1
|
Coimbra LBCT, Pinto-Martinez A, Pavan ICB, Melo EG, Araujo TLS. Dynamics of heat shock protein 70 kDa in heat-shocked and hypoxic human endothelial cells. Cell Stress Chaperones 2025:100085. [PMID: 40425101 DOI: 10.1016/j.cstres.2025.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/06/2025] [Accepted: 05/21/2025] [Indexed: 05/29/2025] Open
Abstract
Heat shock proteins (HSPs) play crucial roles in human endothelial cell functions such as migration and angiogenesis. However, human heat shock protein dynamics under stress conditions such as heat shock and hypoxia in human endothelial cells (ECs) are enigmatic, and the characteristics of HSPs in endothelial cells after exposure to thermal stress and a low-oxygen environment are unknown. We hypothesized that endothelial cells (ECs) adapt to heat shock (HS) and hypoxia by modulating chaperome oligomerization and that HSP70 is a major determinant of the endothelial phenotype. HSP70 inhibition with VER-155008 or YM-1 in primary human endothelial cells decreases EC proliferation, migration and angiogenesis at baseline and after heat shock recovery. We showed that vascular-independent HSC/P70 multimeric complexes in primary human veins (HUVECs) and coronary artery ECs (HCAECs) accumulate after HS and are decreased by hypoxia. Heat shock recovery increases the number of HSP90 dimers, inducible HSP70, and HSP40 macromolecular complexes, whereas HSC70 returns to baseline. We demonstrated that the heat shock response and hypoxia regulate HSPs through a new layer of complexity, oligomerization, in addition to classical cochaperone/NEF interactions. The biphasic temporal oligomerization of molecular chaperones in the recovery phase provides a novel face of the heat shock response. In addition, shifts in the subcellular location and upregulation of HSP70 were also observed here. The decrease in HSP expression caused by hypoxia raises the possibility that decreased chaperone power contributes to the endothelial dysfunction found in atherosclerosis, thrombosis and cancer. Together, these results show that HSP70 is pivotal to the healthy endothelial response in veins and coronary arteries, and we revealed human HSP dynamics in the vascular response to proteotoxic stress.
Collapse
Affiliation(s)
- Luiza B C T Coimbra
- Department of Biochemistry, Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil
| | - Andrea Pinto-Martinez
- Department of Biochemistry, Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil
| | - Isadora C B Pavan
- Department of Biochemistry, Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil
| | - Everton G Melo
- Department of Biochemistry, Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil
| | - Thaís L S Araujo
- Department of Biochemistry, Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil; Department of Organic Chemistry, Institute of Chemistry, Universidade Estadual de Campinas - UNICAMP, Campinas, São Paulo, Brazil.
| |
Collapse
|
2
|
He Y, Yang Z, Guo D, Luo C, Liu Q, Xian L, Yang F, Huang C, Wei Q. The multifaceted nature of SUMOylation in heart disease and its therapeutic potential. Mol Cell Biochem 2025:10.1007/s11010-025-05286-z. [PMID: 40287894 DOI: 10.1007/s11010-025-05286-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 04/06/2025] [Indexed: 04/29/2025]
Abstract
SUMOylation (SUMO), a crucial post-translational modification, is implicated in the regulation of diverse biological processes and plays a pivotal role in both the maintenance of cardiac function and progression and treatment of heart disease. Here, we reviewed the mechanisms by which SUMO-related various aspects of cardiac function and disease, including cardiac hypertrophy, heart failure, ischemia-reperfusion injury, and myocardial infarction. Furthermore, we highlight its potential as a therapeutic target.
Collapse
Affiliation(s)
- Ying He
- The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhijie Yang
- The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Dan Guo
- Medical College, Guangxi University, Nanning, Guangxi, China
| | - Cheng Luo
- The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Qiaoqiao Liu
- The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Lei Xian
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Fan Yang
- The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China.
- Liuzhou Key Laboratory of Primary Cardiomyopathy in Prevention and Treatment, Liuzhou, Guangxi, China.
| | - Chusheng Huang
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| | - Qingjun Wei
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
3
|
Shilenok V, Kobzeva K, Bushueva O. "SERBP1 (Hero45) is a Novel Link with Ischemic Heart Disease Risk: Associations with Coronary Arteries Occlusion, Blood Coagulation and Lipid Profile". Cell Biochem Biophys 2025:10.1007/s12013-025-01736-z. [PMID: 40175693 DOI: 10.1007/s12013-025-01736-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2025] [Indexed: 04/04/2025]
Abstract
Ischemic heart disease (IHD), stemming from coronary atherosclerosis, involves pathological processes in which chaperone proteins play an essential role. SERBP1 (Hero45), an RNA-binding protein, has recently been ascribed to the newly discovered class of Hero proteins with chaperone-like activity, making it particularly relevant in atherosclerosis-related diseases. In this study, 2164 subjects (836 IHD patients and 1328 controls) were genotyped for five common single nucleotide polymorphisms (SNPs) of SERBP1 using probe-based PCR. Here, we report that SNPs of SERBP1 are associated with reduced risk of left coronary artery atherosclerosis: rs4655707 (effect allele [EA] T, OR = 0.63, 95% CI 0.43-0.93, p = 0.02), (EA C, OR = 0.63, 95% CI 0.42-0.95, p = 0.02), rs12561767 (EA G, OR = 0.65, 95% CI 0.45-0.96, p = 0.03), rs6702742 (EA A, OR = 0.63, 95% CI 0.43-0.94, p = 0.02). Additionally, SERBP1 loci are linked to lower coronary artery stenosis (rs1058074), improved blood lipid profiles (rs1058074), and favorable blood coagulation parameters (rs4655707, rs6702742, rs1058074, rs12561767). Together, our study is the first to provide evidence that SERBP1 is involved in lipid metabolism and coagulation regulation, modulating IHD risk.
