1
|
Wang C, Li Y, Feng J, Liu H, Wang Y, Wan Y, Zheng M, Li X, Chen T, Xiao X. Plasmalogens and Octanoylcarnitine Serve as Early Warnings for Central Retinal Artery Occlusion. Mol Neurobiol 2024; 61:8026-8037. [PMID: 38459364 DOI: 10.1007/s12035-024-04093-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
Central retinal artery occlusion (CRAO) is a kind of ophthalmic emergency which may cause loss of functional visual acuity. However, the limited treatment options emphasize the significance of early disease prevention. Metabolomics has the potential to be a powerful tool for early identification of individuals at risk of CRAO. The aim of the study was to identify potential biomarkers for CRAO through a comprehensive analysis. We employed metabolomics analysis to compare venous blood samples from CRAO patients with cataract patients for the venous difference, as well as arterial and venous blood from CRAO patients for the arteriovenous difference. The analysis of metabolites showed that PC(P-18:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), PC(P-18:0/20:4(5Z,8Z,11Z,14Z)) and octanoylcarnitine were strongly correlated with CRAO. We also used univariate logistic regression, random forest (RF), and support vector machine (SVM) to screen clinical parameters of patients and found that HDL-C and ApoA1 showed significant predictive efficacy in CRAO patients. We compared the predictive performance of the clinical parameter model with combined model. The prediction efficiency of the combined model was significantly better with area under the receiver operating characteristic curve (AUROC) of 0.815. Decision curve analysis (DCA) also exhibited a notably higher net benefit rate. These results underscored the potency of these three substances as robust predictors of CRAO occurrence.
Collapse
Affiliation(s)
- Chuansen Wang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China
| | - Ying Li
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China
| | - Jiaqing Feng
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China
| | - Hang Liu
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuedan Wang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China
| | - Yuwei Wan
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China
| | - Mengxue Zheng
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China
| | - Xuejie Li
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China
| | - Ting Chen
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China.
| | - Xuan Xiao
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China.
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Zhao H, Zhu G, Zhu T, Ding B, Xu A, Gao S, Chao Y, Li N, Chen Y, Wang Z, Jie Y, Dong X. Gut microbiome and metabolism alterations in schizophrenia with metabolic syndrome severity. BMC Psychiatry 2024; 24:529. [PMID: 39048972 PMCID: PMC11267952 DOI: 10.1186/s12888-024-05969-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Schizophrenia (SCZ) patients undergoing antipsychotic treatment demonstrated a high prevalence and harmful effects of metabolic syndrome (MetS), which acted as the major cause of cardiovascular disease. The major clinical challenge is the lack of biomarkers to identify MetS episodes and prevent further damage, while the mechanisms underlying these drug-induced MetS remain unknown. METHODS This study divided 173 participants with SCZ into 3 groups (None, High risk, and MetS, consisting of 22, 88, and 63 participants, respectively). The potential biomarkers were searched based on 16S rRNA gene sequence together with metabolism analysis. Logistic regression was used to test the effects of the genus-metabolites panel on early MetS diagnoses. RESULTS A genus-metabolites panel, consisting of Senegalimassilia, sphinganine, dihomo-gamma-linolenoylcholine, isodeoxycholic acid, and MG (0:0/22:5/0:0), which involved in sphigolipid metabolism, fatty acid metabolism, secondary bile acid biosynthesis and glycerolipid metabolism, has a great discrimination efficiency to MetS with an area under the curve (AUC) value of 0.911 compared to the None MetS group (P = 1.08E-8). Besides, Senegalimassilia, 3-Hydroxytetradecanoyl carnitine, isodeoxycholic acid, and DG(TXB2/0:0/2:0) distinguished between subgroups robustly and exhibited a potential correlation with the severity of MetS in patients with SCZ, and may act as the biomarkers for early MetS diagnosis. CONCLUSIONS Our multi-omics study showed that one bacterial genus-five lipid metabolites panel is the potential risk factor for MetS in SCZ. Furthermore, Senegalimassilia, 3-Hydroxytetradecanoyl carnitine, isodeoxycholic acid, and DG(TXB2/0:0/2:0) could serve as novel diagnostic markers in the early stage. So, it is obvious that the combination of bacterial genus and metabolites yields excellent discriminatory power, and the lipid metabolism provide new understanding to the pathogenesis, prevention, and therapy for MetS in SCZ.
