1
|
Shafiei FS, Abroun S, Vahdat S, Rafiee M. Omics approaches: Role in acute myeloid leukemia biomarker discovery and therapy. Cancer Genet 2025; 292-293:14-26. [PMID: 39798496 DOI: 10.1016/j.cancergen.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/19/2024] [Accepted: 12/31/2024] [Indexed: 01/15/2025]
Abstract
Acute myeloid leukemia (AML) is the most common acute leukemia in adults and has the highest fatality rate. Patients aged 65 and above exhibit the poorest prognosis, with a mere 30 % survival rate within one year. One important issue in optimizing outcomes for AML patients is their limited ability to predict responses to specific therapies, response duration, and likelihood of relapse. Despite rigorous therapeutic interventions, a significant proportion of patients experience relapse. Consequently, there is a pressing need to introduce new targets for therapy. Sequencing and biotechnology have come a long way in the last ten years. This has made it easier for many omics technologies, like genomics, transcriptomics, proteomics, and metabolomics, to study molecular mechanisms of AML. An integrative approach is necessary to understand a complex biological process fully and offers an important opportunity to understand the information underlying diseases. In this review, we studied papers published between 2010 and 2024 employing omics approaches encompassing diagnosis, prognosis, and risk stratification of AML. Finally, we discuss prospects and challenges in applying -omics technologies to the discovery of novel biomarkers and therapy targets. Our review may be helpful for omics researchers who want to study AML from different molecular aspects.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/diagnosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Genomics/methods
- Metabolomics/methods
- Proteomics/methods
- Prognosis
Collapse
Affiliation(s)
- Fatemeh Sadat Shafiei
- MSC student of Hematology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Saeid Abroun
- PhD in clinical Hematology, Professor of Hematology, Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sadaf Vahdat
- PhD of Medical Biotechnology, Assistant Professor, Applied Cell Sciences Division, Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Rafiee
- PhD of Hematology, Assistant Professor, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
2
|
Ram M, Fraser MR, Vieira dos Santos J, Tasakis R, Islam A, Abo-Donia JU, Parekh S, Lagana A. The Genetic and Molecular Drivers of Multiple Myeloma: Current Insights, Clinical Implications, and the Path Forward. Pharmgenomics Pers Med 2024; 17:573-609. [PMID: 39723112 PMCID: PMC11669356 DOI: 10.2147/pgpm.s350238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Background Multiple myeloma (MM) is a hematological malignancy characterized by the clonal proliferation of malignant plasma cells within the bone marrow. The disease's complexity is underpinned by a variety of genetic and molecular abnormalities that drive its progression. Methods This review was conducted through a state-of-The-art literature search, primarily utilizing PubMed to gather peer-reviewed articles. We focused on the most comprehensive and cited studies to ensure a thorough understanding of the genetic and molecular landscapes of MM. Results We detail primary and secondary alterations such as translocations, hyperdiploidy, single nucleotide variants (SNVs), copy number alterations (CNAs), gene fusions, epigenetic modifications, non-coding RNAs, germline predisposing variants, and the influence of the tumor microenvironment (TME). Our analysis highlights the heterogeneity of MM and the challenges it poses in treatment and prognosis, emphasizing the distinction between driver mutations, which actively contribute to oncogenesis, and passenger mutations, which arise due to genomic instability and do not contribute to disease progression. Conclusion & Future Perspectives We report key controversies and challenges in defining the genetic drivers of MM, and examine their implications for future therapeutic strategies. We discuss the importance of systems biology approaches in understanding the dependencies and interactions among these alterations, particularly highlighting the impact of double and triple-hit scenarios on disease outcomes. By advancing our understanding of the molecular drivers and their interactions, this review sets the stage for novel therapeutic targets and strategies, ultimately aiming to improve clinical outcomes in MM patients.
Collapse
Affiliation(s)
- Meghana Ram
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Junia Vieira dos Santos
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rafail Tasakis
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ariana Islam
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jannah Usama Abo-Donia
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samir Parekh
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alessandro Lagana
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
3
|
Al-Hawary SIS, Jasim SA, Altalbawy FMA, Hjazi A, Jyothi SR, Kumar A, Eldesoqui M, Rasulova MT, Sinha A, Zwamel AH. Highlighting the role of long non-coding RNA (LncRNA) in multiple myeloma (MM) pathogenesis and response to therapy. Med Oncol 2024; 41:171. [PMID: 38849654 DOI: 10.1007/s12032-024-02392-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/24/2024] [Indexed: 06/09/2024]
Abstract
Transcripts longer than 200 nucleotides that are not translated into proteins are known as long non-coding RNAs, or lncRNAs. Now, they are becoming more significant as important regulators of gene expression, and as a result, of many biological processes in both healthy and pathological circumstances, such as blood malignancies. Through controlling alternative splicing, transcription, and translation at the post-transcriptional level, lncRNAs have an impact on the expression of genes. In multiple myeloma (MM), the majority of lncRNAs is elevated and promotes the proliferation, adhesion, drug resistance and invasion of MM cells by blocking apoptosis and altering the tumor microenvironment (TME). To control mRNA splicing, stability, and translation, they either directly attach to the target mRNA or transfer RNA-binding proteins (RBPs). By expressing certain miRNA-binding sites that function as competitive endogenous RNAs (ceRNAs), most lncRNAs mimic the actions of miRNAs. Here, we highlight lncRNAs role in the MM pathogenesis with emphasize on their capacity to control the molecular mechanisms known as "hallmarks of cancer," which permit earlier tumor initiation and progression and malignant cell transformation.
Collapse
Affiliation(s)
| | | | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Ashwani Kumar
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Mamdouh Eldesoqui
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, 13713, Diriyah, Riyadh, Saudi Arabia.
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - M T Rasulova
- Department of Physiology, Dean of the Faculty of Therapeutics, Fergana Medical Institute of Public Health, Fergana, Uzbekistan
- Western Caspian University, Scientific Researcher, Baku, Azerbaijan
| | - Aashna Sinha
- School of Applied and Life Sciences, Divison of Research and Innovation, Uttaranchal University Dehradun, Dehradun, Uttarakhand, India
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
4
|
Xu L, Xie Z, Jiang H, Wang E, Hu M, Huang Q, Hao X. Identification and evaluation of a six-lncRNA prognostic signature for multiple myeloma. Discov Oncol 2024; 15:204. [PMID: 38831187 PMCID: PMC11147969 DOI: 10.1007/s12672-024-01064-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024] Open
Abstract
PURPOSE Multiple myeloma (MM) is the second most common hematologic malignancy, and there is no cure for this disease. This study aimed to explore the prognostic value of long noncoding RNAs (lncRNAs) in MM and to reveal related immune and chemotherapy resistance mechanisms. METHODS In this study, lncRNA profiles from the Multiple Myeloma Research Foundation (MMRF) and Gene Expression Omnibus (GEO) databases were analyzed to identify lncRNAs linked to MM patient survival. A risk assessment model stratified patients into high- and low-risk groups, and survival was evaluated. Additionally, a triple-ceRNA (lncRNA-miRNA-mRNA) network was constructed, and functional analysis was performed. The research also involved immune function analysis and chemotherapy drug sensitivity assessment using oncoPredict and the GDSC dataset. RESULTS We identified 422 lncRNAs significantly associated with overall survival in MM patients and ultimately focused on the 6 with the highest prognostic value. These lncRNAs were used to develop a risk score formula that stratified patients into high- and low-risk groups. Kaplan-Meier analysis revealed shorter survival in high-risk patients. We integrated this lncRNA signature with clinical parameters to construct a nomogram for predicting MM prognosis. Additionally, a triple-ceRNA network was constructed to reveal potential miRNA targets, coding genes related to these lncRNAs and significantly enriched pathways. Immune checkpoint gene expression and immune cell composition were also analyzed in relation to the lncRNA risk score. Finally, using the oncoPredict tool, we observed that high-risk patients exhibited decreased sensitivity to key MM chemotherapeutics, suggesting that lncRNA profiles are linked to chemotherapy resistance.
