1
|
Liu Y, Xu K, Xiang Y, Ma B, Li H, Li Y, Shi Y, Li S, Bai Y. Role of MCP-1 as an inflammatory biomarker in nephropathy. Front Immunol 2024; 14:1303076. [PMID: 38239353 PMCID: PMC10794684 DOI: 10.3389/fimmu.2023.1303076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/12/2023] [Indexed: 01/22/2024] Open
Abstract
The Monocyte chemoattractant protein-1 (MCP-1), also referred to as chemokine ligand 2 (CCL2), belongs to the extensive chemokine family and serves as a crucial mediator of innate immunity and tissue inflammation. It has a notable impact on inflammatory conditions affecting the kidneys. Upon binding to its receptor, MCP-1 can induce lymphocytes and NK cells' homing, migration, activation, differentiation, and development while promoting monocytes' and macrophages' infiltration, thereby facilitating kidney disease-related inflammation. As a biomarker for kidney disease, MCP-1 has made notable advancements in primary kidney diseases such as crescentic glomerulonephritis, chronic glomerulonephritis, primary glomerulopathy, idiopathic proteinuria glomerulopathy, acute kidney injury; secondary kidney diseases like diabetic nephropathy and lupus nephritis; hereditary kidney diseases including autosomal dominant polycystic kidney disease and sickle cell kidney disease. MCP-1 not only predicts the occurrence, progression, prognosis of the disease but is also closely associated with the severity and stage of nephropathy. When renal tissue is stimulated or experiences significant damage, the expression of MCP-1 increases, demonstrating a direct correlation with the severity of renal injury.
Collapse
Affiliation(s)
- Yanlong Liu
- Heilongjiang Provincial Health Commission, Harbin, China
| | - Ke Xu
- Heilongjiang University of Chinese Medicine, The Second Clinical Medical College, Harbin, China
| | - Yuhua Xiang
- Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Boyan Ma
- Heilongjiang University of Chinese Medicine, The Second Clinical Medical College, Harbin, China
| | - Hailong Li
- Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Yuan Li
- The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue Shi
- Heilongjiang University of Chinese Medicine, The Second Clinical Medical College, Harbin, China
| | - Shuju Li
- Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Yan Bai
- Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
2
|
Chu W, Ma LL, Li BX, Li MC. Clinical significance of vascular endothelial growth factor and endothelin-1 in serum levels as novel indicators for predicting the progression of diabetic nephropathy. EUR J INFLAMM 2023. [DOI: 10.1177/1721727x231151526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Objective: Early diagnosis and intervention of diabetic nephropathy (DN) is necessary to optimize therapy in order to delay the progression of diabetes. This research aimed to reveal the change of vascular endothelial growth factor (VEGF) and endothelin-1 (ET-1) in patients with DN, and to assess possible correlations with glycated hemoglobin (HbAlc) values. Methods: The present study was a retrospective, single-center study conducted at a teaching hospital in the northeast China. A total of 120 patients were divided into proteinuria-positive group ( n = 40), the microalbuminuria group ( n = 40), and the high proteinuria group ( n = 40) according to the urinary albumin excretion rate (UAER), and 40 healthy volunteers were selected as the control group. The levels of VEGF, ET-1 and HbA1c were measured in all subjects and principal component analysis (PCA) was performed to classify and reveal correlations between VEGF, ET-1 and HbA1c. Results: Compared to the control group, a significant difference in the increase of HbA1c was detected in group I, II and III. A significant increase in the concentrations of serum VEGF and ET-1 was also observed. HbA1c in DN patients had proven to be positively correlated with VEGF (r = 0.7941; p < 0. 0001) and ET-1 (r = 0.8504; p < 0.0001) respectively. Conclusion: The elevated levels of VEGF and ET-1 in serum have been proposed as being able to supplement the additional information about the progression of DN. These data suggest that the decrease in endothelial function may be related to poor glycemic control.