Collapse
Affiliation(s)
- Hongxia Zhao
- School of Medicine, Shanghai University, Shanghai, 200444, China
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang, 524045, China
| | - Guang Zhu
- Hongkou Mental Health Center, Shanghai, 200083, China
| | - Tong Zhu
- School of Medicine, Shanghai University, Shanghai, 200444, China
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Binbin Ding
- Hongkou Mental Health Center, Shanghai, 200083, China
| | - Ahong Xu
- Hongkou Mental Health Center, Shanghai, 200083, China
| | - Songyan Gao
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Yufan Chao
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Na Li
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yongchun Chen
- Department of Pharmacy, The First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Zuowei Wang
- Hongkou Mental Health Center, Shanghai, 200083, China.
- Clinical Research Center for Mental Health, School of Medicine, Shanghai University, Shanghai, 200083, China.
| | - Yong Jie
- Hongkou Mental Health Center, Shanghai, 200083, China.
- Clinical Research Center for Mental Health, School of Medicine, Shanghai University, Shanghai, 200083, China.
| | - Xin Dong
- School of Medicine, Shanghai University, Shanghai, 200444, China.
- Clinical Research Center for Mental Health, School of Medicine, Shanghai University, Shanghai, 200083, China.
| |
Collapse
|
3
|
Wang S, He T, Wang H. Non-targeted metabolomics study for discovery of hepatocellular carcinoma serum diagnostic biomarker. J Pharm Biomed Anal 2024; 239:115869. [PMID: 38064771 DOI: 10.1016/j.jpba.2023.115869] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/06/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignant cancers worldwide. Due to the asymptomatic features of HCC at early stages, patients are often diagnosed at advanced stages and missed effective treatment. Thus, there is an urgent need to identify sensitive and specific biomarkers for HCC early diagnosis. In the present study, an ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) approach was used to profile serum metabolites from HCC patients, liver cirrhosis (LC) patients, and normal controls (NC). Univariate and multivariate statistical analyses were performed to obtain the metabolomic differences of the three groups and select significantly changed metabolites that can be used as diagnostic biomarkers. In total, 757 differential metabolites were quantified among the three groups, and pathway enrichment analysis of these metabolites indicated that glycerophospholipid metabolism, pentose and glucuronate interconversions, phenylalanine, tyrosine and tryptophan biosynthesis, and linoleic acid metabolism were the most altered pathways involved in HCC development. Receiver operating characteristic (ROC) curve analysis was performed to select and evaluate the diagnostic biomarker performance. Seven metabolites were identified as potential biomarkers that can differentiate HCC from LC and NC, and LC from NC with the good diagnostic performance of area under the curve (AUC) from 0.890 to 0.990. In summary, our findings provide highly effective biomarker candidates to differentiate HCC from LC and NC, LC, and NC, which shed insight into HCC pathological mechanisms and will be helpful in better understanding and managing HCC.
Collapse
Affiliation(s)
- Shufeng Wang
- Keystonobel Biotechnologies and Pharmaceuticals (Beijing) Co., Ltd, Beijing 100176, PR China
| | - Tingting He
- Department of Hepatology Medicine of Traditional Chinese Medicine, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, PR China
| | - Hongxia Wang
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo 315211, PR China; School of Material Science and Chemical Engineering Ningbo University, Ningbo 315211, PR China; Ningbo Zhenhai Institute of Mass Spectrometry, Ningbo 315206, PR China.
