1
|
Lyu Z, Wang H, Dai F, Lin Y, Wen H, Liu X, Feng X, Xu Z, Huang L. Increased ZNF83 is a potential prognostic biomarker and regulates oxidative stress-induced ferroptosis in clear cell renal cell carcinoma. J Mol Med (Berl) 2025:10.1007/s00109-025-02543-y. [PMID: 40220129 DOI: 10.1007/s00109-025-02543-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
While zinc finger proteins (ZFPs) are known to be crucial in various cellular activities such as gene expression regulation and energy metabolism, their specific roles in tumor progression are not well-documented. This study focuses on Zinc Finger Protein 83 (ZNF83) to explore its impact on clear cell renal cell carcinoma (ccRCC) and assess its viability as a prognostic biomarker. Public datasets were utilized to analyze ZNF83's expression and functions in ccRCC systematically. Further, in vitro and in vivo experiments were conducted to delve deeper into ZNF83's functional role. Techniques like electron microscopy for mitochondrial morphology and ROS level quantification were used to assess ferroptosis. RNA sequencing and metabolomic mass spectrometry were employed to understand ZNF83's role in oxidative stress modulation and ferroptosis resistance. Our findings demonstrated that ZNF83 overexpression significantly enhanced tumor cell survival and proliferation, while ZNF83 knockout suppressed these processes. Under oxidative stress or upon treatment with ferroptosis inducers, ZNF83 expression was markedly upregulated, and the protein predominantly localized to the cell nucleus. Notably, ZNF83 overexpression conferred resistance to ferroptosis, promoting tumor cell survival under ferroptosis-inducing conditions. Conversely, ZNF83 knockout sensitized cells to ferroptosis, increasing tumor cell death. RNA-seq and metabolomic analyses revealed that ZNF83 is intricately involved in the regulation of NRF2, a master regulator of the antioxidant response, and associated signaling pathways. ZNF83 represents a key ferroptosis regulator in ccRCC, serving as both a promising prognostic biomarker and therapeutic target. Targeting ZNF83 may improve treatment strategies for ccRCC patients. KEY MESSAGES: ZNF83 as a crucial regulator of tumor cell survival and proliferation in renal cancer, a novel discovery in the context of renal cancer progression. ZNF83 overexpression confers resistance to ferroptosis, enhancing tumor cell survival under oxidative stress or ferroptosis-inducing conditions. Utilizing both RNA sequencing and metabolomic mass spectrometry, we provide comprehensive insights into the molecular pathways, particularly NRF2-related, regulated by ZNF83 in ccRCC. ZNF83's potential as a novel prognostic biomarker for ccRCC is proposed, offering a new avenue for personalized treatment strategies and improving treatment outcomes for patients.
Collapse
Affiliation(s)
- Zhaojie Lyu
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China.
| | - Huming Wang
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Fang Dai
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Yu Lin
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
- Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Hantao Wen
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
- Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xudong Liu
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
- Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xiaotong Feng
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
- Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Zihan Xu
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Lei Huang
- National Clinical Research Center for Digestive Diseases, Shanghai Institute of Pancreatic Diseases, Department of Gastroenterology, The First Affiliated Hospital of Naval Medical University/Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
- National Key Laboratory of Immunity and Inflammation, Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University/Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
2
|
Wang R, Wang S, Jiang H, Lan Y, Yu S. Prospects for the clinical application of exosomal circular RNA in squamous cell carcinoma. Front Oncol 2024; 14:1430684. [PMID: 38933443 PMCID: PMC11200112 DOI: 10.3389/fonc.2024.1430684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Squamous cell carcinoma (SCC) is a prevalent malignancy affecting multiple organs in the human body, including the oral cavity, esophagus, cervix, and skin. Given its significant incidence and mortality rates, researchers are actively seeking effective diagnostic and therapeutic strategies. In recent years, exosomes and their molecular cargo, particularly circular RNA (circRNA), have emerged as promising areas of investigation in SCC research. Exosomes are small vesicles released into the extracellular environment by cells that contain biomolecules that reflect the physiological state of the cell of origin. CircRNAs, known for their unique covalently closed loop structure and stability, have garnered special attention in oncology and are closely associated with tumorigenesis, progression, metastasis, and drug resistance. Interestingly, exosomal circRNAs have been identified as ideal biomarkers for noninvasive cancer diagnosis and prognosis assessment. This article reviews the progress in research on exosomal circRNAs, focusing on their expression patterns, functions, and potential applications as biomarkers in SCC, aiming to provide new insights and strategies for the diagnosis and treatment of SCC.