Collapse
Affiliation(s)
- Vladislav Shilenok
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia
- Cardiology Department with the intensive care unit, Kursk Emergency Hospital, Kursk, Russia
| | - Ksenia Kobzeva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia
| | - Olga Bushueva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia.
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russia.
| |
Collapse
|
4
|
Hakeem J, Turkestani F, Alqahtani M, Al Nufaiei Z, Al Zhranei R, Alhadian F, Altabee R, Homoud M, Ahmari A, Zimmerman R, Murray R, Gardenhire D. Assessing respiratory therapists' compliance with cystic fibrosis guidelines in Saudi Arabia: A descriptive quantitative study. CANADIAN JOURNAL OF RESPIRATORY THERAPY : CJRT = REVUE CANADIENNE DE LA THERAPIE RESPIRATOIRE : RCTR 2025; 61:20-32. [PMID: 40078596 PMCID: PMC11901341 DOI: 10.29390/001c.129988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/20/2025] [Indexed: 03/14/2025]
Abstract
Introduction Cystic fibrosis (CF) is a severe autosomal recessive disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. This condition disrupts chloride channels and leads to the production of thick, sticky mucus, affecting the respiratory and gastrointestinal systems. CF's prevalence is particularly high in Saudi Arabia, where the incidence has increased from 1 in 2,000 to 1 in 1,000 births. Effective management of CF is essential for improving patient outcomes, yet there is a notable lack of understanding regarding respiratory therapists' (RTs) adherence to established CF management protocols. Methods This descriptive quantitative study aimed to assess RTs' adherence to the Cystic Fibrosis Foundation's guidelines. Using a convenience sampling technique, a self-report survey was distributed to 750 members of the Saudi Society for Respiratory Care (SSRC), resulting in 351 responses, of which 166 were fully completed and met the inclusion criteria. The survey focused on RTs' knowledge and management practices related to CF. Data analysis was conducted using SPSS version 25, with descriptive statistics (mean, standard deviation, frequency, percentage, and mode) and non-parametric tests. The Kruskal-Wallis Test was employed to evaluate differences in adherence scores across demographic groups (e.g., education level, years of experience). Chi-square analysis was applied to examine relationships between categorical demographic variables (e.g., region of practice) and adherence to guidelines. Results The analysis revealed significant gaps in RTs' adherence to CF guidelines, with only 42.8% accurately identifying the sweat chloride threshold for CF diagnosis and a limited 36.1% recognizing Pseudomonas aeruginosa as a common CF pathogen. Additionally, just 56.6% correctly identified the gold-standard airway clearance therapy. The Wilcoxon signed-ranks test further highlighted a statistically significant disparity (p = 0.00) between RTs' theoretical knowledge and practical application of CF management techniques, emphasizing the need for improved training. Discussion The findings suggest a need for enhanced training and resources to bridge the gap between theoretical knowledge and practical management of CF. The lack of adherence to clinical guidelines could impact patient outcomes and survival rates. Conclusion Improving RTs' adherence to CF management guidelines through ongoing education and updated clinical standards is essential. Addressing these gaps could elevate the standard of care and contribute to better patient outcomes and survival rates in Saudi Arabia.