Collapse
Affiliation(s)
- Lu Xu
- Department of Hematology, The First Affiliated Hospital of Hainan Medical College, Haikou, 570102, China.
- Tsinghua University, School of Medicine, Beijing, 100084, China.
- Department of Hematology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| | - Zhihao Xie
- Department of Hematology, The First Affiliated Hospital of Hainan Medical College, Haikou, 570102, China
| | | | - Erpeng Wang
- Nanfang Medical University, Guangzhou, 510515, China
| | - Min Hu
- Department of Hematology, The First Affiliated Hospital of Hainan Medical College, Haikou, 570102, China
| | - Qianlei Huang
- Department of Hematology, The First Affiliated Hospital of Hainan Medical College, Haikou, 570102, China
| | - Xinbao Hao
- Department of Hematology, The First Affiliated Hospital of Hainan Medical College, Haikou, 570102, China.
- Tsinghua University, School of Medicine, Beijing, 100084, China.
| |
Collapse
|
5
|
Wang QM, Lian GY, Sheng SM, Xu J, Ye LL, Min C, Guo SF. Exosomal lncRNA NEAT1 Inhibits NK-Cell Activity to Promote Multiple Myeloma Cell Immune Escape via an EZH2/PBX1 Axis. Mol Cancer Res 2024; 22:125-136. [PMID: 37889101 DOI: 10.1158/1541-7786.mcr-23-0282] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/16/2023] [Accepted: 10/24/2023] [Indexed: 10/28/2023]
Abstract
Exosomal long noncoding RNAs (lncRNA) derived from cancer cells are implicated in various processes, including cancer cell proliferation, metastasis, and immunomodulation. We investigated the role and underlying mechanism of exosome-transmitted lncRNA NEAT1 in the immune escape of multiple myeloma cells from natural killer (NK) cells. Multiple myeloma cells and samples from patients with multiple myeloma were obtained. The effects of multiple myeloma cell-derived exosomes (multiple myeloma exosomes) and exosomal NEAT1 on the functions of NK cells were evaluated using EdU staining, CCK-8, flow cytometry, and ELISA. Chromatin and RNA immunoprecipitation were performed to identify interactions between NEAT1, enhancer of Zeste Homolog 2 (EZH2), and pre-B-cell leukemia transcription factor 1 (PBX1). A xenograft tumor model was constructed to verify the effects of exosomal NEAT1 on tumor growth. qRT-PCR, Western blot analysis, and IHC were conducted to detect related genes. NEAT1 levels were upregulated in multiple myeloma tumor tissues, multiple myeloma cells, and multiple myeloma exosomes. Multiple myeloma exosomes suppressed cell proliferation, promoted apoptosis, reduced natural killer group 2, member D (NKG2D)-positive cells, and the production of TNFα) and interferon-gamma (IFN-γ) in NK cells, whereas NEAT1-silenced exosomes had little effect. NEAT1 silenced PBX1 by recruiting EZH2. PBX1 knockdown abrogated the effects of NEAT1-silenced exosomes on NK and multiple myeloma cells. NEAT1-silenced exosomes inhibited tumor growth in mice, decreased Ki67 and PD-L1, and increased NKG2D, TNFα, and IFNγ in tumor tissues. In summary, multiple myeloma cell-derived exosomal NEAT1 suppressed NK-cell activity by downregulating PBX1, promoting multiple myeloma cell immune escape. This study suggests a potential strategy for treating multiple myeloma. IMPLICATIONS This study reveals that exosomal NEAT1 regulates EZH2/PBX1 axis to inhibit NK-cell activity, thereby promoting multiple myeloma cell immune escape, which offers a novel therapeutic potential for multiple myeloma.
Collapse
Affiliation(s)
- Qing-Ming Wang
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Hematology, Nanchang, Jiangxi, China
| | - Guang-Yu Lian
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | - Jing Xu
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Hematology, Nanchang, Jiangxi, China
| | - Long-Long Ye
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Hematology, Nanchang, Jiangxi, China
| | - Chao Min
- Nanchang University, Nanchang, Jiangxi, China
| | | |
Collapse
|
6
|
Alkan AH, Ensoy M, Cansaran-Duman D. Strategic and Innovative Roles of lncRNAs Regulated by Naturally-derived Small Molecules in Cancer Therapy. Curr Med Chem 2024; 31:6672-6691. [PMID: 37921177 DOI: 10.2174/0109298673264372230919102758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/22/2023] [Accepted: 08/17/2023] [Indexed: 11/04/2023]
Abstract
In the field of precision and personalized medicine, the next generation sequencing method has begun to take an active place as genome-wide screening applications in the diagnosis and treatment of diseases. Studies based on the determination of the therapeutic efficacy of personalized drug use in cancer treatment in the size of the transcriptome and its extension, lncRNA, have been increasing rapidly in recent years. Targeting and/or regulating noncoding RNAs (ncRNAs) consisting of long noncoding RNAs (lncRNAs) are promising strategies for cancer treatment. Within the scope of rapidly increasing studies in recent years, it has been shown that many natural agents obtained from biological organisms can potentially alter the expression of many lncRNAs associated with oncogenic functions. Natural agents include effective small molecules that provide anti-cancer effects and have been used as chemotherapy drugs or in combination with standard anti-cancer drugs used in routine treatment. In this review, it was aimed to provide detailed information about the potential of natural agents to regulate and/or target non-coding RNAs and their mechanisms of action to provide an approach for cancer therapy. The discovery of novel anti-cancer targets and subsequent development of effective drugs or combination strategies that are still needed for most cancers will be promising for cancer treatment.
Collapse
Affiliation(s)
- Ayşe Hale Alkan
- Biotechnology Institute, Ankara University, Keçiören, Ankara, Turkey
- Department of Molecular Biology and Genetics, Faculty of Science, Bartın University, Bartın, Turkey
| | - Mine Ensoy
- Biotechnology Institute, Ankara University, Keçiören, Ankara, Turkey
| | | |
Collapse
|
7
|
Saikia S, Postwala H, Athilingam VP, Anandan A, Padma VV, Kalita PP, Chorawala M, Prajapati B. Single Nucleotide Polymorphisms (SNPs) in the Shadows: Uncovering their Function in Non-Coding Region of Esophageal Cancer. Curr Pharm Biotechnol 2024; 25:1915-1938. [PMID: 38310451 DOI: 10.2174/0113892010265004231116092802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 02/05/2024]
Abstract
Esophageal cancer is a complex disease influenced by genetic and environmental factors. Single nucleotide polymorphisms (SNPs) in non-coding regions of the genome have emerged as crucial contributors to esophageal cancer susceptibility. This review provides a comprehensive overview of the role of SNPs in non-coding regions and their association with esophageal cancer. The accumulation of SNPs in the genome has been implicated in esophageal cancer risk. Various studies have identified specific locations in the genome where SNPs are more likely to occur, suggesting a location-specific response. Chromatin conformational studies have shed light on the localization of SNPs and their impact on gene transcription, posttranscriptional modifications, gene expression regulation, and histone modification. Furthermore, miRNA-related SNPs have been found to play a significant role in esophageal squamous cell carcinoma (ESCC). These SNPs can affect miRNA binding sites, thereby altering target gene regulation and contributing to ESCC development. Additionally, the risk of ESCC has been linked to base excision repair, suggesting that SNPs in this pathway may influence disease susceptibility. Somatic DNA segment alterations and modified expression quantitative trait loci (eQTL) have also been associated with ESCC. These alterations can lead to disrupted gene expression and cellular processes, ultimately contributing to cancer development and progression. Moreover, SNPs have been found to be associated with the long non-coding RNA HOTAIR, which plays a crucial role in ESCC pathogenesis. This review concludes with a discussion of the current and future perspectives in the field of SNPs in non-coding regions and their relevance to esophageal cancer. Understanding the functional implications of these SNPs may lead to the identification of novel therapeutic targets and the development of personalized approaches for esophageal cancer prevention and treatment.