Collapse
Affiliation(s)
- Rongzhong Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Shiyan Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Hua Jiang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Yingmei Lan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Shaobin Yu
- Division of Nephrology, National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Cocola C, Abeni E, Martino V, Piscitelli E, Morara S, Pelucchi P, Mosca E, Chiodi A, Mohamed T, Palizban M, De Petro G, Porta G, Greve B, Noghero A, Magnaghi V, Bellipanni G, Kehler J, Götte M, Bussolino F, Milanesi L, Zucchi I, Reinbold R. Transmembrane protein TMEM230, regulator of metalloproteins and motor proteins in gliomas and gliosis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:255-297. [PMID: 38960477 DOI: 10.1016/bs.apcsb.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Glial cells provide physical and chemical support and protection for neurons and for the extracellular compartments of neural tissue through secretion of soluble factors, insoluble scaffolds, and vesicles. Additionally, glial cells have regenerative capacity by remodeling their physical microenvironment and changing physiological properties of diverse cell types in their proximity. Various types of aberrant glial and macrophage cells are associated with human diseases, disorders, and malignancy. We previously demonstrated that transmembrane protein, TMEM230 has tissue revascularization and regenerating capacity by its ability to secrete pro-angiogenic factors and metalloproteinases, inducing endothelial cell sprouting and channel formation. In healthy normal neural tissue, TMEM230 is predominantly expressed in glial and marcophate cells, suggesting a prominent role in neural tissue homeostasis. TMEM230 regulation of the endomembrane system was supported by co-expression with RNASET2 (lysosome, mitochondria, and vesicles) and STEAP family members (Golgi complex). Intracellular trafficking and extracellular secretion of glial cellular components are associated with endocytosis, exocytosis and phagocytosis mediated by motor proteins. Trafficked components include metalloproteins, metalloproteinases, glycans, and glycoconjugate processing and digesting enzymes that function in phagosomes and vesicles to regulate normal neural tissue microenvironment, homeostasis, stress response, and repair following neural tissue injury or degeneration. Aberrantly high sustained levels TMEM230 promotes metalloprotein expression, trafficking and secretion which contribute to tumor associated infiltration and hypervascularization of high tumor grade gliomas. Following injury of the central nervous or peripheral systems, transcient regulated upregulation of TMEM230 promotes tissue wound healing, remodeling and revascularization by activating glial and macrophage generated microchannels/microtubules (referred to as vascular mimicry) and blood vessel sprouting and branching. Our results support that TMEM230 may act as a master regulator of motor protein mediated trafficking and compartmentalization of a large class of metalloproteins in gliomas and gliosis.
Collapse
Affiliation(s)
- Cinzia Cocola
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Edoardo Abeni
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Valentina Martino
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Eleonora Piscitelli
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Stefano Morara
- Institute of Neuroscience, National Research Council, Vedano al Lambro, Monza Brianza, Italy
| | - Paride Pelucchi
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Ettore Mosca
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Alice Chiodi
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Tasnim Mohamed
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Mira Palizban
- Department of Gynecology, and Obstetrics, University Hospital of Münster, Münster, Germany
| | - Giuseppina De Petro
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giovanni Porta
- Centro di Medicina Genomica, Department of Medicine and Surgery University of Insubria, Varese, Italy
| | - Burkhard Greve
- Department of Radiation Therapy and Radiation Oncology, University Hospital of Münster, Münster, Germany
| | - Alessio Noghero
- Laboratory of Vascular Oncology Candiolo Cancer Institute, IRCCS, Candiolo, Italy; Lovelace Biomedical Research Institute, Albuquerque, NM, United States
| | - Valerio Magnaghi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Gianfranco Bellipanni
- Department of Biology, Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, United States; Center for Biotechnology, Sbarro Institute for Research and Molecular Medicine and Department of Biology, Temple University, Philadelphia, PA, United State
| | - James Kehler
- National Institutes of Health, NIDDK, Laboratory of Cell and Molecular Biology, Bethesda, MD, United States
| | - Martin Götte
- Department of Gynecology, and Obstetrics, University Hospital of Münster, Münster, Germany
| | - Federico Bussolino
- Lovelace Biomedical Research Institute, Albuquerque, NM, United States; Department of Oncology, University of Turin, Orbassano, Italy
| | - Luciano Milanesi
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Ileana Zucchi
- Institute of Biomedical Technologies, National Research Council, Milan, Italy; Associazione Fondazione Renato Dulbecco, Milano, Italy.