| |
Collapse
|
4
|
Chen L, Wang S, Zhang Y, Li Y, Zhang X, Ma J, Zou X, Yao T, Li S, Chen J, Zhou H, Wu L, Zhou Y, Zhang L. Multi-omics reveals specific host metabolism-microbiome associations in intracerebral hemorrhage. Front Cell Infect Microbiol 2022; 12:999627. [PMID: 36619742 PMCID: PMC9813413 DOI: 10.3389/fcimb.2022.999627] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is the most devastating subtype of stroke, but effective prevention and treatment strategies are lacking. Recently, gut microbiome and its metabolitesis are considered to be an influencing factor of stroke. However, little is known about the effects of the gut microbiome on ICH and host metabolic activity. Therefore, we used 16S sequencing, macrogenomics sequencing and untargeted metabolomics to explore the differences in gut microbial-metabolome interactions between patients with intracerebral hemorrhage and healthy control populations. We found a significant decrease in the phylum of Firmicutes and a significant increase of Bacteroidetes in ICH patients. At the genus level, Streptococcus, Bifidobacterium, Akkermansia, and Lactobacillus were more abundant in ICH patients. Macrogenomic analysis revealed active glycosaminoglycan degradation, heme synthesis, galactose degradation, lipopolysaccharide core region synthesis, and beta-Lactam resistance in ICH patients. Serum untargeted metabolomic analysis combined with ROC curves showed that octanoylcarnitine, decanoylcarnitine, dodecanoylcarnitine, glyceric acid, pyruvic acid, aspartic acid, methylcysteine, pyroglutamic acid, 9E-tetradecenoic acid, N-Acetylneuraminic acid, and aconitic acid were the best markers for the diagnosis of ICH. Correlation analysis showed that microbiome enriched in the gut of ICH patients were significantly correlated with serum metabolites, revealing a close correlation between the gut microbiome of ICH patients and the host metabolome, and significant differences from the healthy population. microbiota-host co-metabolites including pyruvic acid and 9E-tetradecenoic acid is associated with the the National Institutes of Health Stroke Scale (NIHSS) scores. In conclusion, microbiome-related metabolites in ICH patients was associated with the severity of ICH, the microbiota-host co-metabolites may be a potential may be potential therapeutic targets.
Collapse
Affiliation(s)
- Lei Chen
- Department of Neurology, Multi-Modal Monitoring Technology for Severe Cerebrovascular Disease of Human Engineering Research Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sai Wang
- Department of Neurology, Multi-Modal Monitoring Technology for Severe Cerebrovascular Disease of Human Engineering Research Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yupeng Zhang
- Department of Neurology, Multi-Modal Monitoring Technology for Severe Cerebrovascular Disease of Human Engineering Research Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ye Li
- Department of Neurology, Multi-Modal Monitoring Technology for Severe Cerebrovascular Disease of Human Engineering Research Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiangbin Zhang
- Department of Neurology, Multi-Modal Monitoring Technology for Severe Cerebrovascular Disease of Human Engineering Research Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Junyi Ma
- Department of Neurology, Multi-Modal Monitoring Technology for Severe Cerebrovascular Disease of Human Engineering Research Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuelun Zou
- Department of Neurology, Multi-Modal Monitoring Technology for Severe Cerebrovascular Disease of Human Engineering Research Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - TianXing Yao
- Department of Neurology, Multi-Modal Monitoring Technology for Severe Cerebrovascular Disease of Human Engineering Research Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Si Li
- Department of Neurology, Multi-Modal Monitoring Technology for Severe Cerebrovascular Disease of Human Engineering Research Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Junyou Chen
- Department of Neurology, Multi-Modal Monitoring Technology for Severe Cerebrovascular Disease of Human Engineering Research Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huifang Zhou
- Department of Neurology, Multi-Modal Monitoring Technology for Severe Cerebrovascular Disease of Human Engineering Research Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lianxu Wu
- Department of Neurology, Multi-Modal Monitoring Technology for Severe Cerebrovascular Disease of Human Engineering Research Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan, China,*Correspondence: Le Zhang, ; Yanhong Zhou,
| | - Le Zhang
- Department of Neurology, Multi-Modal Monitoring Technology for Severe Cerebrovascular Disease of Human Engineering Research Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China,*Correspondence: Le Zhang, ; Yanhong Zhou,
| |
Collapse
|
5
|
Mednova IA, Chernonosov AA, Kornetova EG, Semke AV, Bokhan NA, Koval VV, Ivanova SA. Levels of Acylcarnitines and Branched-Chain Amino Acids in Antipsychotic-Treated Patients with Paranoid Schizophrenia with Metabolic Syndrome. Metabolites 2022; 12:metabo12090850. [PMID: 36144254 PMCID: PMC9504797 DOI: 10.3390/metabo12090850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
