1
|
Koska J, Furtado J, Hu Y, Sinari S, Budoff MJ, Billheimer D, Nedelkov D, McClelland RL, Reaven PD. Plasma proteoforms of apolipoproteins C-I and C-II are associated with plasma lipids in the Multi-Ethnic Study of Atherosclerosis. J Lipid Res 2022; 63:100263. [PMID: 35952903 PMCID: PMC9494236 DOI: 10.1016/j.jlr.2022.100263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/23/2022] [Accepted: 07/09/2022] [Indexed: 11/23/2022] Open
Abstract
Apolipoproteins (apo) C-I and C-II are key regulators of triglyceride and HDL metabolism. Both exist as full-size native and truncated (apoC-I'; apoC-II') posttranslational proteoforms. However, the determinants and the role of these proteoforms in lipid metabolism are unknown. Here, we measured apoC-I and apoC-II proteoforms by mass spectrometry immunoassay in baseline and 10-year follow-up plasma samples from the Multi-Ethnic Study of Atherosclerosis. We found that baseline total apoC-I (mean = 9.2 mg/dl) was lower in African Americans (AA), Chinese Americans (CA), and Hispanics (by 1.8; 1.0; 1.0 mg/dl vs. whites), higher in women (by 1.2 mg/dl), and positively associated with plasma triglycerides and HDL. Furthermore, we observed that the truncated-to-native apoC-I ratio (apoC-I'/C-I) was lower in CA, negatively associated with triglycerides, and positively associated with HDL. We determined that total apoC-II (8.8 mg/dl) was lower in AA (by 0.8 mg/dl) and higher in CA and Hispanics (by 0.5 and 0.4 mg/dl), positively associated with triglycerides, and negatively associated with HDL. In addition, apoC-II'/C-II was higher in AA and women, negatively associated with triglycerides, and positively associated with HDL. We showed that the change in triglycerides was positively associated with changes in total apoC-I and apoC-II and negatively associated with changes in apoC-I'/C-I and apoC-II'/C-II, whereas the change in HDL was positively associated with changes in total apoC-I and apoC-II'/C-II and negatively associated with change in total apoC-II. This study documents racial/ethnic variation in apoC-I and apoC-II plasma levels and highlights apolipoprotein posttranslational modification as a potential regulator of plasma lipids.
Collapse
Affiliation(s)
- Juraj Koska
- Phoenix VA Health Care System, Phoenix, AZ, USA.
| | - Jeremy Furtado
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Shripad Sinari
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | | | - Dean Billheimer
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | | | | | - Peter D Reaven
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| |
Collapse
|
2
|
Mocciaro G, D’Amore S, Jenkins B, Kay R, Murgia A, Herrera-Marcos LV, Neun S, Sowton AP, Hall Z, Palma-Duran SA, Palasciano G, Reimann F, Murray A, Suppressa P, Sabbà C, Moschetta A, Koulman A, Griffin JL, Vacca M. Lipidomic Approaches to Study HDL Metabolism in Patients with Central Obesity Diagnosed with Metabolic Syndrome. Int J Mol Sci 2022; 23:6786. [PMID: 35743227 PMCID: PMC9223701 DOI: 10.3390/ijms23126786] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 12/12/2022] Open
Abstract
The metabolic syndrome (MetS) is a cluster of cardiovascular risk factors characterised by central obesity, atherogenic dyslipidaemia, and changes in the circulating lipidome; the underlying mechanisms that lead to this lipid remodelling have only been partially elucidated. This study used an integrated "omics" approach (untargeted whole serum lipidomics, targeted proteomics, and lipoprotein lipidomics) to study lipoprotein remodelling and HDL composition in subjects with central obesity diagnosed with MetS (vs. controls). Compared with healthy subjects, MetS patients showed higher free fatty acids, diglycerides, phosphatidylcholines, and triglycerides, particularly those enriched in products of de novo lipogenesis. On the other hand, the "lysophosphatidylcholines to phosphatidylcholines" and "cholesteryl ester to free cholesterol" ratios were reduced, pointing to a lower activity of lecithin cholesterol acyltransferase (LCAT) in MetS; LCAT activity (directly measured and predicted by lipidomic ratios) was positively correlated with high-density lipoprotein cholesterol (HDL-C) and negatively correlated with body mass index (BMI) and insulin resistance. Moreover, many phosphatidylcholines and sphingomyelins were significantly lower in the HDL of MetS patients and strongly correlated with BMI and clinical metabolic parameters. These results suggest that MetS is associated with an impairment of phospholipid metabolism in HDL, partially led by LCAT, and associated with obesity and underlying insulin resistance. This study proposes a candidate strategy to use integrated "omics" approaches to gain mechanistic insights into lipoprotein remodelling, thus deepening the knowledge regarding the molecular basis of the association between MetS and atherosclerosis.
