1
|
Cheng H, Jin S, Huang S, Hu T, Zhao M, Li D, Wu B. Serum Proteomic Analysis by Tandem Mass Tag-Based Quantitative Proteomics in Pediatric Obstructive Sleep Apnea. Front Mol Biosci 2022; 9:762336. [PMID: 35480887 PMCID: PMC9035643 DOI: 10.3389/fmolb.2022.762336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/04/2022] [Indexed: 12/02/2022] Open
Abstract
Pediatric obstructive sleep apnea (OSA) is a frequent respiratory disorder with an estimated prevalence of 3–6% in the general population. However, the underlying pathophysiology of OSA remains unclear. Recently, proteomic analysis using high-resolution and high-throughput mass spectrometry has been widely used in the field of medical sciences. In the present study, tandem mass tag (TMT)-based proteomic analysis was performed in the serum of patients with OSA. The proteomic analysis revealed a set of differentially expressed proteins that may be associated with the pathophysiology of OSA. The differentially expressed proteins in patients with OSA were enriched in pathways including phagosome and glycan synthesis/degradation, immune response, and the hedgehog signaling pathway, indicating that such functions are key targets of OSA. Moreover, the experimental validation studies revealed that four proteins including ANTXR1, COLEC10, NCAM1, and VNN1 were reduced in the serum from patients with moderate and severe OSA, while MAN1A1 and CSPG4 protein levels were elevated in the serum from patients with severe OSA. The protein levels of ANTXR1, COLEC10, NCAM1, and VNN1 were inversely correlated with apnea-hypopnea index (AHI) in the recruited subjects, while the protein level of MAN1A1 was positively correlated with AHI, and no significant correlation was detected between CSPG4 protein and AHI. In summary, the present study for the first time identified differentially expressed proteins in the serum from OSA patients with different severities by using TMT-based proteomic analysis. The functional enrichment studies suggested that several signaling pathways may be associated with the pathophysiology of OSA. The experimental validation results indicated that six proteins including ANTXR1, COLEC10, NCAM1, VNN1, CGPG4, and MAN1A1 may play important roles in the pathophysiology of OSA, which requires further mechanistic investigation.
Collapse
Affiliation(s)
- Hanrong Cheng
- Institute of Respiratory Diseases, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Shoumei Jin
- Longgang ENT Hospital, Institute of ENT and Shenzhen Key Laboratory of ENT, Shenzhen, China
| | - Simin Huang
- Longgang ENT Hospital, Institute of ENT and Shenzhen Key Laboratory of ENT, Shenzhen, China
| | - Tianyong Hu
- Longgang ENT Hospital, Institute of ENT and Shenzhen Key Laboratory of ENT, Shenzhen, China
| | - Miao Zhao
- Longgang ENT Hospital, Institute of ENT and Shenzhen Key Laboratory of ENT, Shenzhen, China
| | - Dongcai Li
- Longgang ENT Hospital, Institute of ENT and Shenzhen Key Laboratory of ENT, Shenzhen, China
- *Correspondence: Dongcai Li, ; Benqing Wu,
| | - Benqing Wu
- Department of Neonatology, University of Chinese Academy of Science-Shenzhen Hospital, Shenzhen, China
- *Correspondence: Dongcai Li, ; Benqing Wu,
| |
Collapse
|
2
|
Conte L, Greco M, Toraldo DM, Arigliani M, Maffia M, De Benedetto M. A review of the "OMICS" for management of patients with obstructive sleep apnoea. ACTA ACUST UNITED AC 2021; 40:164-172. [PMID: 32773777 PMCID: PMC7416376 DOI: 10.14639/0392-100x-n0409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/21/2019] [Indexed: 12/11/2022]
Abstract
Obstructive sleep apnaea (OSA) syndrome is a condition characterised by the presence of complete or partial collapse of the upper airways during sleep, resulting in fragmentation of sleep associated with rapid episodes of intermittent hypoxia (IH), activation of the sympathetic nervous system and oxidative stress. OSA is associated with a broad spectrum of cardiovascular, metabolic and neurocognitive comorbidities that appear to be particularly evident in obese patients, while affecting both sexes in a different manner and varying in severity according to gender and age. In recent years, studies on OSA have increased considerably, but in clinical practice, it is still a highly underdiagnosed disease. To date, the gold standard for the diagnosis of OSA is nocturnal polysomnography (PSG). However, since it is not well suited for a large number of patients, the Home Sleep Test (HST) is also an accepted diagnostic method. Currently, the major aim of research is to identify non-invasive methods to achieve a highly predictive, non-invasive screening system for these subjects. The most recent reports indicate that research in this field has made significant progress in identifying possible biomarkers in OSA, using -OMIC approaches, particularly in the fields of proteomics and metabolomics. In this review, we analyse these OMIC biomarkers found in the literature.
