1
|
Bean L, Bose PK, Rani A, Kumar A. Serine racemase expression profile in the prefrontal cortex and hippocampal subregions during aging in male and female rats. Aging (Albany NY) 2024; 16:8402-8416. [PMID: 38761177 PMCID: PMC11164512 DOI: 10.18632/aging.205841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/10/2024] [Indexed: 05/20/2024]
Abstract
Aging is associated with a decrease in N-methyl-D-aspartate (NMDA) receptor function, which is critical for maintaining synaptic plasticity, learning, and memory. Activation of the NMDA receptor requires binding of the neurotransmitter glutamate and also the presence of co-agonist D-serine at the glycine site. The enzymatic conversion of L-serine to D-serine is facilitated by the enzyme serine racemase (SR). Subsequently, SR plays a pivotal role in regulating NMDA receptor activity, thereby impacting synaptic plasticity and memory processes in the central nervous system. As such, age-related changes in the expression of SR could contribute to decreased NMDA receptor function. However, age-associated changes in SR expression levels in the medial and lateral prefrontal cortex (mPFC, lPFC), and in the dorsal hippocampal subfields, CA1, CA3, and dentate gyrus (DG), have not been thoroughly elucidated. Therefore, the current studies were designed to determine the SR expression profile, including protein levels and mRNA, for these regions in aged and young male and female Fischer-344 rats. Our results demonstrate a significant reduction in SR expression levels in the mPFC and all hippocampal subfields of aged rats compared to young rats. No sex differences were observed in the expression of SR. These findings suggest that the decrease in SR levels may play a role in the age-associated reduction of NMDA receptor function in brain regions crucial for cognitive function and synaptic plasticity.
Collapse
Affiliation(s)
- Linda Bean
- Department of Anatomy, Cell Biology, and Physiology, IU School of Medicine, Indianapolis, IN 46201, USA
| | - Prodip K. Bose
- Brain Rehabilitation Research Center, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32607, USA
- Department of Anesthesiology and Department of Neurology at the College of Medicine, University of Florida, FL 32607, USA
| | - Asha Rani
- Department of Neuroscience, The McKnight Brain Institute, University of Florida, Gainesville, FL 32607, USA
| | - Ashok Kumar
- Department of Neuroscience, The McKnight Brain Institute, University of Florida, Gainesville, FL 32607, USA
| |
Collapse
|
2
|
Chahkandi B, Chahkandi M. An accurate DFT study within conformational survey of the D-form serine-alanine protected dipeptide. BMC Chem 2023; 17:138. [PMID: 37828563 PMCID: PMC10571400 DOI: 10.1186/s13065-023-01051-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023] Open
Abstract
The conformational analysis of N-formyl-D-serine-D-alanine-NH2 dipeptide was studied using density functional theory methods at B3LYP, B3LYP‒D3, and M06‒2X levels using 6‒311 + G (d,p) basis set in the gas and water phases. 87 conformers of 243 stable ones were located and the rest of them were migrated to the more stable geometries. Migration pattern suggests the more stable dipeptide model bears serine in βL, γD, γL and the alanine in γL and γD configurations. The investigation of side‒chain‒backbone interactions revealed that the most stable conformer, γD-γL, is in the β‒turn region of Ramachandran map; therefore, serine-alanine dipeptide model should be adopted with a β‒turn conformation. Intramolecular hydrogen bonding in β‒turns consideration by QTAIM disclosed γD-γL includes three hydrogen bonds. The computed UV‒Vis spectrum alongside of NBO calculation showed the five main electronic transition bands derived of n → n* of intra‒ligand alanine moiety of dipeptide structure.
Collapse
Affiliation(s)
- Behzad Chahkandi
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Mohammad Chahkandi
- Department of Chemistry, Hakim Sabzevari University, Sabzevar, 96179-76487, Iran
| |
Collapse
|
3
|
Billard JM, Freret T. Improved NMDA Receptor Activation by the Secreted Amyloid-Protein Precursor-α in Healthy Aging: A Role for D-Serine? Int J Mol Sci 2022; 23:ijms232415542. [PMID: 36555191 PMCID: PMC9779005 DOI: 10.3390/ijms232415542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Impaired activation of the N-methyl-D-aspartate subtype of glutamate receptors (NMDAR) by D-serine is linked to cognitive aging. Whether this deregulation may be used to initiate pharmacological strategies has yet to be considered. To this end, we performed electrophysiological extracellular recordings at CA3/CA1 synapses in hippocampal slices from young and aged mice. We show that 0.1 nM of the soluble N-terminal recombinant fragment of the secreted amyloid-protein precursor-α (sAPPα) added in the bath significantly increased NMDAR activation in aged but not adult mice without impacting basal synaptic transmission. In addition, sAPPα rescued the age-related deficit of theta-burst-induced long-term potentiation. Significant NMDAR improvement occurred in adult mice when sAPPα was raised to 1 nM, and this effect was drastically reduced in transgenic mice deprived of D-serine through genetic deletion of the synthesizing enzyme serine racemase. Altogether, these results emphasize the interest to consider sAPPα treatment targeting D-serine-dependent NMDAR deregulation to alleviate cognitive aging.