Collapse
Affiliation(s)
- Gabriele Mocciaro
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, UK; (G.M.); (A.M.); (S.N.); (Z.H.)
- Department of Interdisciplinary Medicine, Clinica Medica “C. Frugoni”, Aldo Moro University of Bari, 70124 Bari, Italy; (P.S.); (C.S.); (A.M.)
- Roger Williams Institute of Hepatology, Foundation for Liver Research, London SE5 9NT, UK
| | - Simona D’Amore
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK;
- Clinica Medica “A. Murri”, “Aldo Moro” University of Bari, 70124 Bari, Italy;
| | - Benjamin Jenkins
- Welcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK; (B.J.); (R.K.); (F.R.); (A.K.)
| | - Richard Kay
- Welcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK; (B.J.); (R.K.); (F.R.); (A.K.)
| | - Antonio Murgia
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, UK; (G.M.); (A.M.); (S.N.); (Z.H.)
| | - Luis Vicente Herrera-Marcos
- Department of Biochemistry and Molecular and Cellular Biology, Veterinary Faculty, University of Zaragoza, 50013 Zaragoza, Spain;
| | - Stefanie Neun
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, UK; (G.M.); (A.M.); (S.N.); (Z.H.)
| | - Alice P. Sowton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.P.S.); (A.M.)
| | - Zoe Hall
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, UK; (G.M.); (A.M.); (S.N.); (Z.H.)
- Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK;
| | - Susana Alejandra Palma-Duran
- Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK;
| | - Giuseppe Palasciano
- Clinica Medica “A. Murri”, “Aldo Moro” University of Bari, 70124 Bari, Italy;
| | - Frank Reimann
- Welcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK; (B.J.); (R.K.); (F.R.); (A.K.)
| | - Andrew Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.P.S.); (A.M.)
| | - Patrizia Suppressa
- Department of Interdisciplinary Medicine, Clinica Medica “C. Frugoni”, Aldo Moro University of Bari, 70124 Bari, Italy; (P.S.); (C.S.); (A.M.)
| | - Carlo Sabbà
- Department of Interdisciplinary Medicine, Clinica Medica “C. Frugoni”, Aldo Moro University of Bari, 70124 Bari, Italy; (P.S.); (C.S.); (A.M.)
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, Clinica Medica “C. Frugoni”, Aldo Moro University of Bari, 70124 Bari, Italy; (P.S.); (C.S.); (A.M.)
| | - Albert Koulman
- Welcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK; (B.J.); (R.K.); (F.R.); (A.K.)
| | - Julian L. Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, UK; (G.M.); (A.M.); (S.N.); (Z.H.)
- Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK;
- Rowlett Institute, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Michele Vacca
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, UK; (G.M.); (A.M.); (S.N.); (Z.H.)
- Department of Interdisciplinary Medicine, Clinica Medica “C. Frugoni”, Aldo Moro University of Bari, 70124 Bari, Italy; (P.S.); (C.S.); (A.M.)