Collapse
Affiliation(s)
- Surovi Saikia
- Department of Natural Product Chemistry, Translational Research Laboratory, Bharathiar University, Coimbatore - 641 046, Tamil Nadu, India
| | - Humzah Postwala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, India
| | - Vishnu Prabhu Athilingam
- Department of Natural Product Chemistry, Translational Research Laboratory, Bharathiar University, Coimbatore - 641 046, Tamil Nadu, India
| | - Aparna Anandan
- Department of Natural Product Chemistry, Translational Research Laboratory, Bharathiar University, Coimbatore - 641 046, Tamil Nadu, India
| | - V Vijaya Padma
- Department of Natural Product Chemistry, Translational Research Laboratory, Bharathiar University, Coimbatore - 641 046, Tamil Nadu, India
| | - Partha P Kalita
- Program of Biotechnology, Assam Down Town University, Panikhaiti, Guwahati 781026, Assam, India
| | - Mehul Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, India
| | - Bhupendra Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree. S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, Gujarat, India
| |
Collapse
|
8
|
Guo N, Song Y, Zi F, Zheng J, Cheng J. Abnormal expression pattern of lncRNA H19 participates in multiple myeloma bone disease by unbalancing osteogenesis and osteolysis. Int Immunopharmacol 2023; 119:110058. [PMID: 37058751 DOI: 10.1016/j.intimp.2023.110058] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 04/16/2023]
Abstract
BACKGROUND Accumulating genetic and epigenetic alterations in multiple myeloma (MM) have been demonstrated to be closely associated with osteolytic bone disease, generally characterized as increased osteoclast formation and decreased osteoblast activity. Previously, serum long non-coding RNA (lncRNA) H19 has been proved to be a biomarker for the diagnosis of MM. Whereas, its role in MM-associated bone homeostasis remains largely elusive. METHODS A cohort of 42 MM patients and 40 healthy volunteers were enrolled for evaluating differential expressions of H19 and its downstream effectors. The proliferative capacity of MM cells was monitored by CCK-8 assay. Alkaline phosphatase (ALP) staining and activity detection, either with Alizarin red staining (ARS) were employed to assess osteoblast formation. Osteoblast- or osteoclast-associated gene were detected using qRT-PCR and western blot analysis. Bioinformatics analysis, RNA pull-down, RNA immunoprecipitation (RIP), and chromatin immunoprecipitation (ChIP) were subjected to verify H19/miR-532-3p/E2F7/EZH2 axis, which was accounted for epigenetic suppression of PTEN. The functional role of H19 on MM development through unbalancing osteolysis and osteogenesis was also confirmed in the murine MM model. RESULTS Upregulation of serum H19 was observed in MM patients, suggesting its positive correlation with the poor prognosis of MM patients. Loss of H19 dramatically weakened cell proliferation of MM cells, promoted osteoblastic differentiation, and impaired osteoclast activity. While reinforced H19 exhibited the opposite effects. Akt/mTOR signaling plays an indispensable role in H19-mediated osteoblast formation and osteoclastgenesis. Mechanistically, H19 served as a sponge for miR-532-3p to upregulate E2F7, a transcriptional activator of EZH2, thereby accounting for modulating epigenetic suppression of PTEN. The in vivo experiments further validated that H19 exerted important impacts on tumor growth through breaking the balance between osteogenesis and osteolysis via Akt/mTOR signaling. CONCLUSION Collectively, increased enrichment of H19 in MM cells exhibits an essential role in MM development by disturbing bone homeostasis.
Collapse
Affiliation(s)
- Ninghong Guo
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China
| | - Yuan Song
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China
| | - Fuming Zi
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China
| | - Jifu Zheng
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China
| | - Jing Cheng
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China.
| |
Collapse
|
9
|
Tang W, Xu J, Xu C. Noncoding RNAs in the crosstalk between multiple myeloma cells and bone marrow microenvironment. Cancer Lett 2023; 556:216081. [PMID: 36739065 DOI: 10.1016/j.canlet.2023.216081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/18/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Multiple myeloma (MM) is the second most common hematological malignancy; however, it remains incurable, and the underlying pathogenesis and mechanisms of drug resistance remain unclear. It is widely recognized that the bone marrow microenvironment plays a crucial role in regulating the immune response, inducing drug resistance, and promoting tumor proliferation and invasion in MM, and thus serves as a potential therapeutic target. Among the various signaling loops between myeloma cells and components of the microenvironment, noncoding RNAs are emerging as crucial regulators of intercellular communication within the microenvironment. Noncoding RNAs, such as microRNAs, long noncoding RNAs, circular RNAs, and PIWI-interacting RNAs, have been associated with numerous biological processes involved in myeloma cell growth, survival, migration, invasion, and drug resistance. This review summarizes recent advances in the regulatory mechanisms of noncoding RNAs involved in the interaction between the MM bone marrow microenvironment and discusses the therapeutic potential of noncoding RNAs in MM.
Collapse
Affiliation(s)
- Wenjiao Tang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Juan Xu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Caigang Xu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
10
|
Urban VS, Cegledi A, Mikala G. Multiple myeloma, a quintessential malignant disease of aging: a geroscience perspective on pathogenesis and treatment. GeroScience 2022; 45:727-746. [PMID: 36508077 PMCID: PMC9742673 DOI: 10.1007/s11357-022-00698-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
Multiple myeloma (MM) is an incurable plasma cell malignancy, which is predominantly a disease of older adults (the median age at diagnosis is 70 years). The slow progression from asymptomatic stages and the late-onset of MM suggest fundamental differences compared to many other hematopoietic system-related malignancies. The concept discussed in this review is that age-related changes at the level of terminally differentiated plasma cells act as the main risk factors for the development of MM. Epigenetic and genetic changes that characterize both MM development and normal aging are highlighted. The relationships between cellular aging processes, genetic mosaicism in plasma cells, and risk for MM and the stochastic processes contributing to clonal selection and expansion of mutated plasma cells are investigated. In line with the DNA damage accumulation theory of aging, in this review, the evolution of monoclonal gammopathy to symptomatic MM is considered. Therapeutic consequences of age-dependent comorbidities that lead to frailty and have fundamental influence on treatment outcome are described. The importance of considering geriatric states when planning the life-long treatment course of an elderly MM patient in order to achieve maximal therapeutic benefit is emphasized.