Collapse
|
4
|
Kalchenko OI, Trybrat OO, Yesypenko OA, Dyakonenko VV, Shishkina SV, Kalchenko VI. Inherently chiral dialkyloxy-calix[4]arene acetic acids as enantiodiscriminating additives for high-performance liquid chromatography separation of d,l-amino acids. Chirality 2021; 33:722-730. [PMID: 34431566 DOI: 10.1002/chir.23355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/06/2022]
Abstract
Inherently chiral dialkyloxy-calix[4]arene acetic acids with asymmetric placement of substituents on the lower rim of the macrocycle were first studied as enantiodiscriminating additives to the mobile phase MeCN/H2 O/HCOOH (75/25/0.02 by volume) in the high-performance liquid chromatography (HPLC) separation of d,l-alanine and d,l-valine on the achiral stationary phase ZORBAX Original CN. The dependence of enantio-binding properties on the position of alkyl groups is demonstrated. The highest resolution (1.65) and enantioselectivity (1.80) were obtained for the 1,2-dipropyloxy-calix[4]arene acetic acid.
Collapse
|
5
|
Ploux E, Freret T, Billard JM. d-serine in physiological and pathological brain aging. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140542. [PMID: 32950692 DOI: 10.1016/j.bbapap.2020.140542] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 01/24/2023]
Abstract
Among aging-induced impairments, those affecting cognitive functions certainly represent one the most major challenge to face to improve elderly quality of life. In last decades, our knowledge on changes in the morphology and function of neuronal networks associated with normal and pathological brain aging has rapidly progressed, initiating the development of different pharmacological and behavioural strategies to alleviate cognitive aging. In particular, experimental evidences have accumulated indicating that the communication between neurons and its plasticity gradually weakens with aging. Because of its pivotal role for brain functional plasticity, the N-Methyl‑d-Aspartate receptor subtype of glutamate receptors (NMDAr) has gathered much of the experimental interest. NMDAr activation is regulated by many mechanisms. Among is the mandatory binding of a co-agonist, such as the amino acid d-serine, in order to activate NMDAr. This mini-review presents the most recent information indicating how d-serine could contribute to mechanisms of physiological cognitive aging and also considers the divergent views relative of the role of the NMDAr co-agonist in Alzheimer's disease.
Collapse
Affiliation(s)
- E Ploux
- Normandie Univ, UNICAEN, INSERM, CYCERON, COMETE, 14000 Caen, France.
| | - T Freret
- Normandie Univ, UNICAEN, INSERM, CYCERON, COMETE, 14000 Caen, France
| | - J-M Billard
- Normandie Univ, UNICAEN, INSERM, CYCERON, COMETE, 14000 Caen, France.
| |
Collapse
|
6
|
Maugard M, Vigneron PA, Bolaños JP, Bonvento G. l-Serine links metabolism with neurotransmission. Prog Neurobiol 2020; 197:101896. [PMID: 32798642 DOI: 10.1016/j.pneurobio.2020.101896] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/20/2020] [Accepted: 08/09/2020] [Indexed: 12/12/2022]
Abstract
Brain energy metabolism is often considered as a succession of biochemical steps that metabolize the fuel (glucose and oxygen) for the unique purpose of providing sufficient ATP to maintain the huge information processing power of the brain. However, a significant fraction (10-15 %) of glucose is shunted away from the ATP-producing pathway (oxidative phosphorylation) and may be used to support other functions. Recent studies have pointed to the marked compartmentation of energy metabolic pathways between neurons and glial cells. Here, we focused our attention on the biosynthesis of l-serine, a non-essential amino acid that is formed exclusively in glial cells (mostly astrocytes) by re-routing the metabolic fate of the glycolytic intermediate, 3-phosphoglycerate (3PG). This metabolic pathway is called the phosphorylated pathway and transforms 3PG into l-serine via three enzymatic reactions. We first compiled the available data on the mechanisms that regulate the flux through this metabolic pathway. We then reviewed the current evidence that is beginning to unravel the roles of l-serine both in the healthy and diseased brain, leading to the notion that this specific metabolic pathway connects glial metabolism with synaptic activity and plasticity. We finally suggest that restoring astrocyte-mediated l-serine homeostasis may provide new therapeutic strategies for brain disorders.
Collapse
Affiliation(s)
- Marianne Maugard
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, France
| | - Pierre-Antoine Vigneron
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, France
| | - Juan P Bolaños
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain; Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Institute of Biomedical Research of Salamanca, 37007, Salamanca, Spain
| | - Gilles Bonvento
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, France.
| |
Collapse
|
7
|
Comparative Pro-cognitive and Neurochemical Profiles of Glycine Modulatory Site Agonists and Glycine Reuptake Inhibitors in the Rat: Potential Relevance to Cognitive Dysfunction and Its Management. Mol Neurobiol 2020; 57:2144-2166. [PMID: 31960362 PMCID: PMC7170834 DOI: 10.1007/s12035-020-01875-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/09/2020] [Indexed: 12/30/2022]
Abstract
Frontocortical NMDA receptors are pivotal in regulating cognition and mood, are hypofunctional in schizophrenia, and may contribute to autistic spectrum disorders. Despite extensive interest in agents potentiating activity at the co-agonist glycine modulatory site, few comparative functional studies exist. This study systematically compared the actions of the glycine reuptake inhibitors, sarcosine (40–200 mg/kg) and ORG24598 (0.63–5 mg/kg), the agonists, glycine (40–800 mg/kg), and D-serine (10–160 mg/kg) and the partial agonists, S18841 (2.5 mg/kg s.c.) and D-cycloserine (2.5–40 mg/kg) that all dose-dependently prevented scopolamine disruption of social recognition in adult rats. Over similar dose ranges, they also prevented a delay-induced impairment of novel object recognition (NOR). Glycine reuptake inhibitors specifically elevated glycine but not D-serine levels in rat prefrontal cortical (PFC) microdialysates, while glycine and D-serine markedly increased levels of glycine and D-serine, respectively. D-Cycloserine slightly elevated D-serine levels. Conversely, S18841 exerted no influence on glycine, D-serine, other amino acids, monamines, or acetylcholine. Reversal of NOR deficits by systemic S18841 was prevented by the NMDA receptor antagonist, CPP (20 mg/kg), and the glycine modulatory site antagonist, L701,324 (10 mg/kg). S18841 blocked deficits in NOR following microinjection into the PFC (2.5–10 μg/side) but not the striatum. Finally, in rats socially isolated from weaning (a neurodevelopmental model of schizophrenia), S18841 (2.5 and 10 mg/kg s.c.) reversed impairment of NOR and contextual fear-motivated learning without altering isolation-induced hyperactivity. In conclusion, despite contrasting neurochemical profiles, partial glycine site agonists and glycine reuptake inhibitors exhibit comparable pro-cognitive effects in rats of potential relevance to treatment of schizophrenia and other brain disorders where cognitive performance is impaired.
