1
|
Zhang H, Chen W, Meng R, Duo H, Zhang X, Guo Z, Shen X, Liu Q, Li Z, Sun D, Fu Y. Complete mitochondrial genome of Scathophaga stercoraria (Diptera: Scathophagidae) in wild plateau pika: genome descriptions and phylogenetic evolution. Parasitology 2024; 151:1075-1084. [PMID: 39563190 PMCID: PMC11894003 DOI: 10.1017/s0031182024000623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/19/2024] [Accepted: 04/29/2024] [Indexed: 11/21/2024]
Abstract
As a member of the Scathophagidae family, Scathophaga stercoraria (S. stercoraria) is widely distributed globally and is closely associated with animal feces. It is also a species of great interest to many scientific studies. However, its phylogenetic relationships are poorly understood. In this study, S. stercoraria was found in plateau pikas for the first time. The potential cause of its presence in the plateau pikas was discussed and it was speculated that the presence of S. stercoraria was related to the yak feces. In addition, 2 nuclear genes (18SrDNA and 28SrDNA), 1 mitochondrial gene (COI), and the complete mitochondrial genome of S. stercoraria were sequenced. Phylogenetic trees constructed based on 13 Protein coding genes (13PCGs), 18S and 28S rDNA showed that S. stercoraria is closely related to the Calliphoridae family; phylogenetic results based on COI suggest that within the family Scathophagidae, S. stercoraria is more closely related to the genus Leptopa, Micropselapha, Parallelomma and Americina. Divergence times estimated using the COI gene suggest that the divergence formation of the genus Scathophaga is closely related to changes in biogeographic scenarios and potentially driven by a combination of uplift of the Qinghai-Tibetan Plateau (QTP) and dramatic climate changes. These results provide valuable information for further studies on the phylogeny and differentiation of the Scathophaga genus in the future.
Collapse
Affiliation(s)
- Haining Zhang
- Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, People's Republic of China
- Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Xining, People's Republic of China
| | - Wangkai Chen
- Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, People's Republic of China
- Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Xining, People's Republic of China
| | - Ru Meng
- Xining Animal Disease Control Center, Xining, People's Republic of China
| | - Hong Duo
- Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, People's Republic of China
- Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Xining, People's Republic of China
| | - Xueyong Zhang
- Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, People's Republic of China
- Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Xining, People's Republic of China
| | - Zhihong Guo
- Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, People's Republic of China
- Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Xining, People's Republic of China
| | - Xiuying Shen
- Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, People's Republic of China
- Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Xining, People's Republic of China
| | - Qing Liu
- Animal Husbandry and Veterinary Station of Huangyuan county, Xining, People's Republic of China
| | - Zhi Li
- Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, People's Republic of China
- Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Xining, People's Republic of China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, People's Republic of China
| | - Donglei Sun
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Yong Fu
- Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, People's Republic of China
- Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Xining, People's Republic of China
| |
Collapse
|
2
|
Bravo C, Bautista-Sopelana LM, Alonso JC. Revisiting niche divergence hypothesis in sexually dimorphic birds: Is diet overlap correlated with sexual size dimorphism? J Anim Ecol 2024; 93:460-474. [PMID: 38462717 DOI: 10.1111/1365-2656.14058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 01/04/2024] [Indexed: 03/12/2024]
Abstract
The evolution of sexual size dimorphism (SSD) is a long-standing topic in evolutionary biology, but there is little agreement on the extent to which SSD is driven by the different selective forces. While sexual selection and fecundity selection have traditionally been proposed as the two leading hypotheses, SSD may also result from natural selection through mechanisms such as sexual niche divergence, which might have reduced resource competition between sexes. Here, we revisited the niche divergence hypothesis by testing the relationship between the sexual overlap in diet and SSD of 56 bird species using phylogenetic comparative analyses. We then assessed how SSD variation relates to the three main hypotheses: sexual selection, fecundity selection, and sexual niche divergence using phylogenetic generalized least squares (PGLS). Then, we compared sexual selection, fecundity selection and niche divergence selection as SSD drivers through phylogenetic confirmatory path analyses to disentangle the possible causal evolutionary relationships between SSD and the three hypotheses. Phylogenetic generalized least squares showed that SSD was negatively correlated with diet overlap, that is, the greater the difference in body size between males and females, the less diet overlap. As predicted by sexual selection theory, the difference in body size between sexes was higher in polygynous species. Confirmatory phylogenetic path analyses suggested that the most likely evolutionary path might include the mating system as a main driver in SSD and niche divergence as a result of SSD. We found no evidence of a role of fecundity selection in the evolution of female-biased SSD. Our study provides evidence that sexual selection has likely been the main cause of SSD and that dietary divergence is likely an indirect effect of SSD.
Collapse
Affiliation(s)
- Carolina Bravo
- Instituto de Investigación en Recursos Cinegéticos (IREC)-(CSIC-UCLM-JCCM), Ciudad Real, Spain
| | | | - Juan Carlos Alonso
- Department of Evolutionary Ecology, Museo Nacional de Ciencias Naturales (MNCN), CSIC, Madrid, Spain
| |
Collapse
|
3
|
Laugen AT, Hosken DJ, Reinhold K, Schwarzenbach GA, Hoeck PEA, Bussière LF, Blanckenhorn WU, Lüpold S. Sperm competition in yellow dung flies: No consistent effect of sperm size. J Evol Biol 2022; 35:1309-1318. [PMID: 35972882 DOI: 10.1111/jeb.14073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 01/07/2023]
Abstract
The male competition for fertilization that results from female multiple mating promotes the evolution of increased sperm numbers and can impact sperm morphology, with theory predicting that longer sperm can at times be advantageous during sperm competition. If so, males with longer sperm should sire more offspring than competitors with shorter sperm. Few studies have directly tested this prediction, and findings are inconsistent. Here we assessed whether longer sperm provide a competitive advantage in the yellow dung fly (Scathophaga stercoraria; Diptera: Scathophagidae). Initially, we let brothers with different temperature-mediated mean sperm lengths compete - thus minimizing confounding effects of genetic background - and found no clear advantage of longer sperm. We then used flies from lines subjected to bidirectional selection on phenoloxidase activity that had shown correlated evolutionary responses in sperm and female spermathecal duct lengths. This experiment also yielded no main effect of sperm size on siring success. Instead, there was a trend for a shorter-sperm advantage, but only when competing in females with longer spermathecal ducts. Our data corroborated many previously reported findings (last-male precedence, effects of copula duration and body size), suggesting our failure to find sperm size effects is not inherently due to our experimental protocols. We conclude that longer sperm are not competitively superior in yellow dung flies under most circumstances, and that, consistent with previous work, in this species competitive fertilization success is primarily determined by the relative numbers of sperm competing.
Collapse
Affiliation(s)
- Ane T Laugen
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, Zurich, Switzerland.,Centre for Coastal Research, Department of Natural Sciences, University of Agder, Kristiansand, Norway
| | - David J Hosken
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, Zurich, Switzerland.,Centre for Ecology and Conservation, University of Exeter in Cornwall, Penryn, UK
| | - Klaus Reinhold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, Zurich, Switzerland.,Evolutionsbiologie, Universität Bielefeld, Bielefeld, Germany
| | - Gioia A Schwarzenbach
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, Zurich, Switzerland
| | - Paquita E A Hoeck
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, Zurich, Switzerland
| | - Luc F Bussière
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, Zurich, Switzerland.,Biology and Environmental Sciences, University of Gothenburg and Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Wolf U Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, Zurich, Switzerland
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, Zurich, Switzerland
| |
Collapse
|