Several studies have shown that patients with schizophrenia are at high risk for metabolic syndrome (MetS) and bioenergetic dysfunction. Because acylcarnitines are involved in bioenergetic pathways and reflect the functioning of mitochondria, we hypothesized that these compounds are biomarkers of MetS in schizophrenia. The aim of this work was to quantify acylcarnitines and branched-chain amino acids in patients with schizophrenia comorbid with MetS. The study included 112 patients with paranoid schizophrenia treated with antipsychotics. Among them, 39 subjects met criteria of MetS. Concentrations of 30 acylcarnitines and three amino acids in dry serum spots were measured by liquid chromatography coupled with tandem mass spectrometry. MetS patients were found to have higher levels of valeryl carnitine (C5), leucine/isoleucine, and alanine as compared with patients without MetS, indicating possible participation of these compounds in the pathogenesis of metabolic disorders in schizophrenia. In patients with paranoid schizophrenia with or without MetS, lower levels of carnitines C10, C10:1, C12, and C18 were recorded as compared with the healthy individuals (n = 70), implying deterioration of energy metabolism. We believe that this finding can be explained by effects of antipsychotic medication on an enzyme called carnitine-palmitoyl transferase I.
Collapse
Affiliation(s)
- Irina A. Mednova
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Aleutskaya Str. 4, 634014 Tomsk, Russia
- Correspondence:
| | - Alexander A. Chernonosov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Lavrentyev Avenue 8, 630090 Novosibirsk, Russia
| | - Elena G. Kornetova
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Aleutskaya Str. 4, 634014 Tomsk, Russia
- Siberian State Medical University Hospital, Moskovsky Trakt 2, 634050 Tomsk, Russia
| | - Arkadiy V. Semke
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Aleutskaya Str. 4, 634014 Tomsk, Russia
| | - Nikolay A. Bokhan
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Aleutskaya Str. 4, 634014 Tomsk, Russia
- Department of Psychiatry, Addictology and Psychotherapy, Siberian State Medical University, Moskovsky Trakt 2, 634050 Tomsk, Russia
| | - Vladimir V. Koval
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Lavrentyev Avenue 8, 630090 Novosibirsk, Russia
| | - Svetlana A. Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Aleutskaya Str. 4, 634014 Tomsk, Russia
- Department of Psychiatry, Addictology and Psychotherapy, Siberian State Medical University, Moskovsky Trakt 2, 634050 Tomsk, Russia
| |
Collapse
|
6
|
Dambrova M, Makrecka-Kuka M, Kuka J, Vilskersts R, Nordberg D, Attwood MM, Smesny S, Sen ZD, Guo AC, Oler E, Tian S, Zheng J, Wishart DS, Liepinsh E, Schiöth HB. Acylcarnitines: Nomenclature, Biomarkers, Therapeutic Potential, Drug Targets, and Clinical Trials. Pharmacol Rev 2022; 74:506-551. [PMID: 35710135 DOI: 10.1124/pharmrev.121.000408] [Citation(s) in RCA: 230] [Impact Index Per Article: 76.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Acylcarnitines are fatty acid metabolites that play important roles in many cellular energy metabolism pathways. They have historically been used as important diagnostic markers for inborn errors of fatty acid oxidation and are being intensively studied as markers of energy metabolism, deficits in mitochondrial and peroxisomal β -oxidation activity, insulin resistance, and physical activity. Acylcarnitines are increasingly being identified as important indicators in metabolic studies of many diseases, including metabolic disorders, cardiovascular diseases, diabetes, depression, neurologic disorders, and certain cancers. The US Food and Drug Administration-approved drug L-carnitine, along with short-chain acylcarnitines (acetylcarnitine and propionylcarnitine), is now widely used as a dietary supplement. In light of their growing importance, we have undertaken an extensive review of acylcarnitines and provided a detailed description of their identity, nomenclature, classification, biochemistry, pathophysiology, supplementary use, potential drug targets, and clinical trials. We also summarize these updates in the Human Metabolome Database, which now includes information on the structures, chemical formulae, chemical/spectral properties, descriptions, and pathways for 1240 acylcarnitines. This work lays a solid foundation for identifying, characterizing, and understanding acylcarnitines in human biosamples. We also discuss the emerging opportunities for using acylcarnitines as biomarkers and as dietary interventions or supplements for many wide-ranging indications. The opportunity to identify new drug targets involved in controlling acylcarnitine levels is also discussed. SIGNIFICANCE STATEMENT: This review provides a comprehensive overview of acylcarnitines, including their nomenclature, structure and biochemistry, and use as disease biomarkers and pharmaceutical agents. We present updated information contained in the Human Metabolome Database website as well as substantial mapping of the known biochemical pathways associated with acylcarnitines, thereby providing a strong foundation for further clarification of their physiological roles.