Collapse
Affiliation(s)
- Veronika S. Urban
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - Andrea Cegledi
- Department of Hematology and Stem Cell Transplantation, South Pest Central Hospital–National Institute for Hematology and Infectious Diseases, Budapest, Hungary
| | - Gabor Mikala
- Department of Hematology and Stem Cell Transplantation, South Pest Central Hospital-National Institute for Hematology and Infectious Diseases, Budapest, Hungary.
| |
Collapse
|
11
|
Liu T, Zhao H. Long Non-Coding RNAs: A Double-Edged Sword in Renal Cell Carcinoma Carcinogenesis. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.1537.1549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Han Y, Zhao G, Shi X, Wang Y, Wen X, Zhang L, Guo X. The Emerging Role of Long Non-Coding RNAs in Esophageal Cancer: Functions in Tumorigenesis and Clinical Implications. Front Pharmacol 2022; 13:885075. [PMID: 35645836 PMCID: PMC9137892 DOI: 10.3389/fphar.2022.885075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/12/2022] [Indexed: 11/17/2022] Open
Abstract
Esophageal cancer (EC) is one of the most common malignancies of digestive tracts with poor five-year survival rate. Hence, it is very significant to further investigate the occurrence and development mechanism of esophageal cancer, find more effective biomarkers and promote early diagnosis and effective treatment. Long non-coding RNAs (lncRNAs) are generally defined as non-protein-coding RNAs with more than 200 nucleotides in length. Existing researches have shown that lncRNAs could act as sponges, guides, scaffolds, and signal molecules to influence the oncogene or tumor suppressor expressions at transcriptional, post-transcriptional, and protein levels in crucial cellular processes. Currently, the dysregulated lncRNAs are reported to involve in the pathogenesis and progression of EC. Importantly, targeting EC-related lncRNAs through genome editing, RNA interference and molecule drugs may be one of the most potential therapeutic methods for the future EC treatment. In this review, we summarized the biological functions and molecular mechanisms of lncRNAs, including oncogenic lncRNAs and tumor suppressor lncRNAs in EC. In addition, we generalized the excellent potential lncRNA candidates for diagnosis, prognosis and therapy in EC. Finally, we discussed the current challenges and opportunities of lncRNAs for EC.
Collapse
Affiliation(s)
- Yali Han
- Departments of Physiology, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Guo Zhao
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Xinhang Shi
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Yushan Wang
- Departments of Physiology, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Xin Wen
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Lu Zhang
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Xiangqian Guo
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
- *Correspondence: Xiangqian Guo,
| |
Collapse
|
13
|
Stage-Specific Non-Coding RNA Expression Patterns during In Vitro Human B Cell Differentiation into Antibody Secreting Plasma Cells. Noncoding RNA 2022; 8:ncrna8010015. [PMID: 35202088 PMCID: PMC8878715 DOI: 10.3390/ncrna8010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
The differentiation of B cells into antibody secreting plasma cells (PCs) is governed by a strict regulatory network that results in expression of specific transcriptomes along the activation continuum. In vitro models yielding significant numbers of PCs phenotypically identical to the in vivo state enable investigation of pathways, metabolomes, and non-coding (ncRNAs) not previously identified. The objective of our study was to characterize ncRNA expression during human B cell activation and differentiation. To achieve this, we used an in vitro system and performed RNA-seq on resting and activated B cells and PCs. Characterization of coding gene transcripts, including immunoglobulin (Ig), validated our system and also demonstrated that memory B cells preferentially differentiated into PCs. Importantly, we identified more than 980 ncRNA transcripts that are differentially expressed across the stages of activation and differentiation, some of which are known to target transcription, proliferation, cytoskeletal, autophagy and proteasome pathways. Interestingly, ncRNAs located within Ig loci may be targeting both Ig and non-Ig-related transcripts. ncRNAs associated with B cell malignancies were also identified. Taken together, this system provides a platform to study the role of specific ncRNAs in B cell differentiation and altered expression of those ncRNAs involved in B cell malignancies.
Collapse
|
14
|
Shen Q, Jiang Q, Cong Z, Zhou Y, Huang X, Zhu L, Xu X, Qian J. Knockdown of lncRNA AL928768.3 inhibits multiple myeloma cell proliferation by inducing cell cycle arrest in G0/G1 phase. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:172. [PMID: 35280429 PMCID: PMC8908156 DOI: 10.21037/atm-21-6710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/11/2022] [Indexed: 11/08/2022]
Abstract
Background Multiple myeloma (MM) is a B-lymphocyte-derived malignancy. It ranks as the second most common hematological malignancy, with relatively high morbidity and mortality. However, the molecular mechanisms of MM occurrence and development remain elusive. This study found that long non-coding RNA AL928768.3 (lncRNA AL) was abnormally expressed in MM samples. However, the effect and molecular mechanism of lncRNA AL on the occurrence and development of MM remains unclear. Methods Bone marrow fluids of MM patients (n=54) and volunteers (n=13) were collected and CD138+ cells were isolated. The expression level of lncRNA AL in MM cells was detected by quantitative real-time polymerase chain reaction (qRT-PCR), and the correlation between the expression level of lncRNA AL and the clinicopathological features of patients was analyzed. Lentiviral vectors targeting lncRNA AL knockdown were constructed and transfected into cells. After transfection, the effects of lncRNA AL knockdown on MM cell proliferation and the cell cycle were detected by the CCK-8 assay, clone formation assay, and flow cytometry. The effect of lncRNA AL knockdown on MM cell cycle-related proteins was detected by Western blot. In addition, tumorigenicity experiments were performed in nude mice to detect the effect of lncRNA AL knockdown on MM cell proliferation in vivo. Results LncRNA AL was highly expressed in MM patient samples and cell lines, and was significantly correlated with the disease stage of patients. Knockdown of lncRNA AL significantly inhibited the proliferation and colony formation of MM cells and induced cell cycle arrest in G0/G1 phase. Western blot analysis showed that knockdown of lncRNA AL significantly inhibited the expression of CDK2 and cyclin D1 and promoted the expression of cyclin suppressor p21. Knockdown of lncRNA AL significantly inhibited the proliferation of MM cells in nude mice. Conclusions LncRNA AL was highly expressed in MM patients. Knockdown of this gene significantly inhibited the proliferative ability of MM cells and induced cell cycle arrest in G0/G1 phase. Therefore, lncRNA AL may be a novel biological target molecule for the early diagnosis, treatment, and prognostic evaluation of MM patients.
Collapse
Affiliation(s)
- Qian Shen
- Department of Hematology & Lymphoma, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Qi Jiang
- Department of Hematology & Lymphoma, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Zhirong Cong
- Department of Hematology & Lymphoma, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Yin Zhou
- Department of Hematology & Lymphoma, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Xiaoxiao Huang
- Department of Laboratory, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Li Zhu
- Department of Hematology & Lymphoma, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Xiaohong Xu
- Department of Hematology & Lymphoma, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Juan Qian
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
15
|
Morgan R, da Silveira WA, Kelly RC, Overton I, Allott EH, Hardiman G. Long non-coding RNAs and their potential impact on diagnosis, prognosis, and therapy in prostate cancer: racial, ethnic, and geographical considerations. Expert Rev Mol Diagn 2021; 21:1257-1271. [PMID: 34666586 DOI: 10.1080/14737159.2021.1996227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Advances in high-throughput sequencing have greatly advanced our understanding of long non-coding RNAs (lncRNAs) in a relatively short period of time. This has expanded our knowledge of cancer, particularly how lncRNAs drive many important cancer phenotypes via their regulation of gene expression. AREAS COVERED Men of African descent are disproportionately affected by PC in terms of incidence, morbidity, and mortality. LncRNAs could serve as biomarkers to differentiate low-risk from high-risk diseases. Additionally, they may represent therapeutic targets for advanced and castrate-resistant cancer. We review current research surrounding lncRNAs and their association with PC. We discuss how lncRNAs can provide new insights and diagnostic biomarkers for African American men. Finally, we review advances in computational approaches that predict the regulatory effects of lncRNAs in cancer. EXPERT OPINION PC diagnostic biomarkers that offer high specificity and sensitivity are urgently needed. PC specific lncRNAs are compelling as diagnostic biomarkers owing to their high tissue and tumor specificity and presence in bodily fluids. Recent studies indicate that PCA3 clinical utility might be restricted to men of European descent. Further work is required to develop lncRNA biomarkers tailored for men of African descent.