Collapse
Affiliation(s)
- Wei Chu
- Department of Renal Medicine, People’s Hospital of Jilin, Jilin, China
| | - Lin-Lin Ma
- Department of Clinical Laboratory, Beihua University, Jilin, China
| | - Bin-Xian Li
- Department of Clinical Laboratory, Beihua University, Jilin, China
| | - Ming-Cheng Li
- Department of Molecular diagnosis, Beihua University, Jilin, China
| |
Collapse
|
3
|
Tsai YC, Kuo MC, Huang JC, Chang WA, Wu LY, Huang YC, Chang CY, Lee SC, Hsu YL. Single-cell transcriptomic profiles in the pathophysiology within the microenvironment of early diabetic kidney disease. Cell Death Dis 2023; 14:442. [PMID: 37460555 DOI: 10.1038/s41419-023-05947-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/18/2023] [Accepted: 07/04/2023] [Indexed: 07/20/2023]
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease, resulting in a huge socio-economic impact. Kidney is a highly complex organ and the pathogenesis underlying kidney organization involves complex cell-to-cell interaction within the heterogeneous kidney milieu. Advanced single-cell RNA sequencing (scRNA-seq) could reveal the complex architecture and interaction with the microenvironment in early DKD. We used scRNA-seq to investigate early changes in the kidney of db/m mice and db/db mice at the 14th week. Uniform Manifold Approximation and Projection were applied to classify cells into different clusters at a proper resolution. Weighted gene co-expression network analysis was used to identify the key molecules specifically expressed in kidney tubules. Information of cell-cell communication within the kidney was obtained using receptor-ligand pairing resources. In vitro model, human subjects, and co-detection by indexing staining were used to identify the pathophysiologic role of the hub genes in DKD. Among four distinct subsets of the proximal tubule (PT), lower percentages of proliferative PT and PT containing AQP4 expression (PTAQP4+) in db/db mice induced impaired cell repair activity and dysfunction of renin-angiotensin system modulation in early DKD. We found that ferroptosis was involved in DKD progression, and ceruloplasmin acted as a central regulator of the induction of ferroptosis in PTAQP4+. In addition, lower percentages of thick ascending limbs and collecting ducts with impaired metabolism function were also critical pathogenic features in the kidney of db/db mice. Secreted phosphoprotein 1 (SPP1) mediated pathogenic cross-talk in the tubular microenvironment, as validated by a correlation between urinary SPP1/Cr level and tubular injury. Finally, mesangial cell-derived semaphorin 3C (SEMA3C) further promoted endothelium-mesenchymal transition in glomerular endothelial cells through NRP1 and NRP2, and urinary SEMA3C/Cr level was positively correlated with glomerular injury. These data identified the hub genes involved in pathophysiologic changes within the microenvironment of early DKD.
Collapse
Affiliation(s)
- Yi-Chun Tsai
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of General Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Nephrology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Chuan Kuo
- Division of Nephrology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Juan-Chi Huang
- Division of Nephrology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-An Chang
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ling-Yu Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yung-Chi Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Taiwan, Kaohsiung, Taiwan
| | - Chao-Yuan Chang
- Department of Anatomy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Su-Chu Lee
- Division of Nephrology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Ling Hsu
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Taiwan, Kaohsiung, Taiwan.
| |
Collapse
|
4
|
Kiernan E, Surapaneni A, Zhou L, Schlosser P, Walker KA, Rhee EP, Ballantyne CM, Deo R, Dubin RF, Ganz P, Coresh J, Grams ME. Alterations in the Circulating Proteome Associated with Albuminuria. J Am Soc Nephrol 2023; 34:1078-1089. [PMID: 36890639 PMCID: PMC10278823 DOI: 10.1681/asn.0000000000000108] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/05/2023] [Indexed: 03/10/2023] Open
Abstract
SIGNIFICANCE STATEMENT We describe circulating proteins associated with albuminuria in a population of African American Study of Kidney Disease and Hypertension with CKD (AASK) using the largest proteomic platform to date: nearly 7000 circulating proteins, representing approximately 2000 new targets. Findings were replicated in a subset of a general population cohort with kidney disease (ARIC) and a population with CKD Chronic Renal Insufficiency Cohort (CRIC). In cross-sectional analysis, 104 proteins were significantly associated with albuminuria in the Black group, of which 67 of 77 available proteins were replicated in ARIC and 68 of 71 available proteins in CRIC. LMAN2, TNFSFR1B, and members of the ephrin superfamily had the strongest associations. Pathway analysis also demonstrated enrichment of ephrin family proteins. BACKGROUND Proteomic techniques have facilitated understanding of pathways that mediate decline in GFR. Albuminuria is a key component of CKD diagnosis, staging, and prognosis but has been less studied than GFR. We sought to investigate circulating proteins associated with higher albuminuria. METHODS We evaluated the cross-sectional associations of the blood proteome with albuminuria and longitudinally with doubling of albuminuria in the African American Study of Kidney Disease and Hypertension (AASK; 38% female; mean GFR 46; median urine protein-to-creatinine ratio 81 mg/g; n =703) and replicated in two external cohorts: a subset of the Atherosclerosis Risk in Communities (ARIC) study with CKD and the Chronic Renal Insufficiency Cohort (CRIC). RESULTS In cross-sectional analysis, 104 proteins were significantly associated with albuminuria in AASK, of which 67 of 77 available proteins were replicated in ARIC and 68 of 71 available proteins in CRIC. Proteins with the strongest associations included LMAN2, TNFSFR1B, and members of the ephrin superfamily. Pathway analysis also demonstrated enrichment of ephrin family proteins. Five proteins were significantly associated with worsening albuminuria in AASK, including LMAN2 and EFNA4, which were replicated in ARIC and CRIC. CONCLUSIONS Among individuals with CKD, large-scale proteomic analysis identified known and novel proteins associated with albuminuria and suggested a role for ephrin signaling in albuminuria progression.