Collapse
|
8
|
Matsuno M, Horiuchi J, Ofusa K, Masuda T, Saitoe M. Inhibiting Glutamate Activity during Consolidation Suppresses Age-Related Long-Term Memory Impairment in Drosophila. iScience 2019; 15:55-65. [PMID: 31030182 PMCID: PMC6487374 DOI: 10.1016/j.isci.2019.04.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/24/2018] [Accepted: 04/08/2019] [Indexed: 01/17/2023] Open
Abstract
In Drosophila, long-term memory (LTM) formation requires increases in glial gene expression. Klingon (Klg), a cell adhesion molecule expressed in both neurons and glia, induces expression of the glial transcription factor, Repo. However, glial signaling downstream of Repo has been unclear. Here we demonstrate that Repo increases expression of the glutamate transporter, EAAT1, and EAAT1 is required during consolidation of LTM. The expressions of Klg, Repo, and EAAT1 decrease upon aging, suggesting that age-related impairments in LTM are caused by dysfunction of the Klg-Repo-EAAT1 pathway. Supporting this idea, overexpression of Repo or EAAT1 rescues age-associated impairments in LTM. Pharmacological inhibition of glutamate activity during consolidation improves LTM in klg mutants and aged flies. Altogether, our results indicate that LTM formation requires glial-dependent inhibition of glutamate signaling during memory consolidation, and aging disrupts this process by inhibiting the Klg-Repo-EAAT1 pathway.
Collapse
Affiliation(s)
- Motomi Matsuno
- Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8502, Japan
| | - Junjiro Horiuchi
- Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8502, Japan
| | - Kyoko Ofusa
- Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8502, Japan
| | - Tomoko Masuda
- Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8502, Japan
| | - Minoru Saitoe
- Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8502, Japan.
| |
Collapse
|
9
|
Billard JM. Changes in Serine Racemase-Dependent Modulation of NMDA Receptor: Impact on Physiological and Pathological Brain Aging. Front Mol Biosci 2018; 5:106. [PMID: 30555832 PMCID: PMC6282039 DOI: 10.3389/fmolb.2018.00106] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/09/2018] [Indexed: 02/02/2023] Open
Abstract
The N-methyl-D-Aspartate glutamate receptors (NMDARs) are pivotal for the functional and morphological plasticity that are required in neuronal networks for efficient brain activities and notably for cognitive-related abilities. Because NMDARs are heterogeneous in subunit composition and associated with multiple functional regulatory sites, their efficacy is under the tonic influence of numerous allosteric modulations, whose dysfunction generally represents the first step generating pathological states. Among the enzymatic candidates, serine racemase (SR) has recently gathered an increasing interest considering that it tightly regulates the production of d-serine, an amino acid now viewed as the main endogenous co-agonist necessary for NMDAR activation. Nowadays, SR deregulation is associated with a wide range of neurological and psychiatric diseases including schizophrenia, amyotrophic lateral sclerosis, and depression. This review aims at compelling the most recent experimental evidences indicating that changes in SR-related modulation of NMDARs also govern opposite functional dysfunctions in physiological and pathological (Alzheimer's disease) aging that finally results in memory disabilities in both cases. It also highlights SR as a relevant alternative target for new pharmacological strategies aimed at preventing functional alterations and cognitive impairments linked to the aging process.
Collapse
|
10
|
Billard JM, Freret T. Asc-1 transporter activation: an alternative to rescue age-related alterations in functional plasticity at rat hippocampal CA3/CA1 synapses. J Neurochem 2018; 147:514-525. [DOI: 10.1111/jnc.14586] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/23/2018] [Accepted: 08/25/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Jean-Marie Billard
- Centre de Psychiatrie et Neurosciences; Université Paris Descartes; Sorbonne Paris Cité; UMR 894; Paris France
- Normandie Univ.; UNICAEN; INSERM; COMETE; Caen France
| | - Thomas Freret
- Normandie Univ.; UNICAEN; INSERM; COMETE; Caen France
| |
Collapse
|
11
|
Ivanov AD, Mothet JP. The plastic d-serine signaling pathway: Sliding from neurons to glia and vice-versa. Neurosci Lett 2018; 689:21-25. [PMID: 29852209 DOI: 10.1016/j.neulet.2018.05.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/23/2018] [Accepted: 05/27/2018] [Indexed: 01/04/2023]
Abstract
d-Serine is now recognized as the main co-agonist for NMDA receptors. For years it was thought to be exclusively produced by astrocytes and was thus viewed as the archetype of gliotransmitters. Recent research have challenged this long cherished and appealing view by showing that in physiological conditions d-erine would rather originate from neurons but not from glia. In the present review and in the light of the emerging serine shuttle model, we ambition to offer a new reading direction of the glia-neuron cross-talk in shaping the metabolism and the functions of d-serine in cerebral communication in normal and pathological conditions by re-interpretating some seminal findings.