Collapse
Affiliation(s)
- Rebecca Morgan
- Faculty of Medicine, Health and Life Sciences, School of Biological Sciences, Queen's University Belfast, Belfast, UK.,Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, UK
| | - Willian Abraham da Silveira
- Faculty of Medicine, Health and Life Sciences, School of Biological Sciences, Queen's University Belfast, Belfast, UK.,Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, UK
| | - Ryan Christopher Kelly
- Faculty of Medicine, Health and Life Sciences, Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Ian Overton
- Faculty of Medicine, Health and Life Sciences, Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Emma H Allott
- Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, UK.,Faculty of Medicine, Health and Life Sciences, Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK.,Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Gary Hardiman
- Faculty of Medicine, Health and Life Sciences, School of Biological Sciences, Queen's University Belfast, Belfast, UK.,Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, UK.,Department of Medicine, Medical University of South Carolina (MUSC), Charleston, South Carolina
| |
Collapse
|
16
|
A Systems Approach to Interrogate Gene Expression Patterns in African American Men Presenting with Clinically Localized Prostate Cancer. Cancers (Basel) 2021; 13:cancers13205143. [PMID: 34680291 PMCID: PMC8533960 DOI: 10.3390/cancers13205143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Men of African origin have a 2–3 times greater chance of developing prostate cancer than those of European origin, and of patients that are diagnosed with the disease, men of African descent are 2 times more likely to die compared to white men. Men of African origin are still greatly underrepresented in genetic studies and clinical trials. This, unfortunately, means that new discoveries in cancer treatment are missing key information on the group with a greater chance of mortality. The objective of this study was to increase our knowledge of prostate cancer in men undergoing a prostate biopsy. We carried out RNA sequencing of biopsy specimens and examined racial differences in prostate gene expression. A gene expression signature was uncovered which separated the men based on their race. Furthermore, within men of African descent this signature separated men with the most severe clinical characteristics. Abstract An emerging theory about racial differences in cancer risk and outcomes is that psychological and social stressors influence cellular stress responses; however, limited empirical data are available on racial differences in cellular stress responses among men who are at risk for adverse prostate cancer outcomes. In this study, we undertook a systems approach to examine molecular profiles and cellular stress responses in an important segment of African American (AA) and European American (EA) men: men undergoing prostate biopsy. We assessed the prostate transcriptome with a single biopsy core via high throughput RNA sequencing (RNA-Seq). Transcriptomic analyses uncovered impacted biological pathways including PI3K-Akt signaling pathway, Neuroactive ligand-receptor interaction pathway, and ECM-receptor interaction. Additionally, 187 genes mapping to the Gene Ontology (GO) terms RNA binding, structural constituent of ribosome, SRP-dependent co-translational protein targeting to membrane and the biological pathways, translation, L13a-mediated translational silencing of Ceruloplasmin expression were differentially expressed (DE) between EA and AA. This signature allowed separation of AA and EA patients, and AA patients with the most severe clinical characteristics. AA patients with elevated expression levels of this genomic signature presented with higher Gleason scores, a greater number of positive core biopsies, elevated dehydroepiandrosterone sulfate levels and serum vitamin D deficiency. Protein-protein interaction (PPI) network analysis revealed a high degree of connectivity between these 187 proteins.
Collapse
|
17
|
lncRNA MSTRG.29039.1 Promotes Proliferation by Sponging hsa-miR-12119 via JAK2/STAT3 Pathway in Multiple Myeloma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9969449. [PMID: 34422217 PMCID: PMC8376436 DOI: 10.1155/2021/9969449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/12/2021] [Indexed: 12/27/2022]
Abstract
Noncoding RNA (ncRNA) is involved in the occurrence, development, metastasis, and drug resistance of tumors and involves a variety of biological functions. In addition, miRNA can regulate proliferation and migration and even regulate epigenetics to promote the development of multiple myeloma (MM). However, the mechanism of ncRNA involved in MM is still unclear, and there are many unknown ncRNAs to be explored. This research is aimed at discovering the unknown lncRNA in MM through high-throughput sequencing and to study the mechanism and role of competitive endogenous RNA (ceRNA) involved in the pathogenesis of MM for the development of novel molecular markers and potential new targeted drugs. We screened out 262 new lncRNAs with statistical differences by RNA sequencing and selected the lncRNA MSTRG.29039.1 according to the expression and function of lncRNAs and their target genes in MM. We verified that MSTRG.29039.1 and its target gene OSMR were highly expressed in MM. After knockdown of MSTRG.29039.1 in MM cell lines, the expression of OSMR was decreased, and the expression of hsa-miR-12119 was upregulated which can also promote cell apoptosis and inhibit proliferation. Then, we knocked down hsa-miR-12119 and MSTRG.29039.1, we found that apoptosis of MM cells was reduced, and cell proliferation was increased compared with just knocking down hsa-miR-12119. We further verified the direct binding relationship between MSTRG.29039.1 and OSMR by the dual-luciferase reporter assay system. Thus, MSTRG.29039.1 can competitively bind with miRNA to counteract the inhibitory effect of miRNA on OSMR, which regulates cell proliferation and apoptosis through the JAK2/STAT3 pathway. In a conclusion, lncRNA MSTRG.29039.1 could promote proliferation by sponging hsa-miR-12119 via the JAK2/STAT3 pathway in multiple myeloma. This may be a molecular marker and a potential therapeutic target for MM.
Collapse
|
18
|
Li G, Deng L, Huang N, Sun F. The Biological Roles of lncRNAs and Future Prospects in Clinical Application. Diseases 2021; 9:diseases9010008. [PMID: 33450825 PMCID: PMC7838801 DOI: 10.3390/diseases9010008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
Chemo and radiation therapies are the most commonly used therapies for cancer, but they can induce DNA damage, resulting in the apoptosis of host cells. DNA double-stranded breaks (DSBs) are the most lethal form of DNA damage in cells, which are constantly caused by a wide variety of genotoxic agents, both environmentally and endogenously. To maintain genomic integrity, eukaryotic organisms have developed a complex mechanism for the repair of DNA damage. Researches reported that many cellular long noncoding RNAs (lncRNAs) were involved in the response of DNA damage. The roles of lncRNAs in DNA damage response can be regulated by the dynamic modification of N6-adenosine methylation (m6A). The cellular accumulation of DNA damage can result in various diseases, including cancers. Additionally, lncRNAs also play roles in controlling the gene expression and regulation of autophagy, which are indirectly involved with individual development. The dysregulation of these functions can facilitate human tumorigenesis. In this review, we summarized the origin and overview function of lncRNAs and highlighted the roles of lncRNAs involved in the repair of DNA damage.
Collapse
Affiliation(s)
- Guohui Li
- School of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China; (G.L.); (L.D.)
| | - Liang Deng
- School of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China; (G.L.); (L.D.)
- Department of Clinical Laboratory Medicine, Shanghai Tenth People’s Hospital of Tongji University, Shanghai 200072, China;
| | - Nan Huang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People’s Hospital of Tongji University, Shanghai 200072, China;
| | - Fenyong Sun
- Department of Clinical Laboratory Medicine, Shanghai Tenth People’s Hospital of Tongji University, Shanghai 200072, China;
- Correspondence: ; Tel.: +86-021-6630-6909
| |
Collapse
|
19
|
Nandwani A, Rathore S, Datta M. LncRNAs in cancer: Regulatory and therapeutic implications. Cancer Lett 2020; 501:162-171. [PMID: 33359709 DOI: 10.1016/j.canlet.2020.11.048] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023]
Abstract
Long noncoding RNAs (lncRNAs) comprise a class of RNAs that do not code for proteins but are critical in regulating diverse cellular processes and maintaining cell function. In doing so, they have, in recent years, added a potentially new and significant layer of biological regulation. These are more than 200 nucleotides in length and are implicated in a range of diseases and therefore have emerged as potential tools for possible therapeutic intervention. For a disease as complex as cancer, emerging technologies suggest the presence of mutations on genomic loci that do not encode proteins, but give rise to lncRNAs. Aberrant signatures of lncRNAs are now a consistent feature of almost all types of cancers and their associated complications. Analysis and characterisation of functional pathways that lncRNAs are involved with suggest that lncRNAs interact with the chromatin, the protein or with the RNA to demonstrate their cellular effects to modulate proliferation, migration, differentiation, apoptosis and cell death. This review summarizes the current knowledge of lncRNAs, their implications in diverse types of cancer and their possible therapeutic utility.