- Roger Williams Institute of Hepatology, Foundation for Liver Research, London SE5 9NT, UK
- Welcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK; (B.J.); (R.K.); (F.R.); (A.K.)
| |
Collapse
|
3
|
Ying Q, Chan DC, Barrett PHR, Watts GF. Unravelling lipoprotein metabolism with stable isotopes: tracing the flow. Metabolism 2021; 124:154887. [PMID: 34508741 DOI: 10.1016/j.metabol.2021.154887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/16/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022]
Abstract
Dysregulated lipoprotein metabolism is a major cause of atherosclerotic cardiovascular disease (ASCVD). Use of stable isotope tracers and compartmental modelling have provided deeper understanding of the mechanisms underlying lipid disorders in patients at high risk of ASCVD, including familial hypercholesterolemia (FH), elevated lipoprotein(a) [Lp(a)] and metabolic syndrome (MetS). In patients with FH, deficiency in low-density lipoprotein (LDL) receptor activity not only impairs the catabolism of LDL, but also induces hepatic overproduction and decreases catabolism of triglyceride-rich lipoproteins (TRLs). Patients with elevated Lp(a) are characterized by increased hepatic secretion of Lp(a) particles. Atherogenic dyslipidemia in MetS patients relates to a combination of overproduction of very-low density lipoprotein-apolipoprotein (apo) B-100, decreased catabolism of apoB-100-containing particles, and increased catabolism of high-density lipoprotein-apoA-I particles, as well as to impaired clearance of TRLs in the postprandial state. Kinetic studies show that weight loss, fish oils, statins and fibrates have complementary modes of action that correct atherogenic dyslipidemia. Defining the kinetic mechanisms of action of proprotein convertase subtilisin/kexin type 9 and angiopoietin-like 3 inhibitors on lipid and lipoprotein mechanism in dyslipidemic subjects will further our understanding of these therapies in decreasing the development of ASCVD. "Everything changes but change itself. Everything flows and nothing remains the same... You cannot step twice into the same river, for other waters and yet others go flowing ever on." Heraclitus (c.535- c. 475 BCE).
Collapse
Affiliation(s)
- Qidi Ying
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - Dick C Chan
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - P Hugh R Barrett
- Faculty of Medicine and Health, University of New England, Armidale, Australia
| | - Gerald F Watts
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia; Lipid Disorders Clinic, Departments of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, Australia.
| |
Collapse
|
4
|
Decreased Efficiency of Very-Low-Density Lipoprotein Lipolysis Is Linked to Both Hypertriglyceridemia and Hypercholesterolemia, but It Can Be Counteracted by High-Density Lipoprotein. Nutrients 2021; 13:nu13041224. [PMID: 33917704 PMCID: PMC8068045 DOI: 10.3390/nu13041224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
Impaired triglyceride-rich lipoprotein plasma catabolism is considered the most important factor for hypertriglyceridemia development. The aim of this study was to evaluate the impact of hypercholesterolemia and hypertriglyceridemia on the efficiency of lipoprotein lipase (LPL)-mediated very-low-density lipoprotein (VLDL)-triglyceride lipolysis and the role of high-density lipoprotein (HDL) in this process. Subjects with no history of cardiovascular disease (CVD) and untreated with lipid-lowering agents were recruited into the study and divided into normolipidemic, hypercholesterolemic, and hyperlipidemic groups. VLDL was isolated from serum and incubated with LPL in the absence or presence of HDL. For the hypercholesterolemic and hyperlipidemic groups, a significantly lower percentage of hydrolyzed VLDL-triglyceride was achieved compared to the normolipidemic group (p < 0.01). HDL enhanced the lipolysis efficiency in the hypercholesterolemic and hyperlipidemic groups on average by ~7% (p < 0.001). The lowest electrophoretic mobility of the VLDL remnants indicating the most effective lipolysis was obtained in the normolipidemic group (p < 0.05). HDL presence significantly reduced the electrophoretic mobility of the VLDL remnants for the hypercholesterolemic and hyperlipidemic groups (p < 0.05). The results of our study indicate that VLDL obtained from hypercholesterolemic and hyperlipidemic subjects are more resistant to lipolysis and are additional evidence of the need for early implementation of hypocholesterolemic treatment, already in asymptomatic CVD subjects.