Collapse
Affiliation(s)
- Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Marina Makrecka-Kuka
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Janis Kuka
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Reinis Vilskersts
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Didi Nordberg
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Misty M Attwood
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Stefan Smesny
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Zumrut Duygu Sen
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - An Chi Guo
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Eponine Oler
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Siyang Tian
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Jiamin Zheng
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - David S Wishart
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Edgars Liepinsh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Helgi B Schiöth
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| |
Collapse
|
7
|
Evaluation of lipid metabolism imbalance in HIV-infected patients with metabolic disorders using high-performance liquid chromatography-tandem mass spectrometry. Clin Chim Acta 2021; 526:30-42. [PMID: 34942169 DOI: 10.1016/j.cca.2021.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 11/22/2022]
Abstract
Human immunodeficiency virus (HIV) infection and highly active antiretroviral therapy use are associated with the disruption of lipid and glucose metabolism. Herein, a sensitive and robust high-performance liquid chromatography-tandem mass spectrometry method for the quantitation of lysophosphatidylcholines (LPCs) and acylcarnitines (ACs) in human blood serum was developed and validated to investigate them as markers of metabolic disorders in HIV-infected patients. Under optimal extraction and detection conditions, the lower limits of quantification reached 5 ng/mL (LPCs) and 0.1 ng/mL (ACs), and precision and accuracy for both intra- and inter-day analyses were generally below 15%. Serum samples were stable for at least six months when stored at - 80 °C and for at least 12 h when stored at 4 °C or 25 °C. We investigated inter-group differences and associations between the biomarkers and observed a particular volatilitytrend of LPCs and ACs for HIV-infected patients with metabolic disorders. Thus, the developed method can be used for the rapid and sensitive quantitation of LPCs and ACs in vivo to further appraise the process of HIV infection, evaluate interveningmeasures, conduct mechanistic investigations, and further study the utility of LPCs and ACs as biomarkers of HIV infection coupled with metabolic disorders.
Collapse
|
8
|
Zhou Z, Chen Y, Gao Y, Bi N, Yue X, He J, Zhang R, Wang L, Abliz Z. Development of a high-coverage metabolome relative quantitative method for large-scale sample analysis. Anal Chim Acta 2020; 1109:44-52. [DOI: 10.1016/j.aca.2020.02.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/18/2020] [Accepted: 02/25/2020] [Indexed: 12/23/2022]
|
9
|
Abstract
OBJECTIVE To evaluate plasma acylcarnitine profiles and their relationships with progression of carotid artery atherosclerosis among individuals with and without HIV infection. DESIGN Prospective cohort studies of 499 HIV-positive and 206 HIV-negative individuals from the Women's Interagency HIV Study and the Multicenter AIDS Cohort Study. METHODS Twenty-four acylcarnitine species were measured in plasma samples of participants at baseline. Carotid artery plaque was assessed using repeated B-mode carotid artery ultrasound imaging in 2004-2013. We examined the associations of individual and aggregate short-chain (C2-C7), medium-chain (C8-C14) and long-chain acylcarnitines (C16-C26) with incident carotid artery plaque over 7 years. RESULTS Among 24 acylcarnitine species, C8-carnitines and C20 : 4-carnitines showed significantly lower levels comparing HIV-positive to HIV-negative individuals (false discovery rate adjusted P < 0.05); and C20-carnitines and C26-carnitines showed significantly higher levels in HIV positive using antiretroviral therapy than those without antiretroviral therapy (false discovery rate adjusted P < 0.05). In the univariate analyses, higher aggregated short-chain and long-chain acylcarnitine scores were associated with increased risk of carotid artery plaque [risk ratios (RRs) = 1.22 (95% confidence interval 1.02-1.45) and 1.20 (1.02-1.41) per SD increment, respectively]. The association for the short-chain acylcarnitine score remained significant [RR = 1.23 (1.05-1.44)] after multivariate adjustment (including traditional cardiovascular disease risk factors). This association was more evident in HIV-positive individuals without persistent viral suppression [RR = 1.37 (1.11-1.69)] compared with those with persistent viral suppression during follow-up [RR = 1.03 (0.76-1.40)] or HIV-negative individuals [RR = 1.02 (0.69-1.52)]. CONCLUSION In two HIV cohorts, plasma levels of most acylcarnitines were not significantly different between HIV-positive and HIV-negative individuals. However, higher levels of aggregated short-chain acylcarnitines were associated with progression of carotid artery atherosclerosis.