Collapse
Affiliation(s)
- Luana Conte
- Interdisciplinary Laboratory of Applied Research in Medicine (DReAM), University of Salento, Lecce, Italy.,Laboratory of Advanced Data Analysis for Medicine (ADAM), Department of Mathematics and Physics "E. De Giorgi", University of Salento, Lecce, Italy
| | - Marco Greco
- Interdisciplinary Laboratory of Applied Research in Medicine (DReAM), University of Salento, Lecce, Italy.,Laboratory of Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Domenico Maurizio Toraldo
- Department Rehabilitation "V. Fazzi" Hospital, Cardio-Respiratory Unit Care, ASL-Lecce, San Cesario di Lecce (LE), Italy
| | | | - Michele Maffia
- Interdisciplinary Laboratory of Applied Research in Medicine (DReAM), University of Salento, Lecce, Italy.,Laboratory of Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy.,Laboratory of Clinical Proteomic, "Giovanni Paolo II" Hospital, ASL-Lecce, Italy
| | - Michele De Benedetto
- Interdisciplinary Laboratory of Applied Research in Medicine (DReAM), University of Salento, Lecce, Italy
| |
Collapse
|
3
|
Ljunggren M, Theorell‐Haglöw J, Freyhult E, Sahlin C, Franklin KA, Malinovschi A, Janson C, Lindberg E. Association between proteomics and obstructive sleep apnea phenotypes in a community‐based cohort of women. J Sleep Res 2020; 29:e13041. [DOI: 10.1111/jsr.13041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/02/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Mirjam Ljunggren
- Department of Medical Sciences, Respiratory, Allergy and Sleepss Research Uppsala University Uppsala Sweden
| | - Jenny Theorell‐Haglöw
- Department of Medical Sciences, Respiratory, Allergy and Sleepss Research Uppsala University Uppsala Sweden
| | - Eva Freyhult
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine National Bioinformatics Infrastructure Sweden Science for Life Laboratory Uppsala University Uppsala Sweden
| | - Carin Sahlin
- Department of Public Health and Clinical Medicine Umeå University Umea Sweden
| | - Karl A. Franklin
- Department of Surgical and Perioperative Sciences, Surgery Umeå University Umea Sweden
| | - Andrei Malinovschi
- Department of Medical Sciences Clinical Physiology Uppsala University Uppsala Sweden
| | - Christer Janson
- Department of Medical Sciences, Respiratory, Allergy and Sleepss Research Uppsala University Uppsala Sweden
| | - Eva Lindberg
- Department of Medical Sciences, Respiratory, Allergy and Sleepss Research Uppsala University Uppsala Sweden
| |
Collapse
|
4
|
Kohli M, Sharma SK, Upadhyay V, Varshney S, Sengupta S, Basak T, Sreenivas V. Urinary EPCR and dermcidin as potential novel biomarkers for severe adult OSA patients. Sleep Med 2019; 64:92-100. [PMID: 31677485 DOI: 10.1016/j.sleep.2019.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 06/23/2019] [Accepted: 07/02/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Due to low predictive values of obstructive sleep apnea (OSA) screening tools, there is a need for biomarker for screening of OSA patients at an early stage. The aim of the study was to evaluate differentially expressed proteins in blood and urine samples of OSA patients. METHODS In this study, we used isobaric tagging for relative and absolute quantification (iTRAQ) based proteomics approach to identify differentially expressed proteins, which were subsequently verified and validated using enzyme-linked immunosorbent assay (ELISA) technique in adult OSA patients. RESULTS Seventeen differentially expressed proteins were selected from iTRAQ data for verification, based on their clinical significance and reproducibility among different iTRAQ experiment sets. Five of these proteins (plasma = 2; urine = 3) were further validated in plasma (non-OSA- = 42; OSA = 198) and urine samples (non-OSA = 46; OSA = 197). ROC curve analysis for all OSA vs. non-OSA subjects ensured optimal diagnostic utility of two urinary proteins: Endothelial protein c receptor (EPCR) (AUC = 73%, cut-off: 35 pg/ml) and dermcidin (AUC = 74%, cut-off: 4.6 pg/ml). For severe OSA, diagnostic accuracy significantly improved with AUC as 88% and 82% for EPCR (cut-off: 46 pg/ml) and dermcidin (cut-off: 5.2 pg/ml) respectively. Sensitivity and specificity of combined performance of both urinary proteins for severe OSA were 94% and 91% respectively. CONCLUSION In this study, urinary EPCR and dermcidin emerged as novel biomarkers for screening severe OSA patients.