Collapse
Affiliation(s)
- Jameel Hakeem
- Department of Respiratory TherapyGeorgia College & State University
- Department of Respiratory TherapyKing Saud bin Abdulaziz University for Health Sciences
- Department of Respiratory TherapyKing Abdullah International Medical Research Center
- Department of Respiratory TherapyNational Guard Health Affairs
| | - Faisal Turkestani
- Department of Respiratory TherapyKing Saud bin Abdulaziz University for Health Sciences
- Department of Respiratory TherapyKing Abdullah International Medical Research Center
- Department of Respiratory TherapyNational Guard Health Affairs
| | - Mohammed Alqahtani
- Department of Respiratory TherapyKing Saud bin Abdulaziz University for Health Sciences
| | - Ziyad Al Nufaiei
- Department of Respiratory TherapyKing Saud bin Abdulaziz University for Health Sciences
- Department of Respiratory TherapyKing Abdullah International Medical Research Center
- Department of Respiratory TherapyNational Guard Health Affairs
| | - Raid Al Zhranei
- Department of Respiratory TherapyKing Saud bin Abdulaziz University for Health Sciences
- Department of Respiratory TherapyKing Abdullah International Medical Research Center
- Department of Respiratory TherapyNational Guard Health Affairs
| | - Fahad Alhadian
- Department of Respiratory TherapyKing Saud bin Abdulaziz University for Health Sciences
- Department of Respiratory TherapyKing Abdullah International Medical Research Center
- Department of Respiratory TherapyNational Guard Health Affairs
| | - Rana Altabee
- Department of Respiratory TherapyKing Saud bin Abdulaziz University for Health Sciences
- Department of Respiratory TherapyKing Abdullah International Medical Research Center
- Department of Respiratory TherapyNational Guard Health Affairs
| | - Mazen Homoud
- Department of Respiratory TherapyKing Abdulaziz University
| | - Ayedh Ahmari
- Department of Rehabilitation SciencesKing Saud University
| | - Ralph Zimmerman
- Department of Respiratory TherapyGeorgia College & State University
| | - Robert Murray
- Department of Respiratory TherapyGeorgia College & State University
| | | |
Collapse
|
5
|
Landim-Vieira M, Nieto Morales PF, ElSafty S, Kahmini AR, Ranek MJ, Solís C. The role of mechanosignaling in the control of myocardial mass. Am J Physiol Heart Circ Physiol 2025; 328:H622-H638. [PMID: 39739566 DOI: 10.1152/ajpheart.00277.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 12/03/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025]
Abstract
Regulation of myocardial mass is key for maintaining cardiovascular health. This review highlights the complex and regulatory relationship between mechanosignaling and myocardial mass, influenced by many internal and external factors including hemodynamic and microgravity, respectively. The heart is a dynamic organ constantly adapting to changes in workload (preload and afterload) and mechanical stress exerted on the myocardium, influencing both physiological adaptations and pathological remodeling. Mechanosignaling pathways, such as the mitogen-activated protein kinases (MAPKs) and the phosphoinositide 3-kinases and serine/threonine kinase (PI3K/Akt) pathways, mediate downstream effects on gene expression and play key roles in transducing mechanical cues into biochemical signals, thereby modulating cellular processes, including control of myocardial mass. Dysregulation of these processes can lead to pathological cardiac remodeling, such as hypertrophic cardiomyopathy. Furthermore, recent studies have highlighted the importance of protein quality control mechanisms, such as the ubiquitin-proteasome system, in settings of extreme physiological conditions that alter the heart workload such as pregnancy and microgravity. Overall, this review provides a thorough insight into how mechanical signals are converted into chemical signals to regulate myocardial mass in both healthy and diseased conditions.
Collapse
Affiliation(s)
- Maicon Landim-Vieira
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States
| | - Paula F Nieto Morales
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States
| | - Summer ElSafty
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States
| | - Aida Rahimi Kahmini
- Department of Health, Nutrition, and Food Science, Florida State University, Tallahassee, Florida, United States
| | - Mark J Ranek
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, Maryland, United States
| | - Christopher Solís
- Department of Health, Nutrition, and Food Science, Florida State University, Tallahassee, Florida, United States
| |
Collapse
|
6
|
Lim LZ, Song J. NMR Dynamic View of the Stabilization of the WW4 Domain by Neutral NaCl and Kosmotropic Na 2SO 4 and NaH 2PO 4. Int J Mol Sci 2024; 25:9091. [PMID: 39201778 PMCID: PMC11354479 DOI: 10.3390/ijms25169091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
The Hofmeister series categorizes ions based on their effects on protein stability, yet the microscopic mechanism remains a mystery. In this series, NaCl is neutral, Na2SO4 and Na2HPO4 are kosmotropic, while GdmCl and NaSCN are chaotropic. This study employs CD and NMR to investigate the effects of NaCl, Na2SO4, and Na2HPO4 on the conformation, stability, binding, and backbone dynamics (ps-ns and µs-ms time scales) of the WW4 domain with a high stability and accessible side chains at concentrations ≤ 200 mM. The results indicated that none of the three salts altered the conformation of WW4 or showed significant binding to the four aliphatic hydrophobic side chains. NaCl had no effect on its thermal stability, while Na2SO4 and Na2HPO4 enhanced the stability by ~5 °C. Interestingly, NaCl only weakly interacted with the Arg27 amide proton, whereas Na2SO4 bound to Arg27 and Phe31 amide protons with Kd of 32.7 and 41.6 mM, respectively. Na2HPO4, however, bound in a non-saturable manner to Trp9, His24, and Asn36 amide protons. While the three salts had negligible effects on ps-ns backbone dynamics, NaCl and Na2SO4 displayed no effect while Na2HPO4 significantly increased the µs-ms backbone dynamics. These findings, combined with our recent results with GdmCl and NaSCN, suggest a microscopic mechanism for the Hofmeister series. Additionally, the data revealed a lack of simple correlation between thermodynamic stability and backbone dynamics, most likely due to enthalpy-entropy compensation. Our study rationalizes the selection of chloride and phosphate as the primary anions in extracellular and intracellular spaces, as well as polyphosphate as a primitive chaperone in certain single-cell organisms.