Collapse
|
10
|
Khan A, Shin OS, Na J, Kim JK, Seong RK, Park MS, Noh JY, Song JY, Cheong HJ, Park YH, Kim WJ. A Systems Vaccinology Approach Reveals the Mechanisms of Immunogenic Responses to Hantavax Vaccination in Humans. Sci Rep 2019; 9:4760. [PMID: 30886186 PMCID: PMC6423257 DOI: 10.1038/s41598-019-41205-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 02/27/2019] [Indexed: 01/08/2023] Open
Abstract
Hantavax is an inactivated vaccine for hemorrhagic fever with renal syndrome (HFRS). The immunogenic responses have not been elucidated yet. Here we conducted a cohort study in which 20 healthy subjects were administered four doses of Hantavax during 13-months period. Pre- and post- vaccinated peripheral blood mononuclear cells (PBMCs) and sera were analysed by transcriptomic and metabolomic profilings, respectively. Based on neutralizing antibody titers, subjects were subsequently classified into three groups; non responders (NRs), low responders (LRs) and high responders (HRs). Post vaccination differentially expressed genes (DEGs) associated with innate immunity and cytokine pathways were highly upregulated. DEG analysis revealed a significant induction of CD69 expression in the HRs. High resolution metabolomics (HRM) analysis showed that correlated to the antibody response, cholesteryl nitrolinoleate, octanoyl-carnitine, tyrosine, ubiquinone-9, and benzoate were significantly elevated in HRs, while chenodeoxycholic acid and methyl palmitate were upregulated in NRs and LRs, compared with HRs. Additionally, gene-metabolite interaction revealed upregulated gene-metabolite couplings in, folate biosynthesis, nicotinate and nicotinamide, arachidonic acid, thiamine and pyrimidine metabolism in a dose dependent manner in HR group. Collectively, our data provide new insight into the underlying mechanisms of the Hantavax-mediated immunogenicity in humans.
Collapse
Affiliation(s)
- Adnan Khan
- Metabolomics Laboratory, Korea University College of Pharmacy, Sejeong city, Republic of Korea
| | - Ok Sarah Shin
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jinhyuk Na
- Metabolomics Laboratory, Korea University College of Pharmacy, Sejeong city, Republic of Korea
| | - Jae Kwan Kim
- Metabolomics Laboratory, Korea University College of Pharmacy, Sejeong city, Republic of Korea
| | - Rak-Kyun Seong
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Man-Seong Park
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Ji Yun Noh
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Joon Young Song
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hee Jin Cheong
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Youngja Hwang Park
- Metabolomics Laboratory, Korea University College of Pharmacy, Sejeong city, Republic of Korea.