Collapse
Affiliation(s)
- Mikashmi Kohli
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| | - S K Sharma
- Department of Molecular Medicine, Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard (Deemed-to-be University), New Delhi, India.
| | - Vishwanath Upadhyay
- Department of Molecular Medicine, Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard (Deemed-to-be University), New Delhi, India
| | - Swati Varshney
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India
| | - Shantanu Sengupta
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India
| | - Trayambak Basak
- Division of Nephrology and Hypertension, Vanderbilt Medical Center, Nashville, United States
| | - V Sreenivas
- Department of Biostatistics, AIIMS, New Delhi, India
| |
Collapse
|
5
|
Masood A, Benabdelkamel H, Alfadda AA. Obesity Proteomics: An Update on the Strategies and Tools Employed in the Study of Human Obesity. High Throughput 2018; 7:ht7030027. [PMID: 30213114 PMCID: PMC6164994 DOI: 10.3390/ht7030027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/30/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023] Open
Abstract
Proteomics has become one of the most important disciplines for characterizing cellular protein composition, building functional linkages between protein molecules, and providing insight into the mechanisms of biological processes in a high-throughput manner. Mass spectrometry-based proteomic advances have made it possible to study human diseases, including obesity, through the identification and biochemical characterization of alterations in proteins that are associated with it and its comorbidities. A sizeable number of proteomic studies have used the combination of large-scale separation techniques, such as high-resolution two-dimensional gel electrophoresis or liquid chromatography in combination with mass spectrometry, for high-throughput protein identification. These studies have applied proteomics to comprehensive biochemical profiling and comparison studies while using different tissues and biological fluids from patients to demonstrate the physiological or pathological adaptations within their proteomes. Further investigations into these proteome-wide alterations will enable us to not only understand the disease pathophysiology, but also to determine signature proteins that can serve as biomarkers for obesity and related diseases. This review examines the different proteomic techniques used to study human obesity and discusses its successful applications along with its technical limitations.
Collapse
Affiliation(s)
- Afshan Masood
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia.
| | - Hicham Benabdelkamel
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia.
| | - Assim A Alfadda
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia.
- Department of Medicine, College of Medicine, King Saud University, P.O. Box 2925 (38), Riyadh 11461, Saudi Arabia.
| |
Collapse
|
6
|
Agra RM, Al-Daghri NM, Badimon L, Bodi V, Carbone F, Chen M, Cubedo J, Dullaart RPF, Eiras S, García-Monzón C, Gary T, Gnoni A, González-Rodríguez Á, Gremmel T, Hafner F, Hakala T, Huang B, Ickmans K, Irace C, Kholová I, Kimer N, Kytö V, März W, Miazgowski T, Møller S, Montecucco F, Niccoli G, Nijs J, Ozben S, Ozben T, Papassotiriou I, Papastamataki M, Reina-Couto M, Rios-Navarro C, Ritsch A, Sabico S, Seetho IW, Severino A, Sipilä J, Sousa T, Taszarek A, Taurino F, Tietge UJF, Tripolino C, Verloop W, Voskuil M, Wilding JPH. Research update for articles published in EJCI in 2014. Eur J Clin Invest 2016; 46:880-894. [PMID: 27571922 DOI: 10.1111/eci.12671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 08/26/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Rosa María Agra
- Department of Cardiology and Coronary Unit, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain.