Collapse
Affiliation(s)
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| |
Collapse
|
7
|
Romero-Becera R, Santamans AM, Arcones AC, Sabio G. From Beats to Metabolism: the Heart at the Core of Interorgan Metabolic Cross Talk. Physiology (Bethesda) 2024; 39:98-125. [PMID: 38051123 DOI: 10.1152/physiol.00018.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/26/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023] Open
Abstract
The heart, once considered a mere blood pump, is now recognized as a multifunctional metabolic and endocrine organ. Its function is tightly regulated by various metabolic processes, at the same time it serves as an endocrine organ, secreting bioactive molecules that impact systemic metabolism. In recent years, research has shed light on the intricate interplay between the heart and other metabolic organs, such as adipose tissue, liver, and skeletal muscle. The metabolic flexibility of the heart and its ability to switch between different energy substrates play a crucial role in maintaining cardiac function and overall metabolic homeostasis. Gaining a comprehensive understanding of how metabolic disorders disrupt cardiac metabolism is crucial, as it plays a pivotal role in the development and progression of cardiac diseases. The emerging understanding of the heart as a metabolic and endocrine organ highlights its essential contribution to whole body metabolic regulation and offers new insights into the pathogenesis of metabolic diseases, such as obesity, diabetes, and cardiovascular disorders. In this review, we provide an in-depth exploration of the heart's metabolic and endocrine functions, emphasizing its role in systemic metabolism and the interplay between the heart and other metabolic organs. Furthermore, emerging evidence suggests a correlation between heart disease and other conditions such as aging and cancer, indicating that the metabolic dysfunction observed in these conditions may share common underlying mechanisms. By unraveling the complex mechanisms underlying cardiac metabolism, we aim to contribute to the development of novel therapeutic strategies for metabolic diseases and improve overall cardiovascular health.
Collapse
Affiliation(s)
| | | | - Alba C Arcones
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| |
Collapse
|
8
|
Yang Z, Cao Y, Kong L, Xi J, Liu S, Zhang J, Cheng W. Small molecules as modulators of the proteostasis machinery: Implication in cardiovascular diseases. Eur J Med Chem 2024; 264:116030. [PMID: 38071793 DOI: 10.1016/j.ejmech.2023.116030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/25/2023] [Accepted: 12/03/2023] [Indexed: 12/30/2023]
Abstract
With the escalating prevalence of cardiovascular diseases, the substantial socioeconomic burden on healthcare systems is intensifying. Accumulating empirical evidence underscores the pivotal role of the proteostasis network in regulating cardiac homeostasis and function. Disruptions in proteostasis may contribute to the loss of protein function or the acquisition of toxic functions, which are intricately linked to the development of cardiovascular ailments such as atrial fibrillation, heart failure, atherosclerosis, and cardiac aging. It is widely acknowledged that the proteostasis network encompasses molecular chaperones, autophagy, and the ubiquitin proteasome system (UPS). Consequently, the proteostasis network emerges as an appealing target for therapeutic interventions in cardiovascular diseases. Numerous small molecules, acting as modulators of the proteostasis machinery, have exhibited therapeutic efficacy in managing cardiovascular diseases. This review centers on elucidating the role of the proteostasis network in various cardiovascular diseases and explores the potential of small molecules as therapeutic agents.
Collapse
Affiliation(s)
- Zhiheng Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yu Cao
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, China
| | - Limin Kong
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Jianjun Xi
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, China
| | - Shourong Liu
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, China.
| | - Jiankang Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China.
| | - Weiyan Cheng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
9
|
Belykh AE, Soldatov VO, Stetskaya TA, Kobzeva KA, Soldatova MO, Polonikov AV, Deykin AV, Churnosov MI, Freidin MB, Bushueva OY. Polymorphism of SERF2, the gene encoding a heat-resistant obscure (Hero) protein with chaperone activity, is a novel link in ischemic stroke. IBRO Neurosci Rep 2023; 14:453-461. [PMID: 37252629 PMCID: PMC10209486 DOI: 10.1016/j.ibneur.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/09/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Ischemic stroke (IS) is one of the most serious cardiovascular events associated with high risk of death or disability. The growing body of evidence highlights molecular chaperones as especially important players in the pathogenesis of the disease. Since six small proteins called "Hero" have been recently identified as a novel class of chaperones we aimed to evaluate whether SNP rs4644832 in SERF2 gene encoding the member of Hero-proteins, is associated with the risk of IS. METHODS A total of 1929 unrelated Russians (861 patients with IS and 1068 healthy individuals) from Central Russia were recruited into the study. Genotyping was done using a probe-based PCR approach. Statistical analysis was carried out in the whole group and stratified by age, gender and smoking status. RESULTS Analysis of the link between rs4644832 SERF2 and IS showed that G allele is the risk factor of IS only in females (OR=1.29, 95%CI 1.02-1.64, Padj=0.035). In addition, the analysis of associations of rs4644832 SERF2 and IS depending on the smoking status revealed that this genetic variant is associated with an increased risk of IS exclusively in non-smoking individuals (OR=1.26, 95%CI 1.01-1.56, P = 0.041). DISCUSSION Sex- and smoking interactions between rs4644832 polymorphism and IS may be related to the impact of tobacco components metabolism and sex hormones on SERF2 expression. CONCLUSION The present study reveals the novel genetic association between rs4644832 polymorphism and the risk of IS suggesting that SERF2, the part of the protein quality control system, contributes to the pathogenesis of the disease.