Collapse
|
5
|
Liu JQ, Li WX, Zheng JJ, Tian QN, Huang JF, Dai SX. Gain and loss events in the evolution of the apolipoprotein family in vertebrata. BMC Evol Biol 2019; 19:209. [PMID: 31722659 PMCID: PMC6854765 DOI: 10.1186/s12862-019-1519-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 09/26/2019] [Indexed: 01/06/2023] Open
Abstract
Background Various apolipoproteins widely distributed among vertebrata play key roles in lipid metabolism and have a direct correlation with human diseases as diagnostic markers. However, the evolutionary progress of apolipoproteins in species remains unclear. Nine human apolipoproteins and well-annotated genome data of 30 species were used to identify 210 apolipoprotein family members distributed among species from fish to humans. Our study focused on the evolution of nine exchangeable apolipoproteins (ApoA-I/II/IV/V, ApoC-I~IV and ApoE) from Chondrichthyes, Holostei, Teleostei, Amphibia, Sauria (including Aves), Prototheria, Marsupialia and Eutheria. Results In this study, we reported the overall distribution and the frequent gain and loss evolutionary events of apolipoprotein family members in vertebrata. Phylogenetic trees of orthologous apolipoproteins indicated evident divergence between species evolution and apolipoprotein phylogeny. Successive gain and loss events were found by evaluating the presence and absence of apolipoproteins in the context of species evolution. For example, only ApoA-I and ApoA-IV occurred in cartilaginous fish as ancient apolipoproteins. ApoA-II, ApoE, and ApoC-I/ApoC-II were found in Holostei, Coelacanthiformes, and Teleostei, respectively, but the latter three apolipoproteins were absent from Aves. ApoC-I was also absent from Cetartiodactyla. The apolipoprotein ApoC-III emerged in terrestrial animals, and ApoC-IV first arose in Eutheria. The results indicate that the order of the emergence of apolipoproteins is most likely ApoA-I/ApoA-IV, ApoE, ApoA-II, ApoC-I/ApoC-II, ApoA-V, ApoC-III, and ApoC-IV. Conclusions This study reveals not only the phylogeny of apolipoprotein family members in species from Chondrichthyes to Eutheria but also the occurrence and origin of new apolipoproteins. The broad perspective of gain and loss events and the evolutionary scenario of apolipoproteins across vertebrata provide a significant reference for the research of apolipoprotein function and related diseases.
Collapse
Affiliation(s)
- Jia-Qian Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wen-Xing Li
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Jun-Juan Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Qing-Nan Tian
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Jing-Fei Huang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Shao-Xing Dai
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
6
|
Wolska A, Dunbar RL, Freeman LA, Ueda M, Amar MJ, Sviridov DO, Remaley AT. Apolipoprotein C-II: New findings related to genetics, biochemistry, and role in triglyceride metabolism. Atherosclerosis 2017; 267:49-60. [PMID: 29100061 DOI: 10.1016/j.atherosclerosis.2017.10.025] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/03/2017] [Accepted: 10/19/2017] [Indexed: 02/08/2023]
Abstract
Apolipoprotein C-II (apoC-II) is a small exchangeable apolipoprotein found on triglyceride-rich lipoproteins (TRL), such as chylomicrons (CM) and very low-density lipoproteins (VLDL), and on high-density lipoproteins (HDL), particularly during fasting. ApoC-II plays a critical role in TRL metabolism by acting as a cofactor of lipoprotein lipase (LPL), the main enzyme that hydrolyses plasma triglycerides (TG) on TRL. Here, we present an overview of the role of apoC-II in TG metabolism, emphasizing recent novel findings regarding its transcriptional regulation and biochemistry. We also review the 24 genetic mutations in the APOC2 gene reported to date that cause hypertriglyceridemia (HTG). Finally, we describe the clinical presentation of apoC-II deficiency and assess the current therapeutic approaches, as well as potential novel emerging therapies.
