1
|
Wu Y, Wang H, Xu H. Autophagy-lysosome pathway in insulin & glucagon homeostasis. Front Endocrinol (Lausanne) 2025; 16:1541794. [PMID: 39996055 PMCID: PMC11847700 DOI: 10.3389/fendo.2025.1541794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
Lysosome, a highly dynamic organelle, is an important nutrient sensing center. They utilize different ion channels and transporters to complete the mission in degradation, trafficking, nutrient sensing and integration of various metabolic pathways to maintain cellular homeostasis. Glucose homeostasis relies on tightly regulated insulin secretion by pancreatic β cells, and their dysfunction is a hallmark of type 2 diabetes. Glucagon also plays an important role in hyperglycemia in diabetic patients. Currently, lysosome has been recognized as a nutrient hub to regulate the homeostasis of insulin and other hormones. In this review, we will discuss recent advances in understanding lysosome-mediated autophagy and lysosomal proteins involved in maintaining insulin and glucagon homeostasis, as well as their contributions to the etiology of diabetes.
Collapse
Affiliation(s)
- Yi Wu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Hui Wang
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Huoyan Xu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
2
|
Hao M, Sebag SC, Qian Q, Yang L. Lysosomal physiology and pancreatic lysosomal stress in diabetes mellitus. EGASTROENTEROLOGY 2024; 2:e100096. [PMID: 39512752 PMCID: PMC11542681 DOI: 10.1136/egastro-2024-100096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Endocrine and exocrine functions of the pancreas control nutritional absorption, utilisation and systemic metabolic homeostasis. Under basal conditions, the lysosome is pivotal in regulating intracellular organelles and metabolite turnover. In response to acute or chronic stress, the lysosome senses metabolic flux and inflammatory challenges, thereby initiating the adaptive programme to re-establish cellular homeostasis. A growing body of evidence has demonstrated the pathophysiological relevance of the lysosomal stress response in metabolic diseases in diverse sets of tissues/organs, such as the liver and the heart. In this review, we discuss the pathological relevance of pancreatic lysosome stress in diabetes mellitus. We begin by summarising lysosomal biology, followed by exploring the immune and metabolic functions of lysosomes and finally discussing the interplay between lysosomal stress and the pathogenesis of pancreatic diseases. Ultimately, our review aims to enhance our understanding of lysosomal stress in disease pathogenesis, which could potentially lead to the discovery of innovative treatment methods for these conditions.
Collapse
Affiliation(s)
- Meihua Hao
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Sara C Sebag
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Qingwen Qian
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Ling Yang
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
3
|
Sisnande T, Brum FL, Matias DO, de Sá Ribeiro F, Moulin TB, Mohana-Borges R, de Magalhães MTQ, Lima LMTR. Spatially resolved distribution of pancreatic hormones proteoforms by MALDI-imaging mass spectrometry. Anal Biochem 2024; 692:115570. [PMID: 38763320 DOI: 10.1016/j.ab.2024.115570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
Zinc plays a crucial role both in the immune system and endocrine processes. Zinc restriction in the diet has been shown to lead to degeneration of the endocrine pancreas, resulting in hormonal imbalance within the β-cells. Proteostasismay vary depending on the stage of a pathophysiological process, which underscores the need for tools aimed at directly analyzing biological status. Among proteomics methods, MALDI-ToF-MS can serve as a rapid peptidomics tool for analyzing extracts or by histological imaging. Here we report the optimization of MALDI imaging mass spectrometry analysis of histological thin sections from mouse pancreas. This optimization enables the identification of the major islet peptide hormones as well as the major accumulated precursors and/or proteolytic products of peptide hormones. Cross-validation of the identified peptide hormones was performed by LC-ESI-MS from pancreatic islet extracts. Mice subjected to a zinc-restricted diet exhibited a relatively lower amount of peptide intermediates compared to the control group. These findings provide evidence for a complex modulation of proteostasis by micronutrients imbalance, a phenomenon directly accessed by MALDI-MSI.
Collapse
Affiliation(s)
- Tháyna Sisnande
- Laboratório de Biotecnologia Farmacêutica (pbiotech), Faculdade de Farmácia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil; Programa de Pós-Graduação Em Química Biológica, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.
| | - Felipe Lopes Brum
- Laboratório de Biotecnologia e Bioengenharia Estrutural (LABGENEST), Instituto de Biofísica Carlos Chagas Filho (IBCCF), Rio de Janeiro, RJ, 21941-902, Brazil.
| | - Daiane O Matias
- Laboratório de Biotecnologia Farmacêutica (pbiotech), Faculdade de Farmácia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil; Programa de Pós-Graduação Em Química Biológica, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.
| | - Fernando de Sá Ribeiro
- Laboratório de Biotecnologia Farmacêutica (pbiotech), Faculdade de Farmácia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil; Programa de Pós-Graduação Em Química Biológica, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.
| | - Thayana Beninatto Moulin
- Laboratório de Biotecnologia Farmacêutica (pbiotech), Faculdade de Farmácia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.
| | - Ronaldo Mohana-Borges
- Laboratório de Biotecnologia e Bioengenharia Estrutural (LABGENEST), Instituto de Biofísica Carlos Chagas Filho (IBCCF), Rio de Janeiro, RJ, 21941-902, Brazil; Centro de Espectrometria de Massa de Biomoléculas (CEMBIO), Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.
| | - Mariana T Q de Magalhães
- Laboratório de Biofísica de Macromoléculas (LBM), Instituto de Ciências Biomédicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.