Collapse
Affiliation(s)
- Andrei D Ivanov
- 'Biophotonics and Synpase Physiopathology' Team, Laboratoire Aimé Cotton, UMR9188 CNRS - ENS, Paris, Saclay, Orsay, France
| | - Jean-Pierre Mothet
- 'Biophotonics and Synpase Physiopathology' Team, Laboratoire Aimé Cotton, UMR9188 CNRS - ENS, Paris, Saclay, Orsay, France.
| |
Collapse
|
12
|
Lin HC, Peng CH, Huang CN, Chiou JY. Soy-Based Foods Are Negatively Associated with Cognitive Decline in Taiwan's Elderly. J Nutr Sci Vitaminol (Tokyo) 2018; 64:335-339. [PMID: 30381623 DOI: 10.3177/jnsv.64.335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cognitive impairment is a common neurodegenerative disease in the elderly. Dietary factors have an important role in cognitive dysfunction. Soy has many benefits, and consumption of soy-based foods is general in East Asian countries. In this study, we want to investigate the association between cognitive function decline and soy-based food intake among the elderly in Taiwan. This cross-sectional study was based on data obtained from the 2005-2008 Nutrition and Health Survey in Taiwan (NAHSIT). Subjects aged less than 65 y or with missing data were excluded. There was a total of 1,105 participants aged 65 and over who completed Short Portable Mental Status Questionnaire (SPMSQ). Eighty-five-point-six percent of participants consumed soy-based foods every day. After adjustment for potential variables, the logistic regression model showed significant associations for age, gender, education, soy-based foods intake and physical component summary (PCS). Age and female gender were both positively correlated with cognitive impairment (odds ratios: 1.1 and 4.43, respectively). Furthermore, there were negative correlations for education, soy-based foods intake and PCS (odds ratios: 0.25, 0.45 and 0.97, respectively). In this study, we found that soy-based foods were negatively associated with cognitive function decline among Taiwanese elderly. This result may be used as a reference for dietary advice for the elderly.
Collapse
Affiliation(s)
- Hsing-Chun Lin
- Department of Nutrition, Chung Shan Medical University
- Department of Nutrition, Chung Shan Medical University Hospital
| | | | - Chien-Ning Huang
- Institute of Medicine, Chung Shan Medical University
- Department of Internal Medicine, Chung Shan Medical University Hospital
| | - Jeng-Yuan Chiou
- The School of Health Policy and Management, Chung Shan Medical University
| |
Collapse
|
13
|
Ferri P, Angelino D, Gennari L, Benedetti S, Ambrogini P, Del Grande P, Ninfali P. Enhancement of flavonoid ability to cross the blood-brain barrier of rats by co-administration with α-tocopherol. Food Funct 2016; 6:394-400. [PMID: 25474041 DOI: 10.1039/c4fo00817k] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Vitamin E and polyphenols could exhibit a therapeutic role in the treatment of oxidative stress-induced neurodegenerative diseases. Therefore, their ability to cross the blood-brain barrier (BBB) represents an important issue to be explored by different diet combinations. In this study, we have evaluated the ability of α-tocopherol to support epigallocatechin-3-gallate (EGCG), quercetin and rutin to cross the BBB, following oral administration. Eighteen rats were fed a standard diet (C), a diet supplemented with α-tocopherol (A), with a mixture of EGCG, quercetin and rutin (P); or with a mixture of α-tocopherol and the three flavonoids (AP). Flavonoids and their conjugated derivatives were assayed in brain and plasma by HPLC-MS, whereas α-tocopherol was detected by RP-HPLC. The oxidative damage, due to the potential pro-oxidant activity of flavonoids, was evaluated by the presence of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in hippocampal Cornus Ammonis, one of the most vulnerable sites in the brain. Our results indicate that α-tocopherol is able to promote quercetin transport across the BBB. The mixture of rutin and quercetin seems to favour the accumulation of quercetin and/or its conjugated derivatives in the brain. In contrast, α-tocopherol does not affect EGCG transport across the BBB. The densitometric analysis of 8-OHdG immunoreactivity does not reveal any difference of oxidative damage among the experimental groups. Our results suggest that α-tocopherol may promote quercetin transport across the BBB, leading to a significant increase of α-tocopherol and quercetin concentration in the brain.