Collapse
Affiliation(s)
- Anna Wolska
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Richard L Dunbar
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; ICON plc, North Wales, PA, USA; Cardiometabolic and Lipid Clinic, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Lita A Freeman
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Masako Ueda
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Marcelo J Amar
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Denis O Sviridov
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Impact of bariatric surgery on apolipoprotein C-III levels and lipoprotein distribution in obese human subjects. J Clin Lipidol 2017; 11:495-506.e3. [DOI: 10.1016/j.jacl.2017.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/15/2017] [Accepted: 02/21/2017] [Indexed: 12/13/2022]
|
8
|
Abstract
PURPOSE OF REVIEW Abdominal obesity is associated with a number of important metabolic abnormalities including liver steatosis, insulin resistance and an atherogenic lipoprotein profile (termed dyslipidemia). The purpose of this review is to highlight recent progress in understanding the pathogenesis of this dyslipidemia. RECENT FINDINGS Recent results from kinetic studies using stable isotopes indicate that the hypertriglyceridemia associated with abdominal obesity stems from dual mechanisms: (1) enhanced secretion of triglyceride-rich lipoproteins and (2) impaired clearance of these lipoproteins. The over-secretion of large triglyceride-rich VLDLs from the liver is linked to hepatic steatosis and increased visceral adiposity. The impaired clearance of triglyceride-rich lipoproteins is linked to increased levels of apolipoprotein C-III, a key regulator of triglyceride metabolism. SUMMARY Elucidation of the pathogenesis of the atherogenic dyslipidemia in abdominal obesity combined with the development of novel treatments based on apolipoprotein C-III may in the future lead to better prevention, diagnosis and treatment of the atherogenic dyslipidemia in abdominal obesity.
Collapse
Affiliation(s)
- Elias Björnson
- aDepartment of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden bResearch Programs Unit, Diabetes and Obesity, University of Helsinki and Heart and Lung Center, Helsinki University Hospital, Helsinki, Finland
| | | | | | | |
Collapse
|
9
|
Chan DC, Barrett PHR, Watts GF. Recent explanatory trials of the mode of action of drug therapies on lipoprotein metabolism. Curr Opin Lipidol 2016; 27:550-556. [PMID: 27749370 DOI: 10.1097/mol.0000000000000348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Dysregulated lipoprotein metabolism leads to increased plasma concentrations of atherogenic lipoproteins. We highlight the findings from recent studies of the effect of lipid-regulating therapies on apolipoprotein metabolism in humans employing endogenous labelling with stable isotopically labelled isotopomers. RECENT FINDINGS Fish oil supplementation and niacin treatment both reduce fasting and postprandial triglyceride levels by decreasing the hepatic secretion of VLDL-apoB-100 (apoB) and apoB-48-containing chylomicron particles in obese and/or type 2 diabetes. Niacin also lowers plasma LDL-apoB and Lp(a) levels by increasing catabolism of LDL-apoB and decreasing secretion of Lp(a), respectively. In subjects with hypercholesterolaemia, inhibition of cholesteryl ester transfer protein raises apoA-I and lowers apoB by decreasing and increasing the catabolism of HDL-apoA-I and LDL-apoB, respectively. Antisense oligonucleotides directed at apoB mRNA lowers plasma LDL-cholesterol and apoB chiefly by increasing the catabolism and decreasing the secretion of LDL-apoB in healthy subjects. That apoB ASO treatment does not lower hepatic secretion in humans is unexpected and merits further investigation. SUMMARY Kinetic studies provide mechanistic insight into the mode of action of lipid lowering therapies and lipoprotein disorders. Understanding the mode of action of new drugs in vivo is important to establish their effective use in clinical practice.
Collapse
Affiliation(s)
- Dick C Chan
- Metabolic Research Centre, School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | | | | |
Collapse
|