Collapse
Affiliation(s)
- Arun Nandwani
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, India and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Shalu Rathore
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, India and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Malabika Datta
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, India and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
20
|
Shi J, Xu X, Zhang D, Zhang J, Yang H, Li C, Li R, Wei X, Luan W, Liu P. Long non-coding RNA PTPRG-AS1 promotes cell tumorigenicity in epithelial ovarian cancer by decoying microRNA-545-3p and consequently enhancing HDAC4 expression. J Ovarian Res 2020; 13:127. [PMID: 33099316 PMCID: PMC7585679 DOI: 10.1186/s13048-020-00723-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/01/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Long non-coding RNA PTPRG antisense RNA 1 (PTPRG-AS1) deregulation has been reported in various human malignancies and identified as an important modulator of cancer development. Few reports have focused on the detailed role of PTPRG-AS1 in epithelial ovarian cancer (EOC) and its underlying mechanism. This study aimed to determine the physiological function of PTPRG-AS1 in EOC. A series of experiments were also performed to identify the mechanisms through which PTPRG-AS1 exerts its function in EOC. METHODS Reverse transcription-quantitative polymerase chain reaction was used to determine PTPRG-AS1 expression in EOC tissues and cell lines. PTPRG-AS1 was silenced in EOC cells and studied with respect to cell proliferation, apoptosis, migration, and invasion in vitro and tumor growth in vivo. The putative miRNAs that target PTPRG-AS1 were predicted using bioinformatics analysis and further confirmed in luciferase reporter and RNA immunoprecipitation assays. RESULTS Our data verified the upregulation of PTPRG-AS1 in EOC tissues and cell lines. High PTPRG-AS1 expression was associated with shorter overall survival in patients with EOC. Functionally, EOC cell proliferation, migration, invasion in vitro, and tumor growth in vivo were suppressed by PTPRG-AS1 silencing. In contrast, cell apoptosis was promoted by loss of PTPRG-AS1. Regarding the mechanism, PTPRG-AS1 could serve as a competing endogenous RNA in EOC cells by decoying microRNA-545-3p (miR-545-3p), thereby elevating histone deacetylase 4 (HDAC4) expression. Furthermore, rescue experiments revealed that PTPRG-AS1 knockdown-mediated effects on EOC cells were, in part, counteracted by the inhibition of miR-545-3p or restoration of HDAC4. CONCLUSIONS PTPRG-AS1 functioned as an oncogenic lncRNA that aggravated the malignancy of EOC through the miR-545-3p/HDAC4 ceRNA network. Thus, targeting the PTPRG-AS1/miR-545-3p/HDAC4 pathway may be a novel strategy for EOC anticancer therapy.
Collapse
Affiliation(s)
- Juanjuan Shi
- Department of Gynaecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Jinan, 277599 Shandong China ,Department of Gynaecology, Tengzhou Center People’s Hospital, Zaozhuang, 277500 Shandong China
| | - Xijian Xu
- Department of Gynaecology, Rizhao Central Hospital, Rizhao, 276800 Shandong China
| | - Dan Zhang
- Department of TCM Pharmacy, Tengzhou Center People’s Hospital, Zaozhuang, 277500 Shandong China
| | - Jiuyan Zhang
- Department of Clinical Pharmacy, Tengzhou Center People’s Hospital, Zaozhuang, 277500 Shandong China
| | - Hui Yang
- Department of Gynaecology, Tengzhou Center People’s Hospital, Zaozhuang, 277500 Shandong China
| | - Chang Li
- Department of Pathology, Tengzhou Center People’s Hospital, Zaozhuang, 277500 Shandong China
| | - Rui Li
- Department of Gynaecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Jinan, 277599 Shandong China
| | - Xuan Wei
- Department of Gynaecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Jinan, 277599 Shandong China
| | - Wenqing Luan
- Department of Gynaecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Jinan, 277599 Shandong China
| | - Peishu Liu
- Department of Gynaecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Jinan, 277599, Shandong, China.
| |
Collapse
|
21
|
Handa H, Honma K, Oda T, Kobayashi N, Kuroda Y, Kimura-Masuda K, Watanabe S, Ishihara R, Murakami Y, Masuda Y, Tahara KI, Takei H, Kasamatsu T, Saitoh T, Murakami H. Long Noncoding RNA PVT1 Is Regulated by Bromodomain Protein BRD4 in Multiple Myeloma and Is Associated with Disease Progression. Int J Mol Sci 2020; 21:ijms21197121. [PMID: 32992461 PMCID: PMC7583953 DOI: 10.3390/ijms21197121] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/08/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are deregulated in human cancers and are associated with disease progression. Plasmacytoma Variant Translocation 1 (PVT1), a lncRNA, is located adjacent to the gene MYC, which has been linked to multiple myeloma (MM). PVT1 is expressed in MM and is associated with carcinogenesis. However, its role and regulation remain uncertain. We examined PVT1/MYC expression using real-time PCR in plasma cells purified from 59 monoclonal gammopathy of undetermined significance (MGUS) and 140 MM patients. The MM cell lines KMS11, KMS12PE, OPM2, and RPMI8226 were treated with JQ1, an MYC super-enhancer inhibitor, or MYC inhibitor 10058-F4. The expression levels of PVT1 and MYC were significantly higher in MM than in MGUS (p < 0.0001) and were positively correlated with disease progression (r = 0.394, p < 0.0001). JQ1 inhibited cell proliferation and decreased the expression levels of MYC and PVT1. However, 10054-F4 did not alter the expression level of PVT1. The positive correlation between MYC and PVT1 in patients, the synchronous downregulation of MYC and PVT1 by JQ1, and the lack of effect of the MYC inhibitor on PVT1 expression suggest that the expression of these two genes is co-regulated by a super-enhancer. Cooperative effects between these two genes may contribute to MM pathogenesis and progression.
Collapse
Affiliation(s)
- Hiroshi Handa
- Department of Hematology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; (N.K.); (K.-i.T.); (H.T.)
- Correspondence: ; Tel.: +81-27-220-8166; Fax: +81-27-220-8173
| | - Kazuki Honma
- Department of Laboratory Science, Gunma University Graduate School of Health Science, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; (K.H.); (Y.K.); (K.K.-M.); (S.W.); (R.I.); (Y.M.); (Y.M.); (T.K.); (T.S.); (H.M.)
| | - Tsukasa Oda
- Institute of Molecular and Cellular Regulation, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan;
| | - Nobuhiko Kobayashi
- Department of Hematology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; (N.K.); (K.-i.T.); (H.T.)
| | - Yuko Kuroda
- Department of Laboratory Science, Gunma University Graduate School of Health Science, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; (K.H.); (Y.K.); (K.K.-M.); (S.W.); (R.I.); (Y.M.); (Y.M.); (T.K.); (T.S.); (H.M.)
| | - Kei Kimura-Masuda
- Department of Laboratory Science, Gunma University Graduate School of Health Science, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; (K.H.); (Y.K.); (K.K.-M.); (S.W.); (R.I.); (Y.M.); (Y.M.); (T.K.); (T.S.); (H.M.)