| | - Nasser M Al-Daghri
- Biomarkers Research Program, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Lina Badimon
- Cardiovascular Research Center (CSIC-ICCC), Barcelona, Spain
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain
- Cardiovascular Research Chair, UAB, Barcelona, Spain
| | - Vicente Bodi
- Cardiology Department, Hospital Clinico Universitario, INCLIVA, University of Valencia, Valencia, Spain
| | - Federico Carbone
- First Clinical of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Mao Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Judit Cubedo
- Cardiovascular Research Center (CSIC-ICCC), Barcelona, Spain
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Robin P F Dullaart
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sonia Eiras
- Health Research Institute, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - Carmelo García-Monzón
- Liver Research Unit, Santa Cristina University Hospital, Instituto de Investigación Sanitaria Princesa, CIBEREHD, Madrid, Spain
| | - Thomas Gary
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Antonio Gnoni
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari 'Aldo Moro', Bari, Italy
| | - Águeda González-Rodríguez
- Liver Research Unit, Santa Cristina University Hospital, Instituto de Investigación Sanitaria Princesa, CIBEREHD, Madrid, Spain
| | - Thomas Gremmel
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Franz Hafner
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Tommi Hakala
- Department of Surgery, Tampere University Hospital, Tampere, Finland
| | - Baotao Huang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kelly Ickmans
- Pain in Motion International Research Group, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Brussels, Belgium
| | - Concetta Irace
- Department of Clinical and Experimental Medicine, University Magna Graecia, Catanzaro, Italy
| | - Ivana Kholová
- Department of Pathology, Fimlab Laboratories, Tampere University Hospital, Tampere, Finland
| | - Nina Kimer
- Department of Clinical Physiology and Nuclear Medicine, Center for Functional and Diagnostic Imaging and Research, Faculty of Health Sciences, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Ville Kytö
- Heart Center, Turku University Hospital, Turku, Finland
- Research Center of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Winfried März
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Synlab Academy, Synlab Holding Deutschland GmbH, Mannheim, Augsburg, Germany
| | - Tomasz Miazgowski
- Department of Hypertension and Internal Medicine, Pomeranian Medical University, Szczecin, Poland
| | - Søren Møller
- Department of Clinical Physiology and Nuclear Medicine, Center for Functional and Diagnostic Imaging and Research, Faculty of Health Sciences, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Fabrizio Montecucco
- First Clinical of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS AOU San Martino-IST, Genoa, Italy
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | | | - Jo Nijs
- Pain in Motion International Research Group, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Brussels, Belgium
| | - Serkan Ozben
- Department of Neurology, Antalya Training and Research Hospital, Antalya, Turkey
| | - Tomris Ozben
- Department of Medical Biochemistry, Medical Faculty, Akdeniz University, Antalya, Turkey
| | - Ioannis Papassotiriou
- Department of Clinical Biochemistry, 'Aghia Sophia' Children's Hospital, Athens, Greece
| | - Maria Papastamataki
- Department of Clinical Biochemistry, 'Aghia Sophia' Children's Hospital, Athens, Greece
| | - Marta Reina-Couto
- Departamento de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- MedInUP - Centro de Investigação Farmacológica e Inovação Medicamentosa, Universidade do Porto, Porto, Portugal
- Departamento de Medicina Intensiva, Centro Hospitalar São João, Porto, Portugal
| | - Cesar Rios-Navarro
- Cardiology Department, Hospital Clinico Universitario, INCLIVA, University of Valencia, Valencia, Spain
| | - Andreas Ritsch
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Shaun Sabico
- Biomarkers Research Program, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ian W Seetho
- Obesity and Endocrinology Research Group, University Hospital Aintree, University of Liverpool, Liverpool, UK
| | | | - Jussi Sipilä
- North Karelia Central Hospital, Joensuu, Finland
- Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland
- Department of Neurology, University of Turku, Turku, Finland
| | - Teresa Sousa
- Departamento de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- MedInUP - Centro de Investigação Farmacológica e Inovação Medicamentosa, Universidade do Porto, Porto, Portugal
| | - Aleksandra Taszarek
- Department of Hypertension and Internal Medicine, Pomeranian Medical University, Szczecin, Poland
| | - Federica Taurino
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Uwe J F Tietge
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Cesare Tripolino
- Department of Clinical and Experimental Medicine, University Magna Graecia, Catanzaro, Italy
| | - Willemien Verloop
- Department of Cardiology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Michiel Voskuil
- Department of Cardiology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - John P H Wilding
- Obesity and Endocrinology Research Group, University Hospital Aintree, University of Liverpool, Liverpool, UK
| |
Collapse
|
7
|
Zhang X, Schulz BL, Punyadeera C. The current status of heart failure diagnostic biomarkers. Expert Rev Mol Diagn 2016; 16:487-500. [PMID: 26788983 DOI: 10.1586/14737159.2016.1144474] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heart failure (HF) affects approximately 23 million individuals worldwide and this number is increasing, due to an aging and growing population. Early detection of HF is crucial in the management of this debilitating disease. Current diagnostic methods for HF rely heavily on clinical imaging techniques and blood analysis, which makes them less than ideal for population-based screening purposes. Studies focusing on developing novel biomarkers for HF have utilized various techniques and biological fluids, including urine and saliva. Promising results from these studies imply that these body fluids can be used in evaluating the clinical manifestation of HF and will one day be integrated into a clinical workflow and facilitate HF management.