| | - Rolland Reinbold
- Institute of Biomedical Technologies, National Research Council, Milan, Italy; Associazione Fondazione Renato Dulbecco, Milano, Italy.
| |
Collapse
|
4
|
Kunachowicz D, Król-Kulikowska M, Raczycka W, Sleziak J, Błażejewska M, Kulbacka J. Heat Shock Proteins, a Double-Edged Sword: Significance in Cancer Progression, Chemotherapy Resistance and Novel Therapeutic Perspectives. Cancers (Basel) 2024; 16:1500. [PMID: 38672583 PMCID: PMC11048091 DOI: 10.3390/cancers16081500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Heat shock proteins (Hsps) are involved in one of the adaptive mechanisms protecting cells against environmental and metabolic stress. Moreover, the large role of these proteins in the carcinogenesis process, as well as in chemoresistance, was noticed. This review aims to draw attention to the possibilities of using Hsps in developing new cancer therapy methods, as well as to indicate directions for future research on this topic. In order to discuss this matter, a thorough review of the latest scientific literature was carried out, taking into account the importance of selected proteins from the Hsp family, including Hsp27, Hsp40, Hsp60, Hsp70, Hsp90 and Hsp110. One of the more characteristic features of all Hsps is that they play a multifaceted role in cancer progression, which makes them an obvious target for modern anticancer therapy. Some researchers emphasize the importance of directly inhibiting the action of these proteins. In turn, others point to their possible use in the design of cancer vaccines, which would work by inducing an immune response in various types of cancer. Due to these possibilities, it is believed that the use of Hsps may contribute to the progress of oncoimmunology, and thus help in the development of modern anticancer therapies, which would be characterized by higher effectiveness and lower toxicity to the patients.
Collapse
Affiliation(s)
- Dominika Kunachowicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (D.K.); (M.K.-K.)
| | - Magdalena Król-Kulikowska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (D.K.); (M.K.-K.)
| | - Wiktoria Raczycka
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (W.R.); (J.S.); (M.B.)
| | - Jakub Sleziak
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (W.R.); (J.S.); (M.B.)
| | - Marta Błażejewska
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (W.R.); (J.S.); (M.B.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine Santariškių g. 5, LT-08406 Vilnius, Lithuania
- DIVE IN AI, 53-307 Wroclaw, Poland
| |
Collapse
|
5
|
Alam S, Giri PK. Novel players in the development of chemoresistance in ovarian cancer: ovarian cancer stem cells, non-coding RNA and nuclear receptors. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:6. [PMID: 38434767 PMCID: PMC10905178 DOI: 10.20517/cdr.2023.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/03/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
Ovarian cancer (OC) ranks as the fifth leading factor for female mortality globally, with a substantial burden of new cases and mortality recorded annually. Survival rates vary significantly based on the stage of diagnosis, with advanced stages posing significant challenges to treatment. OC is primarily categorized as epithelial, constituting approximately 90% of cases, and correct staging is essential for tailored treatment. The debulking followed by chemotherapy is the prevailing treatment, involving platinum-based drugs in combination with taxanes. However, the efficacy of chemotherapy is hindered by the development of chemoresistance, both acquired during treatment (acquired chemoresistance) and intrinsic to the patient (intrinsic chemoresistance). The emergence of chemoresistance leads to increased mortality rates, with many advanced patients experiencing disease relapse shortly after initial treatment. This review delves into the multifactorial nature of chemoresistance in OC, addressing mechanisms involving transport systems, apoptosis, DNA repair, and ovarian cancer stem cells (OCSCs). While previous research has identified genes associated with these mechanisms, the regulatory roles of non-coding RNA (ncRNA) and nuclear receptors in modulating gene expression to confer chemoresistance have remained poorly understood and underexplored. This comprehensive review aims to shed light on the genes linked to different chemoresistance mechanisms in OC and their intricate regulation by ncRNA and nuclear receptors. Specifically, we examine how these molecular players influence the chemoresistance mechanism. By exploring the interplay between these factors and gene expression regulation, this review seeks to provide a comprehensive mechanism driving chemoresistance in OC.
Collapse
Affiliation(s)
| | - Pankaj Kumar Giri
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110068, India
| |
Collapse
|