| | - Saki Watanabe
- Department of Laboratory Science, Gunma University Graduate School of Health Science, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; (K.H.); (Y.K.); (K.K.-M.); (S.W.); (R.I.); (Y.M.); (Y.M.); (T.K.); (T.S.); (H.M.)
| | - Rei Ishihara
- Department of Laboratory Science, Gunma University Graduate School of Health Science, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; (K.H.); (Y.K.); (K.K.-M.); (S.W.); (R.I.); (Y.M.); (Y.M.); (T.K.); (T.S.); (H.M.)
| | - Yuki Murakami
- Department of Laboratory Science, Gunma University Graduate School of Health Science, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; (K.H.); (Y.K.); (K.K.-M.); (S.W.); (R.I.); (Y.M.); (Y.M.); (T.K.); (T.S.); (H.M.)
| | - Yuta Masuda
- Department of Laboratory Science, Gunma University Graduate School of Health Science, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; (K.H.); (Y.K.); (K.K.-M.); (S.W.); (R.I.); (Y.M.); (Y.M.); (T.K.); (T.S.); (H.M.)
| | - Ken-ichi Tahara
- Department of Hematology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; (N.K.); (K.-i.T.); (H.T.)
| | - Hisashi Takei
- Department of Hematology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; (N.K.); (K.-i.T.); (H.T.)
| | - Tetsuhiro Kasamatsu
- Department of Laboratory Science, Gunma University Graduate School of Health Science, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; (K.H.); (Y.K.); (K.K.-M.); (S.W.); (R.I.); (Y.M.); (Y.M.); (T.K.); (T.S.); (H.M.)
| | - Takayuki Saitoh
- Department of Laboratory Science, Gunma University Graduate School of Health Science, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; (K.H.); (Y.K.); (K.K.-M.); (S.W.); (R.I.); (Y.M.); (Y.M.); (T.K.); (T.S.); (H.M.)
| | - Hirokazu Murakami
- Department of Laboratory Science, Gunma University Graduate School of Health Science, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; (K.H.); (Y.K.); (K.K.-M.); (S.W.); (R.I.); (Y.M.); (Y.M.); (T.K.); (T.S.); (H.M.)
| |
Collapse
|
22
|
Yu H, Peng S, Chen X, Han S, Luo J. Long non-coding RNA NEAT1 serves as a novel biomarker for treatment response and survival profiles via microRNA-125a in multiple myeloma. J Clin Lab Anal 2020; 34:e23399. [PMID: 32608537 PMCID: PMC7521229 DOI: 10.1002/jcla.23399] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The present study aimed to explore the association of long non-coding RNA nuclear paraspeckle assembly transcript 1 (lncRNA NEAT1) with multiple myeloma (MM) risk and further investigate its correlation with clinical features, treatment response, survival profiles, and its interaction with microRNA-125a (miR-125a) in MM patients. METHODS Totally, 114 de novo symptomatic MM patients and 30 healthy donors (as controls) were recruited. Their bone marrow samples were collected before treatment (MM patients) and at enrollment (healthy donors), respectively. Subsequently, plasma cells were isolated from bone marrow for detection of lncRNA NEAT1 and miR-125a expression via reverse transcription quantitative polymerase chain reaction. RESULTS lncRNA NEAT1 was upregulated in MM patients compared with healthy donors and presented with excellent value in distinguishing MM patients from healthy donors. In MM patients, lncRNA NEAT1 positively associated with International Staging System (ISS) stage, beta-2 microglobulin (β2-MG), and lactate dehydrogenase (LDH), but not correlated with core cytogenetics and other clinical features. Furthermore, lncRNA NEAT1 negatively associated with complete remission (CR), overall remission rate (ORR), progression-free survival (PFS), and overall survival (OS). Moreover, lncRNA NEAT1 negatively associated with miR-125a in MM patients. MiR-125a was downregulated in MM patients compared with healthy donors, and it negatively associated with ISS stage, β2-MG, and LDH, but positively correlated with CR, ORR, PFS, and OS in MM patients. CONCLUSION lncRNA NEAT1 might interact with miR-125a, and serves as a novel biomarker for treatment response and survival profiles in MM, indicating its clinical value for MM management.
Collapse
Affiliation(s)
- Haifeng Yu
- Department of Lymphatic Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences(Zhejiang Cancer Hospital), Hangzhou, China.,Department of Lymphatic Medical Oncology, Institute of Cancer and Basic Medicine(IBMC), Chinese Academy of Sciences, Hangzhou, China.,Department of Radiotherapy, Cancer Hospital of the University of Chinese Academy of Sciences(Zhejiang Cancer Hospital), Hangzhou, China
| | - Shuailing Peng
- Department of Lymphatic Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences(Zhejiang Cancer Hospital), Hangzhou, China.,Department of Lymphatic Medical Oncology, Institute of Cancer and Basic Medicine(IBMC), Chinese Academy of Sciences, Hangzhou, China.,Department of Radiotherapy, Cancer Hospital of the University of Chinese Academy of Sciences(Zhejiang Cancer Hospital), Hangzhou, China
| | - Xi Chen
- Department of Lymphatic Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences(Zhejiang Cancer Hospital), Hangzhou, China.,Department of Lymphatic Medical Oncology, Institute of Cancer and Basic Medicine(IBMC), Chinese Academy of Sciences, Hangzhou, China.,Department of Radiotherapy, Cancer Hospital of the University of Chinese Academy of Sciences(Zhejiang Cancer Hospital), Hangzhou, China
| | - Shuiyun Han
- Department of Lymphatic Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences(Zhejiang Cancer Hospital), Hangzhou, China.,Department of Lymphatic Medical Oncology, Institute of Cancer and Basic Medicine(IBMC), Chinese Academy of Sciences, Hangzhou, China.,Department of Radiotherapy, Cancer Hospital of the University of Chinese Academy of Sciences(Zhejiang Cancer Hospital), Hangzhou, China
| | - Jialin Luo
- Department of Lymphatic Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences(Zhejiang Cancer Hospital), Hangzhou, China.,Department of Lymphatic Medical Oncology, Institute of Cancer and Basic Medicine(IBMC), Chinese Academy of Sciences, Hangzhou, China.,Department of Radiotherapy, Cancer Hospital of the University of Chinese Academy of Sciences(Zhejiang Cancer Hospital), Hangzhou, China
| |
Collapse
|
23
|
Ronchetti D, Todoerti K, Vinci C, Favasuli V, Agnelli L, Manzoni M, Pelizzoni F, Chiaramonte R, Platonova N, Giuliani N, Tassone P, Amodio N, Neri A, Taiana E. Expression Pattern and Biological Significance of the lncRNA ST3GAL6-AS1 in Multiple Myeloma. Cancers (Basel) 2020; 12:cancers12040782. [PMID: 32218309 PMCID: PMC7225964 DOI: 10.3390/cancers12040782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/16/2020] [Accepted: 03/23/2020] [Indexed: 11/16/2022] Open
Abstract
The biological impact of long non-coding RNAs (lncRNAs) in multiple myeloma (MM) is becoming an important aspect of investigation, which may contribute to the understanding of the complex pathobiology of the disease whilst also providing novel potential therapeutic targets. Herein, we investigated the expression pattern and the biological significance of the lncRNA ST3 beta-galactoside alpha-2,3 sialyltransferase 6 antisense RNA 1 (ST3GAL6-AS1) in MM. We documented a high ST3GAL6-AS1 expression level in MM compared to normal plasma cells (PCs) or other hematological malignancies. Transcriptome analyses of MM PCs from patients included in the CoMMpass database indicated a potential involvement of ST3GAL6-AS1 in MAPK signaling and ubiquitin-mediated proteolysis pathways. ST3GAL6-AS1 silencing by LNA-gapmeR antisense oligonucleotides inhibits cell proliferation and triggers apoptosis in MM cell line. Notably, ST3GAL6-AS1 silencing in vitro displayed the down-regulation of the MAPK pathway and protein ubiquitination. These data suggest that ST3GAL6-AS1 deregulation may play a pathogenetic role in MM by affecting both proliferation pathways and circuits fundamental for PC survival. However, ST3GAL6-AS1 expression levels seem not to be significantly associated with clinical outcome and its targeting appears to exert antagonistic effects with proteasome inhibitors used in MM. These findings strongly urge the need for further studies investigating the relevance of ST3GAL6-AS1 in MM.