| | - Luís Maurício T R Lima
- Laboratório de Biotecnologia Farmacêutica (pbiotech), Faculdade de Farmácia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil; Programa de Pós-Graduação Em Química Biológica, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil; Programa de Pós-Graduação Em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
4
|
Fang Z, Li X, Wang S, Jiang Q, Loor JJ, Jiang X, Ju L, Yu H, Shen T, Chen M, Song Y, Wang Z, Du X, Liu G. Overactivation of hepatic mechanistic target of rapamycin kinase complex 1 (mTORC1) is associated with low transcriptional activity of transcription factor EB and lysosomal dysfunction in dairy cows with clinical ketosis. J Dairy Sci 2022; 105:4520-4533. [DOI: 10.3168/jds.2021-20892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 01/14/2022] [Indexed: 11/19/2022]
|
5
|
Programmed cell death 4 modulates lysosomal function by inhibiting TFEB translation. Cell Death Differ 2020; 28:1237-1250. [PMID: 33100324 DOI: 10.1038/s41418-020-00646-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 12/27/2022] Open
Abstract
Transcription factor EB (TFEB) is a master regulator of autophagy and lysosomal biogenesis. The post-translational phosphorylation modulations of TFEB by mTOR and ERK signaling can determine its nucleocytoplasmic shuttling and activity in response to nutrient availability. However, regulations of TFEB at translational level are rarely known. Here, we found that programmed cell death 4 (PDCD4), a tumor suppressor, decreased levels of nuclear TFEB to inhibit lysosome biogenesis and function. Mechanistically, PDCD4 reduces global pool of TFEB by suppressing TFEB translation in an eIF4A-dependent manner, rather than influencing mTOR- and ERK2-dependnet TFEB nucleocytoplasmic shuttling. Both of MA3 domains within PDCD4 are required for TFEB translation inhibition. Furthermore, TFEB is required for PDCD4-mediated lysosomal function suppression. In the tumor microenvironment, PDCD4 deficiency promotes the anti-tumor effect of macrophage via enhancing TFEB expression. Our research reveals a novel PDCD4-dependent TFEB translational regulation and supports PDCD4 as a potential therapeutic target for lysosome dysfunction related diseases.
Collapse
|
6
|
Zheng HJ, Zhang X, Guo J, Zhang W, Ai S, Zhang F, Wang Y, Liu WJ. Lysosomal dysfunction-induced autophagic stress in diabetic kidney disease. J Cell Mol Med 2020; 24:8276-8290. [PMID: 32583573 PMCID: PMC7412686 DOI: 10.1111/jcmm.15301] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/26/2020] [Accepted: 04/02/2020] [Indexed: 12/14/2022] Open
Abstract
The catabolic process that delivers cytoplasmic constituents to the lysosome for degradation, known as autophagy, is thought to act as a cytoprotective mechanism in response to stress or as a pathogenic process contributing towards cell death. Animal and human studies have shown that autophagy is substantially dysregulated in renal cells in diabetes, suggesting that activating autophagy could be a therapeutic intervention. However, under prolonged hyperglycaemia with impaired lysosome function, increased autophagy induction that exceeds the degradative capacity in cells could contribute toward autophagic stress or even the stagnation of autophagy, leading to renal cytotoxicity. Since lysosomal function is likely key to linking the dual cytoprotective and cytotoxic actions of autophagy, it is important to develop novel pharmacological agents that improve lysosomal function and restore autophagic flux. In this review, we first provide an overview of the autophagic-lysosomal pathway, particularly focusing on stages of lysosomal degradation during autophagy. Then, we discuss the role of adaptive autophagy and autophagic stress based on lysosomal function. More importantly, we focus on the role of autophagic stress induced by lysosomal dysfunction according to the pathogenic factors (including high glucose, advanced glycation end products (AGEs), urinary protein, excessive reactive oxygen species (ROS) and lipid overload) in diabetic kidney disease (DKD), respectively. Finally, therapeutic possibilities aimed at lysosomal restoration in DKD are introduced.
Collapse
Affiliation(s)
- Hui Juan Zheng
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xueqin Zhang
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jing Guo
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Wenting Zhang
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Sinan Ai
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Fan Zhang
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yaoxian Wang
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Wei Jing Liu
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China.,Institute of Nephrology, and Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
7
|
Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat Rev Mol Cell Biol 2019; 21:101-118. [DOI: 10.1038/s41580-019-0185-4] [Citation(s) in RCA: 408] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2019] [Indexed: 12/11/2022]
|
8
|
Lysosomal degradation of newly formed insulin granules contributes to β cell failure in diabetes. Nat Commun 2019; 10:3312. [PMID: 31346174 PMCID: PMC6658524 DOI: 10.1038/s41467-019-11170-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
Compromised function of insulin-secreting pancreatic β cells is central to the development and progression of Type 2 Diabetes (T2D). However, the mechanisms underlying β cell failure remain incompletely understood. Here, we report that metabolic stress markedly enhances macroautophagy-independent lysosomal degradation of nascent insulin granules. In different model systems of diabetes including of human origin, stress-induced nascent granule degradation (SINGD) contributes to loss of insulin along with mammalian/mechanistic Target of Rapamycin (mTOR)-dependent suppression of macroautophagy. Expression of Protein Kinase D (PKD), a negative regulator of SINGD, is reduced in diabetic β cells. Pharmacological activation of PKD counters SINGD and delays the onset of T2D. Conversely, inhibition of PKD exacerbates SINGD, mitigates insulin secretion and accelerates diabetes. Finally, reduced levels of lysosomal tetraspanin CD63 prevent SINGD, leading to increased insulin secretion. Overall, our findings implicate aberrant SINGD in the pathogenesis of diabetes and suggest new therapeutic strategies to prevent β cell failure. Impaired beta-cell insulin secretion is a key pathological feature of type 2 diabetes. Here, the authors describe metabolic stress induced lysosomal degradation of newly formed insulin granules, independent of macroautophagy, as a potential mechanism for beta-cell dysfunction.
Collapse
|