Collapse
Affiliation(s)
- Andrei E. Belykh
- Pathophysiology Department, Kursk State Medical University, Kursk, Russia
| | - Vladislav O. Soldatov
- Laboratory of Genome Editing for Veterinary and Biomedicine, Belgorod State National Research University, Belgorod, Russia
| | - Tatiana A. Stetskaya
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia
| | - Ksenia A. Kobzeva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia
| | - Maria O. Soldatova
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia
| | - Alexey V. Polonikov
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russia
| | - Alexey V. Deykin
- Laboratory of Genome Editing for Veterinary and Biomedicine, Belgorod State National Research University, Belgorod, Russia
| | - Mikhail I. Churnosov
- Department of Medical Biological Disciplines, Belgorod State National Research University, Belgorod, Russia
| | - Maxim B. Freidin
- Laboratory of Population Genetics, Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk, Russia
- Queen Mary University of London, London, United Kingdom
| | - Olga Y. Bushueva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russia
| |
Collapse
|
10
|
Sapian S, Ibrahim Mze AA, Jubaidi FF, Mohd Nor NA, Taib IS, Abd Hamid Z, Zainalabidin S, Mohamad Anuar NN, Katas H, Latip J, Jalil J, Abu Bakar NF, Budin SB. Therapeutic Potential of Hibiscus sabdariffa Linn. in Attenuating Cardiovascular Risk Factors. Pharmaceuticals (Basel) 2023; 16:807. [PMID: 37375755 DOI: 10.3390/ph16060807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Cardiovascular diseases (CVDs) represent a broad spectrum of diseases afflicting the heart and blood vessels and remain a major cause of death and disability worldwide. CVD progression is strongly associated with risk factors, including hypertension, hyperglycemia, dyslipidemia, oxidative stress, inflammation, fibrosis, and apoptosis. These risk factors lead to oxidative damage that results in various cardiovascular complications including endothelial dysfunctions, alterations in vascular integrity, the formation of atherosclerosis, as well as incorrigible cardiac remodeling. The use of conventional pharmacological therapy is one of the current preventive measures to control the development of CVDs. However, as undesirable side effects from drug use have become a recent issue, alternative treatment from natural products is being sought in medicinal plants and is gaining interest. Roselle (Hibiscus sabdariffa Linn.) has been reported to contain various bioactive compounds that exert anti-hyperlipidemia, anti-hyperglycemia, anti-hypertension, antioxidative, anti-inflammation, and anti-fibrosis effects. These properties of roselle, especially from its calyx, have relevance to its therapeutic and cardiovascular protection effects in humans. This review summarizes the findings of recent preclinical and clinical studies on roselle as a prophylactic and therapeutic agent in attenuating cardiovascular risk factors and associated mechanisms.
Collapse
Affiliation(s)
- Syaifuzah Sapian
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Asma Ali Ibrahim Mze
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Fatin Farhana Jubaidi
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Nor Anizah Mohd Nor
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Izatus Shima Taib
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Zariyantey Abd Hamid
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Satirah Zainalabidin
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Nur Najmi Mohamad Anuar
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Haliza Katas
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Jalifah Latip
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor 43600, Malaysia
| | - Juriyati Jalil
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Nur Faizah Abu Bakar
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Siti Balkis Budin
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
11
|
Shilenok I, Kobzeva K, Stetskaya T, Freidin M, Soldatova M, Deykin A, Soldatov V, Churnosov M, Polonikov A, Bushueva O. SERPINE1 mRNA Binding Protein 1 Is Associated with Ischemic Stroke Risk: A Comprehensive Molecular-Genetic and Bioinformatics Analysis of SERBP1 SNPs. Int J Mol Sci 2023; 24:8716. [PMID: 37240062 PMCID: PMC10217814 DOI: 10.3390/ijms24108716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
The SERBP1 gene is a well-known regulator of SERPINE1 mRNA stability and progesterone signaling. However, the chaperone-like properties of SERBP1 have recently been discovered. The present pilot study investigated whether SERBP1 SNPs are associated with the risk and clinical manifestations of ischemic stroke (IS). DNA samples from 2060 unrelated Russian subjects (869 IS patients and 1191 healthy controls) were genotyped for 5 common SNPs-rs4655707, rs1058074, rs12561767, rs12566098, and rs6702742 SERBP1-using probe-based PCR. The association of SNP rs12566098 with an increased risk of IS (risk allele C; p = 0.001) was observed regardless of gender or physical activity level and was modified by smoking, fruit and vegetable intake, and body mass index. SNP rs1058074 (risk allele C) was associated with an increased risk of IS exclusively in women (p = 0.02), non-smokers (p = 0.003), patients with low physical activity (p = 0.04), patients with low fruit and vegetable consumption (p = 0.04), and BMI ≥25 (p = 0.007). SNPs rs1058074 (p = 0.04), rs12561767 (p = 0.01), rs12566098 (p = 0.02), rs6702742 (p = 0.036), and rs4655707 (p = 0.04) were associated with shortening of activated partial thromboplastin time. Thus, SERBP1 SNPs represent novel genetic markers of IS. Further studies are required to confirm the relationship between SERBP1 polymorphism and IS risk.