Collapse
Affiliation(s)
- Domenica Ronchetti
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (D.R.); (C.V.); (V.F.); (L.A.); (M.M.); (E.T.)
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy; (K.T.); (F.P.)
| | - Katia Todoerti
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy; (K.T.); (F.P.)
| | - Cristina Vinci
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (D.R.); (C.V.); (V.F.); (L.A.); (M.M.); (E.T.)
| | - Vanessa Favasuli
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (D.R.); (C.V.); (V.F.); (L.A.); (M.M.); (E.T.)
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy; (K.T.); (F.P.)
| | - Luca Agnelli
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (D.R.); (C.V.); (V.F.); (L.A.); (M.M.); (E.T.)
| | - Martina Manzoni
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (D.R.); (C.V.); (V.F.); (L.A.); (M.M.); (E.T.)
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy; (K.T.); (F.P.)
| | - Francesca Pelizzoni
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy; (K.T.); (F.P.)
| | - Raffaella Chiaramonte
- Department of Health Sciences, University of Milan, 20142 Milan, Italy; (R.C.); (N.P.)
| | - Natalia Platonova
- Department of Health Sciences, University of Milan, 20142 Milan, Italy; (R.C.); (N.P.)
| | - Nicola Giuliani
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, 43125 Parma, Italy;
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (P.T.); (N.A.)
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (P.T.); (N.A.)
| | - Antonino Neri
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (D.R.); (C.V.); (V.F.); (L.A.); (M.M.); (E.T.)
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy; (K.T.); (F.P.)
- Correspondence: ; Tel.: +39-02-5032-0420; Fax: +39-02-5032-0403
| | - Elisa Taiana
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (D.R.); (C.V.); (V.F.); (L.A.); (M.M.); (E.T.)
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy; (K.T.); (F.P.)
| |
Collapse
|
24
|
Yin R, Liu J, Zhao D, Wang F. Long Non-Coding RNA ASB16-AS1 Functions as a miR-760 Sponge to Facilitate the Malignant Phenotype of Osteosarcoma by Increasing HDGF Expression. Onco Targets Ther 2020; 13:2261-2274. [PMID: 32214826 PMCID: PMC7081065 DOI: 10.2147/ott.s240022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/27/2020] [Indexed: 12/15/2022] Open
Abstract
Purpose ASB16 antisense RNA 1 (ASB16-AS1) is a cancer-associated long non-coding RNA that contributes to tumorigenesis and tumor development. Nevertheless, to the best of our knowledge, whether and how ASB16-AS1 is implicated in osteosarcoma (OS) malignancy remains unclear and therefore warrants exploration. Our current study focused on making in-depth investigation of ASB16-AS1 in OS. In the present study, the expression pattern of ASB16-AS1 in OS tissues and cell lines was analyzed. In addition, we examined the clinical value of ASB16-AS1 for OS patients. Furthermore, we explored the impacts of ASB16-AS1 on the malignant phenotype of OS cells in vitro and in vivo as well as the underlying mechanism. Methods ASB16-AS1, microRNA-760 (miR-760) and hepatoma-derived growth factor (HDGF) expressions were measured using reverse transcription-quantitative PCR. Cell proliferation and apoptosis were evaluated using CCK-8 and flow cytometry analyses, respectively, and cell migration and invasion were determined via cell migration and invasion assays. Results ASB16-AS1 expression was significantly elevated in OS tissues and cell lines, and increased ASB16-AS1 expression was related to patients' tumor size, TNM stage, and distant metastasis. The overall survival rate of OS patients presenting high ASB16-AS1 expression was shorter than that of patients presenting low ASB16-AS1 expression. Reduced ASB16-AS1 expression inhibited OS cell proliferation, migration, and invasion; promoted cell apoptosis; and impaired tumor growth in vivo. Mechanistically, ASB16-AS1 served as a sponge for miR-760 and positively modulated the expression of its target HDGF. Finally, inhibiting miR-760 and restoring HDGF expression abolished the impacts of ASB16-AS1 knockdown on the malignant characteristics of OS cells. Conclusion ASB16-AS1 is a novel oncogenic lncRNA in OS cells. ASB16-AS1 increased HDGF expression by sponging miR-760, thereby conferring cancer-promoting roles in OS. ASB16-AS1 is a potential early diagnostic and therapeutic target in OS.
Collapse
Affiliation(s)
- Ruofeng Yin
- Department of Orthopedics, China-Japan Union Hospital Jilin University, Changchun, Jilin 130033, People's Republic of China
| | - Junzhi Liu
- Department of Quality Control, China-Japan Union Hospital Jilin University, Changchun, Jilin 130033, People's Republic of China
| | - Dongxu Zhao
- Department of Orthopedics, China-Japan Union Hospital Jilin University, Changchun, Jilin 130033, People's Republic of China
| | - Fei Wang
- Department of Orthopedics, China-Japan Union Hospital Jilin University, Changchun, Jilin 130033, People's Republic of China
| |
Collapse
|
25
|
Park SS, Lim JY, Kim TW, Ko YH, Jeon WJ, Lee SY, Lee JH, Min CK. Predictive impact of circulating microRNA-193a-5p on early relapse after autologous stem cell transplantation in patients with multiple myeloma. Br J Haematol 2020; 189:518-523. [PMID: 32030736 DOI: 10.1111/bjh.16413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/30/2022]
Abstract
We explored prognostic roles of circulating microRNAs (miRs) in multiple myeloma (MM) treated with autologous stem cell transplantation (ASCT) following induction chemotherapy. In part I of the study (n = 40), we identified a decreasing dynamics of circulating miR-193a-5p expression from diagnosis to pre-ASCT. In patients who experienced early relapse within one year post ASCT (n = 9) these patterns were distinctive compared to those without early relapse in a 1:2 matched cohort (n = 18). In part II (n = 90), multivariate analyses showed that the International Staging System score and miR-193a-5p expression before ASCT were independent prognostic factors. Conclusively, expression of circulating miR-193a-5p before ASCT could be a prognostic biomarker for transplant-eligible MM.
Collapse
Affiliation(s)
- Sung-Soo Park
- College of Medicine, Catholic Hematology Hospital, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Ji-Young Lim
- College of Medicine, Catholic Hematology Hospital, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Tae Woo Kim
- College of Medicine, Catholic Hematology Hospital, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Yoon Ho Ko
- Division of Medical Oncology, Department of Internal Medicine, College of Medicine, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Wan-Jin Jeon
- HeimBiotek, Inc., A-201 Pangyo Silicon Park, Bundang-gu, Seongnam-si, Kyeonggi-do, Republic of Korea
| | - So-Young Lee
- HeimBiotek, Inc., A-201 Pangyo Silicon Park, Bundang-gu, Seongnam-si, Kyeonggi-do, Republic of Korea
| | - Jae-Hoon Lee
- HeimBiotek, Inc., A-201 Pangyo Silicon Park, Bundang-gu, Seongnam-si, Kyeonggi-do, Republic of Korea
| | - Chang-Ki Min
- College of Medicine, Catholic Hematology Hospital, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea.,Leukemia Research Institute, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|