Collapse
Affiliation(s)
- Xi Zhang
- a The School of Biomedical Sciences , Institute of Health and Biomedical Innovations, Queensland University of Technology , Brisbane , Queensland , Australia
| | - Benjamin L Schulz
- b School of Chemistry and Molecular Biosciences , The University of Queensland , Brisbane , Queensland , Australia
| | - Chamindie Punyadeera
- a The School of Biomedical Sciences , Institute of Health and Biomedical Innovations, Queensland University of Technology , Brisbane , Queensland , Australia
| |
Collapse
|
8
|
An M, Gao Y. Urinary Biomarkers of Brain Diseases. GENOMICS PROTEOMICS & BIOINFORMATICS 2016; 13:345-54. [PMID: 26751805 PMCID: PMC4747650 DOI: 10.1016/j.gpb.2015.08.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/01/2015] [Accepted: 08/14/2015] [Indexed: 12/12/2022]
Abstract
Biomarkers are the measurable changes associated with a physiological or pathophysiological process. Unlike blood, urine is not subject to homeostatic mechanisms. Therefore, greater fluctuations could occur in urine than in blood, better reflecting the changes in human body. The roadmap of urine biomarker era was proposed. Although urine analysis has been attempted for clinical diagnosis, and urine has been monitored during the progression of many diseases, particularly urinary system diseases, whether urine can reflect brain disease status remains uncertain. As some biomarkers of brain diseases can be detected in the body fluids such as cerebrospinal fluid and blood, there is a possibility that urine also contain biomarkers of brain diseases. This review summarizes the clues of brain diseases reflected in the urine proteome and metabolome.
Collapse
Affiliation(s)
- Manxia An
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, China; School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.
| | - Youhe Gao
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, China; Department of Biochemistry and Molecular Biology, Beijing Normal University, Beijing Key Laboratory of Gene Engineering and Biotechnology, Beijing 100875, China.
| |
Collapse
|
9
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2013-middle 2015). Electrophoresis 2015; 37:162-88. [DOI: 10.1002/elps.201500329] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 08/25/2015] [Accepted: 08/25/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry, v.v.i; The Czech Academy of Sciences; Prague Czech Republic
| |
Collapse
|
10
|
Štěpánová S, Kašička V. Recent developments and applications of capillary and microchip electrophoresis in proteomic and peptidomic analyses. J Sep Sci 2015; 39:198-211. [DOI: 10.1002/jssc.201500973] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 10/06/2015] [Accepted: 10/06/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Sille Štěpánová
- Institute of Organic Chemistry and Biochemistry; The Czech Academy of Sciences; Prague Czech Republic
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry; The Czech Academy of Sciences; Prague Czech Republic
| |
Collapse
|
11
|
Xu H, Zheng X, Jia W, Yin S. Chromatography/Mass Spectrometry-Based Biomarkers in the Field of Obstructive Sleep Apnea. Medicine (Baltimore) 2015; 94:e1541. [PMID: 26448002 PMCID: PMC4616745 DOI: 10.1097/md.0000000000001541] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Biomarker assessment is based on quantifying several proteins and metabolites. Recent developments in proteomics and metabolomics have enabled detection of these small molecules in biological samples and exploration of the underlying disease mechanisms in obstructive sleep apnea (OSA). This systemic review was performed to identify biomarkers, which were only detected by chromatography and/or mass spectrometry (MS) and to discuss the role of these biomarkers in the field of OSA. We systemically reviewed relevant articles from PubMed and EMBASE referring to proteins and metabolite profiles of biological samples in patients with OSA. The analytical platforms in this review were focused on chromatography and/or MS. In total, 30 studies evaluating biomarkers in patients with OSA using chromatography and/or MS methods were included. Numerous proteins and metabolites, including lipid profiles, adrenergic/dopaminergic biomarkers and derivatives, amino acids, oxidative stress biomarkers, and other micromolecules were identified in patients with OSA. Applying chromatography and/or MS methods to detect biomarkers helps develop an understanding of OSA mechanisms. More proteomic and metabolomic studies are warranted to develop potential diagnostic and clinical monitoring methods for OSA.