Collapse
Affiliation(s)
- Irina Shilenok
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
- Division of Neurology, Kursk Emergency Hospital, 305035 Kursk, Russia
| | - Ksenia Kobzeva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
| | - Tatiana Stetskaya
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
| | - Maxim Freidin
- Department of Biology, School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
- Laboratory of Population Genetics, Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Science, 634050 Tomsk, Russia
| | - Maria Soldatova
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
| | - Alexey Deykin
- Laboratory of Genome Editing for Biomedicine and Animal Health, Belgorod State National Research University, 308015 Belgorod, Russia
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Vladislav Soldatov
- Laboratory of Genome Editing for Biomedicine and Animal Health, Belgorod State National Research University, 308015 Belgorod, Russia
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Mikhail Churnosov
- Department of Medical Biological Disciplines, Belgorod State University, 308015 Belgorod, Russia
| | - Alexey Polonikov
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 305041 Kursk, Russia
| | - Olga Bushueva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 305041 Kursk, Russia
| |
Collapse
|
12
|
Impaired Extracellular Proteostasis in Patients with Heart Failure. Arch Med Res 2023; 54:211-222. [PMID: 36797157 DOI: 10.1016/j.arcmed.2023.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/11/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Proteostasis impairment and the consequent increase of amyloid burden in the myocardium have been associated with heart failure (HF) development and poor prognosis. A better knowledge of the protein aggregation process in biofluids could assist the development and monitoring of tailored interventions. AIM To compare the proteostasis status and protein's secondary structures in plasma samples of patients with HF with preserved ejection fraction (HFpEF), patients with HF with reduced ejection fraction (HFrEF), and age-matched individuals. METHODS A total of 42 participants were enrolled in 3 groups: 14 patients with HFpEF, 14 patients with HFrEF, and 14 age-matched individuals. Proteostasis-related markers were analyzed by immunoblotting techniques. Fourier Transform Infrared (FTIR) Spectroscopy in Attenuated Total Reflectance (ATR) was applied to assess changes in the protein's conformational profile. RESULTS Patients with HFrEF showed an elevated concentration of oligomeric proteic species and reduced clusterin levels. ATR-FTIR spectroscopy coupled with multivariate analysis allowed the discrimination of HF patients from age-matched individuals in the protein amide I absorption region (1700-1600 cm-1), reflecting changes in protein conformation, with a sensitivity of 73 and a specificity of 81%. Further analysis of FTIR spectra showed significantly reduced random coils levels in both HF phenotypes. Also, compared to the age-matched group, the levels of structures related to fibril formation were significantly increased in patients with HFrEF, whereas the β-turns were significantly increased in patients with HFpEF. CONCLUSION Both HF phenotypes showed a compromised extracellular proteostasis and different protein conformational changes, suggesting a less efficient protein quality control system.
Collapse
|
13
|
Current Understanding of Systemic Amyloidosis and Underlying Disease Mechanisms. Am J Cardiol 2022; 185 Suppl 1:S2-S10. [PMID: 36549788 DOI: 10.1016/j.amjcard.2022.10.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/17/2022] [Accepted: 10/27/2022] [Indexed: 12/24/2022]
Abstract
Amyloidosis is a group of diverse disorders caused by misfolded proteins that aggregate into insoluble fibrils and ultimately cause organ damage. In medical practice, amyloidosis classification is based on the amyloid precursor protein type, of which amyloid immunoglobulin light chain, amyloid transthyretin, amyloid leukocyte chemotactic factor 2, and amyloid derived from serum amyloid A protein are the most common. Distinct mechanisms appear to be predominantly operational in the pathogenesis of particular types of amyloidosis, including increased protein precursor synthesis, somatic or germ line mutations, and inherent instability in the precursor protein in its wild form. An increased supply of misfolded proteins and/or a decreased capacity of the protein quality control systems can result in an imbalance that leads to increased circulation of misfolded proteins. Although the detection of mature fibrils is the basis for diagnosis of amyloidosis, a growing body of evidence has implicated the prefibrillar species as proteotoxic and key contributors to the development of the disease.