Collapse
Affiliation(s)
- Elizabeth Kiernan
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Aditya Surapaneni
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
- Division of Precision Medicine, New York University Grossman School of Medicine, New York, New York
| | - Linda Zhou
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Pascal Schlosser
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Keenan A. Walker
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute on Aging, Baltimore, Maryland
| | - Eugene P. Rhee
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Rajat Deo
- Division of Cardiovascular Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ruth F. Dubin
- Division of Nephrology, University of Texas—Southwestern, Dallas, Texas
| | - Peter Ganz
- Division of Cardiology, Zuckerberg San Francisco General Hospital and Department of Medicine, University of California San Francisco, San Francisco, California
| | - Josef Coresh
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Morgan E. Grams
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
- Division of Precision Medicine, New York University Grossman School of Medicine, New York, New York
| |
Collapse
|
5
|
Wang Y, Zhao M, Zhang Y. Integrated Analysis of Single-Cell RNA-seq and Bulk RNA-seq in the Identification of a Novel ceRNA Network and Key Biomarkers in Diabetic Kidney Disease. Int J Gen Med 2022. [DOI: 10.2147/ijgm.s351971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
6
|
Kourtidou C, Stangou M, Marinaki S, Tziomalos K. Novel Cardiovascular Risk Factors in Patients with Diabetic Kidney Disease. Int J Mol Sci 2021; 22:11196. [PMID: 34681856 PMCID: PMC8537513 DOI: 10.3390/ijms222011196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/09/2021] [Accepted: 10/15/2021] [Indexed: 02/06/2023] Open
Abstract
Patients with diabetic kidney disease (DKD) are at very high risk for cardiovascular events. Only part of this increased risk can be attributed to the presence of diabetes mellitus (DM) and to other DM-related comorbidities, including hypertension and obesity. The identification of novel risk factors that underpin the association between DKD and cardiovascular disease (CVD) is essential for risk stratification, for individualization of treatment and for identification of novel treatment targets.In the present review, we summarize the current knowledge regarding the role of emerging cardiovascular risk markers in patients with DKD. Among these biomarkers, fibroblast growth factor-23 and copeptin were studied more extensively and consistently predicted cardiovascular events in this population. Therefore, it might be useful to incorporate them in risk stratification strategies in patients with DKD to identify those who would possibly benefit from more aggressive management of cardiovascular risk factors.
Collapse
Affiliation(s)
- Christodoula Kourtidou
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece;
| | - Maria Stangou
- Department of Nephrology, Medical School, Aristotle University of Thessaloniki, Hippokration Hospital, 54642 Thessaloniki, Greece;
| | - Smaragdi Marinaki
- Department of Nephrology and Renal Transplantation, Medical School, National and Kapodistrian University of Athens, Laiko Hospital, 11527 Athens, Greece;
| | - Konstantinos Tziomalos
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece;
| |
Collapse
|
7
|
Hamasaki H. Urinary liver-type fatty acid-binding protein is a predictor of mortality in individuals with type 2 diabetes. Diabet Med 2021; 38:e14527. [PMID: 33474764 DOI: 10.1111/dme.14527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/21/2020] [Accepted: 01/14/2021] [Indexed: 12/24/2022]
Affiliation(s)
- Hidetaka Hamasaki
- Hamasaki Clinic, Kagoshima, Japan
- Department of Diabetes, Imakiire General Hospital, Kagoshima, Japan
| |
Collapse
|
8
|
Ma Y, Wang H, Shan X, Zhu F, Wang W. High risk of tubular damage in normoalbuminuric adults with type 2 diabetes for over 14 years. J Diabetes 2021; 13:261-264. [PMID: 33150688 DOI: 10.1111/1753-0407.13131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/06/2020] [Accepted: 11/01/2020] [Indexed: 12/21/2022] Open
Abstract
Highlights The level of urinary α1 -microglobulin to creatinine ratio (A1MCR) increases with longer diabetes duration. Patients with a diabetes duration >14 years have a higher tubular damage rate. Being male and a diabetes duration >14 years have an interaction effect on increased A1MCR.
Collapse
Affiliation(s)
- Yongjun Ma
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Huabin Wang
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Xiaoyun Shan
- Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Fang Zhu
- Department of Pathology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Weiyuan Wang
- Department of Clinical Laboratory, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
9
|
|