| | - Woo Joo Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea. .,Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Characterizing acyl-carnitine biosignatures for schizophrenia: a longitudinal pre- and post-treatment study. Transl Psychiatry 2019; 9:19. [PMID: 30655505 PMCID: PMC6336814 DOI: 10.1038/s41398-018-0353-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/18/2018] [Accepted: 11/08/2018] [Indexed: 12/21/2022] Open
Abstract
Subjects with schizophrenia have high risks of metabolic abnormalities and bioenergetic dysfunction. Acyl-carnitines involved in bioenergetic pathways provide potential biomarker targets for identifying early changes and onset characteristics in subjects with schizophrenia. We measured 29 acyl-carnitine levels within well-characterized plasma samples of adults with schizophrenia and healthy controls using liquid chromatography-mass spectrometry (LC-MS). Subjects with schizophrenia were measured at baseline and after 8 weeks of treatment. A total of 225 subjects with schizophrenia and 175 age- and gender-matched healthy controls were enrolled and 156 subjects completed the 8-week follow-up. With respect to plasma acyl-carnitines, the individuals with schizophrenia at baseline showed significantly higher levels of C4-OH (C3-DC) and C16:1, but lower concentrations of C3, C8, C10, C10:1, C10:2, C12, C14:1-OH, C14:2, and C14:2-OH when compared with healthy controls after controlling for age, sex, body mass index (BMI), smoking, and drinking. For the comparison between pretreatment and posttreatment subjects, all detected acyl-carnitines were significantly different between the two groups. Only the concentration of C3 and C4 were increased after selection by variable importance in projection (VIP) value >1.0 and false discovery rate (FDR) q value <0.05. A panel of acyl-carnitines were selected for the ability to differentiate subjects of schizophrenia at baseline from controls, pre- from post-treatment, and posttreatment from controls. Our data implicated acyl-carnitines with abnormalities in cellular bioenergetics of schizophrenia. Therefore, acyl-carnitines can be potential targets for future investigations into their roles in the pathoetiology of schizophrenia.
Collapse
|
12
|
Bailin SS, Jenkins CA, Petucci C, Culver JA, Shepherd BE, Fessel JP, Hulgan T, Koethe JR. Lower Concentrations of Circulating Medium and Long-Chain Acylcarnitines Characterize Insulin Resistance in Persons with HIV. AIDS Res Hum Retroviruses 2018; 34:536-543. [PMID: 29607651 DOI: 10.1089/aid.2017.0314] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In human immunodeficiency virus (HIV)-negative individuals, a plasma metabolite profile, characterized by higher levels of branched-chain amino acids (BCAA), aromatic amino acids, and C3/C5 acylcarnitines, is associated with insulin resistance and increased risk of diabetes. We sought to characterize the metabolite profile accompanying insulin resistance in HIV-positive persons to assess whether the same or different bioenergetics pathways might be implicated. We performed an observational cohort study of 70 nondiabetic, HIV-positive individuals (50% with body mass index ≥30 kg/m2) on efavirenz, tenofovir, and emtricitabine with suppressed HIV-1 RNA levels (<50 copies/mL) for at least 2 years and a CD4+ count over 350 cells/μL. We measured fasting insulin resistance using the homeostatic model assessment 2, plasma free fatty acids (FFA) using gas chromatography, and amino acids, acylcarnitines, and organic acids using liquid chromatography/mass spectrometry. We assessed the relationship of plasma metabolites with insulin resistance using multivariable linear regression. The median age was 45 years, median CD4+ count was 701 cells/μL, and median hemoglobin A1c was 5.2%. Insulin resistance was associated with higher plasma C3 acylcarnitines (p = .01), but not BCAA or C5 acylcarnitines. However, insulin resistance was associated with lower plasma levels of C18, C16, C12, and C2 acylcarnitines (p ≤ .03 for all), and lower C18 and C16 acylcarnitine:FFA ratios (p = .002, and p = .03, respectively). In HIV-positive persons, lower levels of plasma acylcarnitines, including the C2 product of complete fatty acid oxidation, are a more prominent feature of insulin resistance than changes in BCAA, suggesting impaired fatty acid uptake and/or mitochondrial oxidation is a central aspect of glucose intolerance in this population.