Collapse
Affiliation(s)
- Paola Ferri
- Department of Earth, Life and Environmental Sciences, University of Urbino "Carlo Bo", Via Ca' Le Suore 2/4, 61029 Urbino, PU, Italy
| | | | | | | | | | | | | |
Collapse
|
14
|
Liu ZQ, Gu XH, Yang YJ, Yin XP, Xu LJ, Wang W. D-Serine in the nucleus accumbens region modulates behavioral sensitization and extinction of conditioned place preference. Pharmacol Biochem Behav 2016; 143:44-56. [PMID: 26861675 DOI: 10.1016/j.pbb.2016.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND D-serine, the endogenous co-agonist of N-methyl-D-aspartate receptors (NMDARs), is considered to be essential for learning and memory. The aim of the current investigation was to systematically evaluate the role of D-serine on addiction behaviors considered to be mediated by the nucleus accumbens (NAc). METHODS D-Serine concentration in the NAc was measured by high-performance liquid chromatography (HPLC). Cocaine-induced behavioral sensitization and conditioned place preference (CPP) models were used to evaluate the relation between changes in serine in the nucleus accumbens and cocaine-induced behavioral effects. The expression of serine racemase (SR), D-amino acid oxidase (DAAO), the cAMP response element-binding protein (CREB) and upstream kinases, and N-methyl-D-aspartate (NMDA) receptors subunits were analyzed by western blot. Long-term depression (LTD) in the NAc was investigated by electrophysiological methods. RESULTS The NAc slices obtained from the behavioral sensitization rats presented significantly reduced D-serine concentrations, increased expression of DAAO, and down-regulated expression of SR in a dose-dependent manner. Furthermore, D-serine injections into the nucleus accumbens blocked the development of behavioral sensitization and caused extinction of CPP. The ERK-CREB-Fos pathway and the NMDA receptor NR2B subunits in the NAc were involved in the cocaine-induced behavioral sensitization. We also found that D-serine was essential for NMDAR-dependent LTD and D-serine-regulated LTD in a bell-shaped concentration-dependent manner. The disrupted NMDAR-dependent LTD in the NAc of cocaine-treated rats was reversed by D-serine. CONCLUSIONS Our results provide evidence for a critical role of D-serine in synaptic plasticity relevant to cocaine addiction and indicate that D-serine may be an effective therapeutic agent for cocaine addiction.
Collapse
Affiliation(s)
- Zhi-Qiang Liu
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China; Cadre of Neurology, Jiangxi People's Hospital, Nanchang, Jiangxi, China; Department of Medical Experimental Center, Jiangxi Mental Hospital, Nanchang, Jiangxi, China
| | - Xun-Hu Gu
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China; Department of Medical Experimental Center, Jiangxi Mental Hospital, Nanchang, Jiangxi, China
| | - Yuan-Jian Yang
- Department of Medical Experimental Center, Jiangxi Mental Hospital, Nanchang, Jiangxi, China
| | - Xiao-ping Yin
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Li-Jun Xu
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China.
| | - Wei Wang
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
15
|
Kiriyama Y, Nochi H. D-Amino Acids in the Nervous and Endocrine Systems. SCIENTIFICA 2016; 2016:6494621. [PMID: 28053803 PMCID: PMC5178360 DOI: 10.1155/2016/6494621] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/14/2016] [Indexed: 05/12/2023]
Abstract
Amino acids are important components for peptides and proteins and act as signal transmitters. Only L-amino acids have been considered necessary in mammals, including humans. However, diverse D-amino acids, such as D-serine, D-aspartate, D-alanine, and D-cysteine, are found in mammals. Physiological roles of these D-amino acids not only in the nervous system but also in the endocrine system are being gradually revealed. N-Methyl-D-aspartate (NMDA) receptors are associated with learning and memory. D-Serine, D-aspartate, and D-alanine can all bind to NMDA receptors. H2S generated from D-cysteine reduces disulfide bonds in receptors and potentiates their activity. Aberrant receptor activity is related to diseases of the central nervous system (CNS), such as Alzheimer's disease, amyotrophic lateral sclerosis, and schizophrenia. Furthermore, D-amino acids are detected in parts of the endocrine system, such as the pineal gland, hypothalamus, pituitary gland, pancreas, adrenal gland, and testis. D-Aspartate is being investigated for the regulation of hormone release from various endocrine organs. Here we focused on recent findings regarding the synthesis and physiological functions of D-amino acids in the nervous and endocrine systems.
Collapse
Affiliation(s)
- Yoshimitsu Kiriyama
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido 1314-1, Sanuki, Kagawa 769-2193, Japan
| | - Hiromi Nochi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido 1314-1, Sanuki, Kagawa 769-2193, Japan
- *Hiromi Nochi:
| |
Collapse
|
16
|
Errico F, Mothet JP, Usiello A. d-Aspartate: An endogenous NMDA receptor agonist enriched in the developing brain with potential involvement in schizophrenia. J Pharm Biomed Anal 2015; 116:7-17. [DOI: 10.1016/j.jpba.2015.03.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 03/11/2015] [Accepted: 03/23/2015] [Indexed: 12/14/2022]
|
17
|
Kolodney G, Dumin E, Safory H, Rosenberg D, Mori H, Radzishevsky I, Radzishevisky I, Wolosker H. Nuclear Compartmentalization of Serine Racemase Regulates D-Serine Production: IMPLICATIONS FOR N-METHYL-D-ASPARTATE (NMDA) RECEPTOR ACTIVATION. J Biol Chem 2015; 290:31037-50. [PMID: 26553873 DOI: 10.1074/jbc.m115.699496] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Indexed: 11/06/2022] Open
Abstract
D-Serine is a physiological co-agonist that activates N-methyl D-aspartate receptors (NMDARs) and is essential for neurotransmission, synaptic plasticity, and behavior. D-Serine may also trigger NMDAR-mediated neurotoxicity, and its dysregulation may play a role in neurodegeneration. D-Serine is synthesized by the enzyme serine racemase (SR), which directly converts L-serine to D-serine. However, many aspects concerning the regulation of D-serine production under physiological and pathological conditions remain to be elucidated. Here, we investigate possible mechanisms regulating the synthesis of D-serine by SR in paradigms relevant to neurotoxicity. We report that SR undergoes nucleocytoplasmic shuttling and that this process is dysregulated by several insults leading to neuronal death, typically by apoptotic stimuli. Cell death induction promotes nuclear accumulation of SR, in parallel with the nuclear translocation of GAPDH and Siah proteins at an early stage of the cell death process. Mutations in putative SR nuclear export signals (NESs) elicit SR nuclear accumulation and its depletion from the cytosol. Following apoptotic insult, SR associates with nuclear GAPDH along with other nuclear components, and this is accompanied by complete inactivation of the enzyme. As a result, extracellular D-serine concentration is reduced, even though extracellular glutamate concentration increases severalfold. Our observations imply that nuclear translocation of SR provides a fail-safe mechanism to prevent or limit secondary NMDAR-mediated toxicity in nearby synapses.