Collapse
|
14
|
Characterization of Plasma SDS-Protein Aggregation Profile of Patients with Heart Failure with Preserved Ejection Fraction. J Cardiovasc Transl Res 2022:10.1007/s12265-022-10334-w. [PMID: 36271180 DOI: 10.1007/s12265-022-10334-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/13/2022] [Indexed: 10/24/2022]
Abstract
This study characterizes the plasma levels and composition of SDS-resistant aggregates (SRAs) in patients with heart failure with preserved ejection fraction (HFpEF) to infer molecular pathways associated with disease and/or proteostasis disruption. Twenty adults (ten with HFpEF and ten age-matched individuals) were included. Circulating SRAs were resolved by diagonal two-dimensional SDS-PAGE, and their protein content was identified by mass spectrometry. Protein carbonylation, ubiquitination and ficolin-3 were evaluated. Patients with HFpEF showed higher SRA/total (36.6 ± 4.9% vs 29.6 ± 2.2%, p = 0.009) and SRA/soluble levels (58.6 ± 12.7% vs 40.6 ± 5.8%, p = 0.008). SRAs were carbonylated and ubiquitinated, suggesting they are composed of dysfunctional proteins resistant to degradation. SRAs were enriched in proteins associated with cardiovascular function/disease and with proteostasis machinery. Total ficolin-3 levels were decreased (0.77 ± 0.22, p = 0.041) in HFpEF, suggesting a reduced proteostasis capacity to clear circulating SRA. Thus, the higher accumulation of SRA in HFpEF may result from a failure or overload of the protein clearance machinery.
Collapse
|
15
|
Liu W, Bu H. Sarcostat mechanism: A promising therapeutic strategy for misfolded proteins in cardiomyopathy. Eur J Clin Invest 2022; 52:e13725. [PMID: 34882791 DOI: 10.1111/eci.13725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/03/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Wei Liu
- Department of Cardiothoracic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Haisong Bu
- Department of Cardiothoracic Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
16
|
Liberale L, Badimon L, Montecucco F, Lüscher TF, Libby P, Camici GG. Inflammation, Aging, and Cardiovascular Disease: JACC Review Topic of the Week. J Am Coll Cardiol 2022; 79:837-847. [PMID: 35210039 PMCID: PMC8881676 DOI: 10.1016/j.jacc.2021.12.017] [Citation(s) in RCA: 215] [Impact Index Per Article: 71.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/08/2021] [Indexed: 01/19/2023]
Abstract
Aging and inflammation both contribute pivotally to cardiovascular (CV) and cerebrovascular disease, the leading causes of death and disability worldwide. The concept of inflamm-aging recognizes that low-grade inflammatory pathways observed in the elderly contribute to CV risk. Understanding the mechanisms that link inflammation and aging could reveal new therapeutic targets and offer options to cope with the growing aging population worldwide. This review reports recent scientific advances in the pathways through which inflamm-aging mediates age-dependent decline in CV function and disease onset and considers critically the translational potential of such concepts into everyday clinical practice.
Collapse
Affiliation(s)
- Luca Liberale
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland; First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy. https://twitter.com/liberale_luca
| | - Lina Badimon
- Cardiovascular Research Program ICCC, IR-IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, CiberCV-Institute Carlos III, Barcelona, Spain. https://twitter.com/lbadimon
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, Genoa, Italy
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland; Royal Brompton and Harefield Hospitals and Imperial College, London, United Kingdom. https://twitter.com/TomLuscher
| | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland; University Heart Center, Department of Cardiology, University Hospital Zurich, Zurich, Switzerland; Department of Research and Education, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
17
|
Helms AS, Thompson AD, Day SM. Translation of New and Emerging Therapies for Genetic Cardiomyopathies. JACC Basic Transl Sci 2022; 7:70-83. [PMID: 35128211 PMCID: PMC8807730 DOI: 10.1016/j.jacbts.2021.07.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 11/05/2022]
Abstract
The primary etiology of a diverse range of cardiomyopathies is now understood to be genetic, creating a new paradigm for targeting treatments on the basis of the underlying molecular cause. This review provides a genetic and etiologic context for the traditional clinical classifications of cardiomyopathy, including molecular subtypes that may exhibit differential responses to existing or emerging treatments. The authors describe several emerging cardiomyopathy treatments, including gene therapy, direct targeting of myofilament function, protein quality control, metabolism, and others. The authors discuss advantages and disadvantages of these approaches and indicate areas of high potential for short- and longer term efficacy.