Collapse
Affiliation(s)
- Samuel S. Bailin
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Cathy A. Jenkins
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Christopher Petucci
- Sanford Burnham Prebys Metabolomics Core at the Southeast Center for Integrated Metabolomics, University of Florida, Gainesville, Florida
| | - Jeffrey A. Culver
- Sanford Burnham Prebys Metabolomics Core at the Southeast Center for Integrated Metabolomics, University of Florida, Gainesville, Florida
| | - Bryan E. Shepherd
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Joshua P. Fessel
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Todd Hulgan
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee
| | - John R. Koethe
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Disruption of metabolic homeostasis is universal in the critically ill. Macronutrients and micronutrients are major environmental regulators of metabolite production through their gene regulation effects. The study of large numbers of circulating metabolites is beginning to emerge through the comprehensive profiling of the critically ill. In the critically ill, metabolomic studies consistently show that changes in fatty acids, lipids and tryptophan metabolite pathways are common and are associated with disease state and outcomes. RECENT FINDINGS Metabolomics is now being applied in research studies to determine the critical illness response to nutrient deficiency and delivery. Nutritional metabolomics approaches in nutrient deficiency, malnutrition and nutrient delivery have included single time point studies and dynamic studies of critically ill patients over time. Integration of metabolomics and clinical outcome data may create a more complete understanding of the control of metabolism in critical illness. SUMMARY The integration of metabolomic profiling with transcription and genomic data may allow for a unique window into the mechanism of how nutrient deficiency and delivery alters cellular homeostasis during critical illness and modulates the regain of cellular homeostasis during recovery. The progress and the challenges of the study of nutritional metabolomics are reviewed here.
Collapse
Affiliation(s)
- Kenneth B Christopher
- Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Jiang G, Nguyen D, Archin NM, Yukl SA, Méndez-Lagares G, Tang Y, Elsheikh MM, Thompson GR, Hartigan-O'Connor DJ, Margolis DM, Wong JK, Dandekar S. HIV latency is reversed by ACSS2-driven histone crotonylation. J Clin Invest 2018; 128:1190-1198. [PMID: 29457784 DOI: 10.1172/jci98071] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/09/2018] [Indexed: 12/21/2022] Open
Abstract
Eradication of HIV-1 (HIV) is hindered by stable viral reservoirs. Viral latency is epigenetically regulated. While the effects of histone acetylation and methylation at the HIV long-terminal repeat (LTR) have been described, our knowledge of the proviral epigenetic landscape is incomplete. We report that a previously unrecognized epigenetic modification of the HIV LTR, histone crotonylation, is a regulator of HIV latency. Reactivation of latent HIV was achieved following the induction of histone crotonylation through increased expression of the crotonyl-CoA-producing enzyme acyl-CoA synthetase short-chain family member 2 (ACSS2). This reprogrammed the local chromatin at the HIV LTR through increased histone acetylation and reduced histone methylation. Pharmacologic inhibition or siRNA knockdown of ACSS2 diminished histone crotonylation-induced HIV replication and reactivation. ACSS2 induction was highly synergistic in combination with either a protein kinase C agonist (PEP005) or a histone deacetylase inhibitor (vorinostat) in reactivating latent HIV. In the SIV-infected nonhuman primate model of AIDS, the expression of ACSS2 was significantly induced in intestinal mucosa in vivo, which correlated with altered fatty acid metabolism. Our study links the HIV/SIV infection-induced fatty acid enzyme ACSS2 to HIV latency and identifies histone lysine crotonylation as a novel epigenetic regulator for HIV transcription that can be targeted for HIV eradication.
Collapse
Affiliation(s)
- Guochun Jiang
- Department of Medical Microbiology and Immunology, UCD, Davis, California, USA
| | - Don Nguyen
- Department of Medical Microbiology and Immunology, UCD, Davis, California, USA
| | - Nancie M Archin
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Steven A Yukl
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Gema Méndez-Lagares
- Department of Medical Microbiology and Immunology, UCD, Davis, California, USA
| | - Yuyang Tang
- Department of Medical Microbiology and Immunology, UCD, Davis, California, USA
| | - Maher M Elsheikh
- Department of Medical Microbiology and Immunology, UCD, Davis, California, USA
| | - George R Thompson
- Department of Medical Microbiology and Immunology, UCD, Davis, California, USA
| | | | - David M Margolis
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joseph K Wong
- Department of Medicine, UCSF, and San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Satya Dandekar
- Department of Medical Microbiology and Immunology, UCD, Davis, California, USA
| |
Collapse
|