Collapse
Affiliation(s)
- Goren Kolodney
- From the Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology and
| | - Elena Dumin
- the Laboratory of Clinical Biochemistry, Metabolic Unit, Rambam Health Care Campus, Haifa 31096, Israel, and
| | - Hazem Safory
- From the Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology and
| | - Dina Rosenberg
- From the Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology and
| | - Hisashi Mori
- the Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Inna Radzishevsky
- From the Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology and
| | | | - Herman Wolosker
- From the Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology and
| |
Collapse
|
18
|
Mothet JP, Le Bail M, Billard JM. Time and space profiling of NMDA receptor co-agonist functions. J Neurochem 2015; 135:210-25. [DOI: 10.1111/jnc.13204] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/12/2015] [Accepted: 06/02/2015] [Indexed: 02/01/2023]
Affiliation(s)
- Jean-Pierre Mothet
- Team ‘Gliotransmission and Synaptopathies’; Aix-Marseille Université; CNRS; CRN2M UMR7286; Marseille France
| | - Matildé Le Bail
- Team ‘Gliotransmission and Synaptopathies’; Aix-Marseille Université; CNRS; CRN2M UMR7286; Marseille France
| | - Jean-Marie Billard
- Center of Psychiatry and Neuroscience; University Paris Descartes; Sorbonne Paris City; UMR 894; Paris France
| |
Collapse
|
19
|
Berridge MJ. Vitamin D cell signalling in health and disease. Biochem Biophys Res Commun 2015; 460:53-71. [PMID: 25998734 DOI: 10.1016/j.bbrc.2015.01.008] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/05/2015] [Indexed: 12/13/2022]
Abstract
Vitamin D deficiency has been linked to many human diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), hypertension and cardiovascular disease. A Vitamin D phenotypic stability hypothesis, which is developed in this review, attempts to describe how this vital hormone acts to maintain healthy cellular functions. This role of Vitamin D as a guardian of phenotypic stability seems to depend on its ability to maintain the redox and Ca(2+) signalling systems. It is argued that its primary action is to maintain the expression of those signalling components responsible for stabilizing the low resting state of these two signalling pathways. This phenotypic stability role is facilitated through the ability of vitamin D to increase the expression of both Nrf2 and the anti-ageing protein Klotho, which are also major regulators of Ca(2+) and redox signalling. A decline in Vitamin D levels will lead to a decline in the stability of this regulatory signalling network and may account for why so many of the major diseases in man, which have been linked to vitamin D deficiency, are associated with a dysregulation in both ROS and Ca(2+) signalling.
Collapse
|
20
|
Billard JM. D-Serine in the aging hippocampus. J Pharm Biomed Anal 2015; 116:18-24. [PMID: 25740810 DOI: 10.1016/j.jpba.2015.02.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/03/2015] [Accepted: 02/07/2015] [Indexed: 01/06/2023]
Abstract
Experimental evidences now indicate that memory formation relies on the capacity of neuronal networks to manage long-term changes in synaptic communication. This property is driven by N-methyl-D-aspartate receptors (NMDAR), which requires the binding of glutamate but also the presence of the co-agonist D-serine at the glycine site. Defective memory function and impaired brain synaptic plasticity observed in aging are rescued by partial agonist acting at this site suggesting that this gating process is targeted to induce age-related cognitive defects. This review aims at compelling recent studies characterizing the role of D-serine in changes in functional plasticity that occur in the aging hippocampus since deficits are rescued by D-serine supplementation. The impaired efficacy of endogenous D-serine is not due to changes in the affinity to glycine-binding site but to a decrease in tissue levels of the amino acid resulting from a weaker expression of the producing enzyme serine racemase (SR). Interestingly, neither SR expression, D-serine levels, nor NMDAR activation is affected in aged LOU/C rats, a model of healthy aging in which memory deficits do not occur. These old animals do not develop oxidative stress suggesting that the D-serine-related pathway could be targeted by the age-related accumulation of reactive oxygen species. Accordingly, senescent rats chronically treated with the reducing agent N-acetyl-cysteine to prevent oxidative damage, show intact NMDAR activation linked to preserved D-serine levels and SR expression. These results point to a significant role of D-serine in age-related functional alterations underlying hippocampus-dependent memory deficits, at least within the CA1 area since the amino acid does not appear as critical in changes affecting the dentate gyrus.
