, Institute of Health Research, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Sian Ellard
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD, Barrack Road, Exeter, EX2 5DW, UK
- Department of Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD, Barrack Road, Exeter, EX2 5DW, UK
| | - Kashyap A Patel
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD, Barrack Road, Exeter, EX2 5DW, UK
| | | |
Collapse
|
5
|
Shepherd M, Shields B, Hammersley S, Hudson M, McDonald TJ, Colclough K, Oram RA, Knight B, Hyde C, Cox J, Mallam K, Moudiotis C, Smith R, Fraser B, Robertson S, Greene S, Ellard S, Pearson ER, Hattersley AT. Systematic Population Screening, Using Biomarkers and Genetic Testing, Identifies 2.5% of the U.K. Pediatric Diabetes Population With Monogenic Diabetes. Diabetes Care 2016; 39:1879-1888. [PMID: 27271189 PMCID: PMC5018394 DOI: 10.2337/dc16-0645] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/09/2016] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Monogenic diabetes is rare but is an important diagnosis in pediatric diabetes clinics. These patients are often not identified as this relies on the recognition of key clinical features by an alert clinician. Biomarkers (islet autoantibodies and C-peptide) can assist in the exclusion of patients with type 1 diabetes and allow systematic testing that does not rely on clinical recognition. Our study aimed to establish the prevalence of monogenic diabetes in U.K. pediatric clinics using a systematic approach of biomarker screening and targeted genetic testing. RESEARCH DESIGN AND METHODS We studied 808 patients (79.5% of the eligible population) <20 years of age with diabetes who were attending six pediatric clinics in South West England and Tayside, Scotland. Endogenous insulin production was measured using the urinary C-peptide creatinine ratio (UCPCR). C-peptide-positive patients (UCPCR ≥0.2 nmol/mmol) underwent islet autoantibody (GAD and IA2) testing, with patients who were autoantibody negative undergoing genetic testing for all 29 identified causes of monogenic diabetes. RESULTS A total of 2.5% of patients (20 of 808 patients) (95% CI 1.6-3.9%) had monogenic diabetes (8 GCK, 5 HNF1A, 4 HNF4A, 1 HNF1B, 1 ABCC8, 1 INSR). The majority (17 of 20 patients) were managed without insulin treatment. A similar proportion of the population had type 2 diabetes (3.3%, 27 of 808 patients). CONCLUSIONS This large systematic study confirms a prevalence of 2.5% of patients with monogenic diabetes who were <20 years of age in six U.K. clinics. This figure suggests that ∼50% of the estimated 875 U.K. pediatric patients with monogenic diabetes have still not received a genetic diagnosis. This biomarker screening pathway is a practical approach that can be used to identify pediatric patients who are most appropriate for genetic testing.
Collapse
Affiliation(s)
- Maggie Shepherd
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K. .,Exeter National Institute for Health Research Clinical Research Facility, Royal Devon and Exeter NHS Foundation Trust, Exeter, U.K
| | - Beverley Shields
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Suzanne Hammersley
- Exeter National Institute for Health Research Clinical Research Facility, Royal Devon and Exeter NHS Foundation Trust, Exeter, U.K
| | - Michelle Hudson
- Exeter National Institute for Health Research Clinical Research Facility, Royal Devon and Exeter NHS Foundation Trust, Exeter, U.K
| | - Timothy J McDonald
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K.,Blood Sciences, Royal Devon and Exeter NHS Foundation Trust, Exeter, U.K
| | - Kevin Colclough
- Molecular Genetics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, U.K
| | - Richard A Oram
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Bridget Knight
- Exeter National Institute for Health Research Clinical Research Facility, Royal Devon and Exeter NHS Foundation Trust, Exeter, U.K
| | - Christopher Hyde
- Exeter Test Group, Institute of Health Research, University of Exeter Medical School, Exeter, U.K
| | - Julian Cox
- Department of Paediatrics, Northern Devon Healthcare NHS Trust, Barnstaple, U.K
| | - Katherine Mallam
- Department of Paediatrics, Royal Cornwall Hospitals NHS Trust, Truro, U.K
| | | | - Rebecca Smith
- Children & Young People's Outpatient Department, Plymouth Hospitals NHS Trust, Plymouth, U.K
| | - Barbara Fraser
- Department of Paediatrics, South Devon Healthcare NHS Foundation Trust, Torquay, U.K
| | - Simon Robertson
- Department of Paediatrics, Royal Cornwall Hospitals NHS Trust, Truro, U.K
| | - Stephen Greene
- Child Health, School of Medicine, University of Dundee, Ninewells Hospital & Medical School, Dundee, Scotland, U.K
| | - Sian Ellard
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Ewan R Pearson
- Division of Cardiovascular & Diabetes Medicine, School of Medicine, University of Dundee, Dundee, U.K
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | | |
Collapse
|