Collapse
Affiliation(s)
- Huajun Xu
- From the Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China (HX, XZ, SY); and Center for Translational Medicine, and Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China (HX, XZ, WJ)
| | | | | | | |
Collapse
|
12
|
Seetho IW, Ramírez-Torres A, Albalat A, Mullen W, Mischak H, Parker RJ, Craig S, Duffy N, Hardy KJ, Burniston JG, Wilding JPH. Urinary proteomic profiling in severe obesity and obstructive sleep apnoea with CPAP treatment. Sleep Sci 2015; 8:58-67. [PMID: 26483946 PMCID: PMC4608901 DOI: 10.1016/j.slsci.2015.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 06/23/2015] [Accepted: 06/24/2015] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Obstructive sleep apnoea (OSA) is common in obesity and is associated with cardiovascular and metabolic complications. Continuous positive airway pressure (CPAP) in OSA may lead to physiological changes reflected in the urinary proteome. The aim of this study was to characterise the urinary proteome in severely obese adult subjects with OSA who were receiving CPAP compared with severely obese subjects without OSA. METHODS Severely obese subjects with and without OSA were recruited. Subjects with OSA were receiving CPAP. Body composition and blood pressure measurements were recorded. Urinary samples were analysed by Capillary Electrophoresis-Mass Spectrometry (CE-MS). RESULTS Twenty-seven subjects with OSA-on-CPAP (age 49±7years, BMI 43±7 kg/m(2)) and 25 controls without OSA (age 52±9years, BMI 39±4 kg/m(2)) were studied. Age and BMI were not significantly different between groups. Mean CPAP use for OSA patients was 14.5±1.0 months. Metabolic syndrome was present in 14(52%) of those with OSA compared with 6(24%) of controls (p=0.039). A urinary proteome comprising 15 peptides was identified showing differential expression between the groups (p<0.01). Although correction for multiple testing did not reach significance, sequences were determined for 8 peptides demonstrating origins from collagens, fibrinogen beta chain and T-cadherin that may be associated with underlying cardiovascular disease mechanisms in OSA. CONCLUSIONS The urinary proteome is compared in OSA with CPAP and without OSA in severe obesity. The effects of CPAP on OSA may lead to changes in the urinary peptides but further research work is needed to investigate the potential role for urinary proteomics in characterising urinary peptide profiles in OSA.
Collapse
Affiliation(s)
- Ian W Seetho
- Department of Obesity & Endocrinology, University of Liverpool, UK
| | - Adela Ramírez-Torres
- Mosaiques Diagnostics GmbH, Hannover, Germany
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Amaya Albalat
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - William Mullen
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Harald Mischak
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Robert J Parker
- Department of Respiratory Medicine, University Hospital Aintree, Liverpool, UK
| | - Sonya Craig
- Department of Respiratory Medicine, University Hospital Aintree, Liverpool, UK
| | - Nick Duffy
- Department of Respiratory Medicine, University Hospital Aintree, Liverpool, UK
| | - Kevin J Hardy
- Department of Diabetes & Endocrinology, St Helens & Knowsley Teaching Hospitals, UK
| | - Jatin G Burniston
- School of Sports & Exercise Sciences, Liverpool John Moores University, UK
| | - John PH Wilding
- Department of Obesity & Endocrinology, University of Liverpool, UK
| |
Collapse
|
13
|
Overview of proteomics studies in obstructive sleep apnea. Sleep Med 2015; 16:437-45. [PMID: 25770042 DOI: 10.1016/j.sleep.2014.11.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 11/25/2014] [Accepted: 11/27/2014] [Indexed: 02/06/2023]
Abstract
Obstructive sleep apnea (OSA) is an underdiagnosed common public health concern causing deleterious effects on metabolic and cardiovascular health. Although much has been learned regarding the pathophysiology and consequences of OSA in the past decades, the molecular mechanisms associated with such processes remain poorly defined. The advanced high-throughput proteomics-based technologies have become a fundamental approach for identifying novel disease mediators as potential diagnostic and therapeutic targets for many diseases, including OSA. Here, we briefly review OSA pathophysiology and the technological advances in proteomics and the first results of its application to address critical issues in the OSA field.
Collapse
|