Collapse
Affiliation(s)
- Jean-Marie Billard
- Center of Psychiatry and Neurosciences, Paris Descartes University, Sorbonne Paris City, UMR U894, Paris 75014 France.
| |
Collapse
|
21
|
Moré MI, Freitas U, Rutenberg D. Positive effects of soy lecithin-derived phosphatidylserine plus phosphatidic acid on memory, cognition, daily functioning, and mood in elderly patients with Alzheimer's disease and dementia. Adv Ther 2014; 31:1247-62. [PMID: 25414047 PMCID: PMC4271139 DOI: 10.1007/s12325-014-0165-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Indexed: 01/17/2023]
Abstract
INTRODUCTION We report previously unpublished, early pilot studies performed with a brain-health food supplement containing a proprietary blend of 100 mg phosphatidylserine (PS) and 80 mg phosphatidic acid (PA) produced from soy lecithin. METHODS Serum analysis after single PS+PA ingestion was performed in healthy volunteers. A 3-month double-blind, placebo-controlled study assessed the influence of three PS+PA capsules/day, (300 mg PS + 240 mg PA/day) or placebo on memory and mood in functioning, non-depressive elderly people with memory problems, using the Wechsler Memory Scale and the List of Depressive Symptoms. Furthermore, a 2-month randomized, double-blind, placebo-controlled trial assessed the effect of three PS+PA capsules/day (300 mg PS + 240 mg PA/day) or placebo on daily functioning, mental health, emotional state, and self-reported general condition in patients with Alzheimer's disease (AD). RESULTS Serum PS peaked 90 min after ingestion, returning to baseline after 180 min. In the elderly, PS+PA [per protocol (PP) n = 31], unlike placebo (PP n = 26), significantly improved memory and prevented "winter blues" in a pre-post comparison. In the patients with AD, daily functioning (i.e., 7 activities of daily living) under PS+PA (PP n = 53) remained unchanged, but declined from 5.62 to 4.90 under placebo (PP n = 39; P = 0.035), with significant group difference (P = 0.021). The PS+PA group had 3.8% deterioration and 90.6% stability in daily functioning, compared to 17.9% and 79.5% under placebo, respectively (P = 0.066). Forty-nine percent of the PS+PA patients reported an improved general condition, compared to 26.3% under placebo (P = 0.084). Approximately, 43% of the PS+PA patients, but none under placebo, continued post-trial supplementation (while double-blinded). No negative side effects were observed. CONCLUSION PS is efficiently absorbed after oral consumption. A positive influence of PS+PA on memory, mood, and cognition was demonstrated among elderly test subjects. Short-term supplementation with PS+PA in patients with AD showed a stabilizing effect on daily functioning, emotional state and self-reported general condition. The data encourage long-term studies with PS+PA in AD patients and other elderly with memory or cognition problems.
Collapse
|
22
|
An asymmetric approach to the synthesis of a carbon-11 labelled gliotransmitter d-serine. J Radioanal Nucl Chem 2014. [DOI: 10.1007/s10967-014-3670-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
D'Ascenzo M, Podda MV, Grassi C. The role of D-serine as co-agonist of NMDA receptors in the nucleus accumbens: relevance to cocaine addiction. Front Synaptic Neurosci 2014; 6:16. [PMID: 25076900 PMCID: PMC4100571 DOI: 10.3389/fnsyn.2014.00016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/29/2014] [Indexed: 12/20/2022] Open
Abstract
Cocaine addiction is characterized by compulsive drug use despite adverse consequences and high rate of relapse during periods of abstinence. Increasing consensus suggests that addiction to drugs of abuse usurps learning and memory mechanisms normally related to natural rewards, ultimately producing long-lasting neuroadaptations in the mesocorticolimbic system. This system, formed in part by the ventral tegmental area and nucleus accumbens (NAc), has a central role in the development and expression of addictive behaviors. In addition to a broad spectrum of changes that affect morphology and function of NAc excitatory circuits in cocaine–treated animals, impaired N-methyl-D-aspartate receptor (NMDAR)-dependent synaptic plasticity is a typical feature. D-serine, a D-amino acid that has been found at high levels in mammalian brain, binds with high affinity the co-agonist site of NMDAR and mediates, along with glutamate, several important processes including synaptic plasticity. Here we review recent literature focusing on cocaine-induced impairment in synaptic plasticity mechanisms in the NAc and on the fundamental role of D-serine as co-agonist of NMDAR in functional and dysfunctional synaptic plasticity within this nucleus. The emerging picture is that reduced D-serine levels play a crucial role in synaptic plasticity relevant to cocaine addiction. This finding opens new perspectives for therapeutic approaches to treat this addictive state.