Collapse
Key Words
- AAV, adeno-associated virus
- ACM, arrhythmogenic cardiomyopathy
- ARVC, arrhythmogenic right ventricular cardiomyopathy
- ATPase, adenosine triphosphatase
- DCM, dilated cardiomyopathy
- DMD, Duchenne muscular dystrophy
- DNA, DNA
- DSP, desmoplakin
- FDA, U.S. Food and Drug Administration
- GRT, gene replacement therapy
- GST, gene silencing therapy
- HCM, hypertrophic cardiomyopathy
- HR, homologous recombination
- LNP, lipid nanoparticle
- LVOT, left ventricular outflow tract
- RNA, RNA
- TTR, transthyretin
- arrhythmogenic cardiomyopathy
- dilated cardiomyopathy
- genetics
- hypertrophic cardiomyopathy
- therapeutics
Collapse
Affiliation(s)
- Adam S. Helms
- Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Andrea D. Thompson
- Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sharlene M. Day
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
18
|
Sergi C. Targeting the 'garbage-bin' to fight cancer: HDAC6 inhibitor WT161 has an anti-tumor effect on osteosarcoma and synergistically interacts with 5-FU. Biosci Rep 2021; 41:BSR20210952. [PMID: 34323266 PMCID: PMC8350430 DOI: 10.1042/bsr20210952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/18/2023] Open
Abstract
An imbalance between protein aggregation and protein degradation may induce 'stress' in the functionality of the endoplasmic reticulum (ER). There are quality control (QC) mechanisms to minimize misfolding and to eliminate misfolded proteins before aggregation becomes lethal for the cell. Proper protein folding and maturation is one of the crucial functions of the ER. Chaperones of the ER and folding enzymes guarantee correct conformational maturation of emerging secretory proteins. Histone deacetylase (HDAC) 6 (HDAC6) is a masterpiece coordinating the cell response to protein aggregate formation. The balance between HDAC6 and its partner Valosin-containing protein/p97 determines the fate of polyubiquitinated misfolded proteins. WT161 is a terrific, selective, and bioavailable HDAC6 inhibitor. WT161 selectively inhibits HDAC6 and adequately increases levels of acetylated α-tubulin. This compound induces accumulation of acetylated tubulin and cytotoxicity in multiple myeloma (MM) cells. In this journal, Sun et al. (Biosci. Rep.41, DOI: 10.1042/BSR20203905) identified that WT161 suppresses the cell growth of osteosarcoma cells. This discovery opens the door to future chemotherapeutic regimens of this bone neoplasm.
Collapse
Affiliation(s)
- Consolato M. Sergi
- AP Division/Pathology Laboratories, Children’s Hospital of Eastern Ontario, University of Ottawa, 401 Smyth Rd, Ottawa, Ontario K1H 8L1, Canada
- Department of Orthopedics, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
19
|
Sergi CM. Targeting the 'garbage-bin' to fight cancer: HDAC6 inhibitor WT161 has an anti-tumor effect on osteosarcoma and synergistically interacts with 5-FU. Biosci Rep 2021; 41:BSR20210952. [PMID: 34323266 DOI: 10.1042/bsr20210952.pmid:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 10/04/2024] Open
Abstract
An imbalance between protein aggregation and protein degradation may induce 'stress' in the functionality of the endoplasmic reticulum (ER). There are quality control (QC) mechanisms to minimize misfolding and to eliminate misfolded proteins before aggregation becomes lethal for the cell. Proper protein folding and maturation is one of the crucial functions of the ER. Chaperones of the ER and folding enzymes guarantee correct conformational maturation of emerging secretory proteins. Histone deacetylase (HDAC) 6 (HDAC6) is a masterpiece coordinating the cell response to protein aggregate formation. The balance between HDAC6 and its partner Valosin-containing protein/p97 determines the fate of polyubiquitinated misfolded proteins. WT161 is a terrific, selective, and bioavailable HDAC6 inhibitor. WT161 selectively inhibits HDAC6 and adequately increases levels of acetylated α-tubulin. This compound induces accumulation of acetylated tubulin and cytotoxicity in multiple myeloma (MM) cells. In this journal, Sun et al. (Biosci. Rep.41, DOI: 10.1042/BSR20203905) identified that WT161 suppresses the cell growth of osteosarcoma cells. This discovery opens the door to future chemotherapeutic regimens of this bone neoplasm.
Collapse
Affiliation(s)
- Consolato M Sergi
- AP Division/Pathology Laboratories, Children's Hospital of Eastern Ontario, University of Ottawa, 401 Smyth Rd, Ottawa, Ontario K1H 8L1, Canada
- Department of Orthopedics, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
20
|
Sabnis RW. Novel Histone Deacetylase 6 Inhibitors for Treating Alzheimer's Disease and Cancer. ACS Med Chem Lett 2021; 12:1202-1203. [PMID: 34413942 DOI: 10.1021/acsmedchemlett.1c00339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell LLP, 1230 Peachtree Street NE, Suite 3100, Atlanta, Georgia 30309, United States
| |
Collapse
|
21
|
Sabnis RW. Novel Histone Deacetylase Inhibitors for Treating HIV Infection. ACS Med Chem Lett 2021; 12:1196-1197. [PMID: 34413939 DOI: 10.1021/acsmedchemlett.1c00336] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Indexed: 12/28/2022] Open
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell LLP, 1230 Peachtree Street NE, Suite 3100, Atlanta, Georgia 30309, United States
| |
Collapse
|
22
|
Sabnis RW. 5-Fluoronicotinamide Derivatives as HDAC6 Inhibitors for Treating Heart Diseases. ACS Med Chem Lett 2021; 12:953-954. [PMID: 34141079 DOI: 10.1021/acsmedchemlett.1c00282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Indexed: 12/18/2022] Open
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell LLP, 1230 Peachtree Street NE, Suite 3100, Atlanta, Georgia 30309, United States
| |
Collapse
|