Collapse
Affiliation(s)
- Marcello D'Ascenzo
- Institute of Human Physiology, Medical School, Universitá Cattolica "S. Cuore" Rome, Italy
| | - Maria Vittoria Podda
- Institute of Human Physiology, Medical School, Universitá Cattolica "S. Cuore" Rome, Italy
| | - Claudio Grassi
- Institute of Human Physiology, Medical School, Universitá Cattolica "S. Cuore" Rome, Italy
| |
Collapse
|
24
|
Arginine vasopressin regulated ASCT1 expression in astrocytes from stroke-prone spontaneously hypertensive rats and congenic SHRpch1_18 rats. Neuroscience 2014; 267:277-85. [DOI: 10.1016/j.neuroscience.2014.02.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 02/23/2014] [Accepted: 02/24/2014] [Indexed: 11/21/2022]
|
25
|
Canu N, Ciotti MT, Pollegioni L. Serine racemase: a key player in apoptosis and necrosis. Front Synaptic Neurosci 2014; 6:9. [PMID: 24795622 PMCID: PMC4000995 DOI: 10.3389/fnsyn.2014.00009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 03/28/2014] [Indexed: 12/14/2022] Open
Abstract
A fine balance between cell survival and cell death is required to sculpt the nervous system during development. However, an excess of cell death can occur following trauma, exposure to neurotoxins or alcohol, and some developmental and neurodegenerative diseases, such as Alzheimer's disease (AD). N-Methyl-D-aspartate receptors (NMDARs) support synaptic plasticity and survival of many neuronal populations whereas inappropriate activation may promote various forms of cell death, apoptosis, and necrosis representing the two extremes of a continuum of cell death processes both “in vitro” and “in vivo.” Hence, by identifying the switches controlling pro-survival vs. apoptosis and apoptosis vs. pro-excitotoxic outcome of NMDAR stimulation, NMDAR modulators could be developed that selectively block the cell death enhancing pro-survival signaling or synaptic plasticity mediated by NMDAR. Among these modulators, a role is emerging for the enzyme serine racemase (SR) that synthesizes D-serine, a key co-agonist with glutamate at NMDAR. This review summarizes the experimental evidence from “in vitro” neuronal cultures—with special emphasis on cerebellar granule neurons (CGNs)—and “in vivo” models of neurodegeneration, where the dual role of the SR/D-serine pathway as a master regulator of apoptosis and the apoptosis-necrosis shift will be discussed.
Collapse
Affiliation(s)
- Nadia Canu
- Dipartimento di Medicina dei Sistemi, Università degli Studi di Roma Roma, Italy ; Istituto di Biologia Cellulare e Neurobiologia, Consiglio Nazionale delle Ricerche Roma, Italy
| | - Maria Teresa Ciotti
- Istituto di Biologia Cellulare e Neurobiologia, Consiglio Nazionale delle Ricerche Roma, Italy
| | - Loredano Pollegioni
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria Varese, Italy ; Centro Interuniversitario di Ricerca in Biotecnologie Proteiche "The Protein Factory," Politecnico di Milano, ICRM-CNR Milano and Università degli studi dell'Insubria Milano, Italy
| |
Collapse
|
26
|
Parent MB, Darling JN, Henderson YO. Remembering to eat: hippocampal regulation of meal onset. Am J Physiol Regul Integr Comp Physiol 2014; 306:R701-13. [PMID: 24573183 DOI: 10.1152/ajpregu.00496.2013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A wide variety of species, including vertebrate and invertebrates, consume food in bouts (i.e., meals). Decades of research suggest that different mechanisms regulate meal initiation (when to start eating) versus meal termination (how much to eat in a meal, also known as satiety). There is a very limited understanding of the mechanisms that regulate meal onset and the duration of the postprandial intermeal interval (ppIMI). In the present review, we examine issues involved in measuring meal onset and some of the limited available evidence regarding how it is regulated. Then, we describe our recent work indicating that dorsal hippocampal neurons inhibit meal onset during the ppIMI and describe the processes that may be involved in this. We also synthesize recent evidence, including evidence from our laboratory, suggesting that overeating impairs hippocampal functioning and that impaired hippocampal functioning, in turn, contributes to the development and/or maintenance of diet-induced obesity. Finally, we identify critical questions and challenges for future research investigating neural controls of meal onset.
Collapse
Affiliation(s)
- Marise B Parent
- Neuroscience Institute, Georgia State University, Atlanta, Georgia; and Department of Psychology, Georgia State University, Atlanta, Georgia
| | - Jenna N Darling
- Neuroscience Institute, Georgia State University, Atlanta, Georgia; and
| | - Yoko O Henderson
- Neuroscience Institute, Georgia State University, Atlanta, Georgia; and
| |
Collapse
|
27
|
Marchetti M, Bruno S, Campanini B, Peracchi A, Mai N, Mozzarelli A. ATP binding to human serine racemase is cooperative and modulated by glycine. FEBS J 2013; 280:5853-63. [PMID: 23992455 DOI: 10.1111/febs.12510] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 08/27/2013] [Accepted: 08/29/2013] [Indexed: 11/26/2022]
Abstract
The N-methyl D-aspartate (NMDA) receptors play a key role in excitatory neurotransmission, and control learning, memory and synaptic plasticity. Their activity is modulated by the agonist glutamate and by the co-agonists d-serine and glycine. In the human brain, d-serine is synthesized from l-serine by the dimeric pyridoxal 5'-phosphate-dependent enzyme serine racemase, which also degrades l- and d-serine to pyruvate and ammonia. The dependence of l- and d-serine β-elimination and l-serine racemization activities on ATP concentration was characterized, and was found to be strongly cooperative, with Hill coefficients close to 2 and apparent ATP dissociation constants ranging from 0.22 to 0.41 mm. ATP binding to the holo-enzyme, monitored by the fluorescence changes of the coenzyme, was also determined to be cooperative, with an apparent dissociation constant of 0.24 mm. Glycine, an active-site ligand, increased the serine racemase affinity for ATP by ~ 22-fold, abolishing cooperativity. Conversely, ATP increased the non-cooperative glycine binding 15-fold. These results indicate cross-talk between allosteric and active sites, leading to the stabilization of two alternative protein conformations with ATP affinities of ~ 10 μM and 1.8 mm, as evaluated within the Monod, Wyman and Changeux model. Therefore, intracellular ATP and glycine control d-serine homeostasis, and, indirectly, NMDA receptor activity. Because hyper- and hypo-activation of NMDA receptors are associated with neuropathologies, the development of allosteric drugs modulating serine racemase activity is a promising therapeutic strategy.
Collapse
|