1
|
Castañeda-Sampedro A, Alcorta E, Gomez-Diaz C. Cell-specific genetic expression profile of antennal glia in Drosophila reveals candidate genes in neuron-glia interactions. Sci Rep 2025; 15:5493. [PMID: 39953089 PMCID: PMC11828885 DOI: 10.1038/s41598-025-87834-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/22/2025] [Indexed: 02/17/2025] Open
Abstract
Understanding the genetic basis of neuron-glia interactions is essential to comprehend the function of glia. Recent studies on Drosophila antennal glia Mz317 has shown their role in olfactory perception. In the antenna, the Mz317-type glia tightly envelops the somas of olfactory sensory neurons and axons already covered by wrapping glia. Here, we investigate candidate genes involved in glial regulation in olfactory reception of Drosophila. Targeted transcriptional profiling reveals that Mz317 glial cells express 21% of Drosophila genes emphasizing functions related to cell junction organization, synaptic transmission, and chemical stimuli response. Comparative gene expression analysis with other glial cell types in both the antenna and brain provides a differential description based on cell type, offers candidate genes for further investigation, and contributes to our understanding of neuron-glia communication in olfactory signaling. Additionally, similarities between the molecular signatures of peripheral glia in Drosophila and vertebrates highlight the utility of model organisms in elucidating glial cell functions in complex systems.
Collapse
Affiliation(s)
- Ana Castañeda-Sampedro
- Departamento de Biología Funcional (Área de Genética), Facultad de Medicina y Ciencias de la Salud, Universidad de Oviedo, c/Julián Clavería s/n, 33006, Oviedo, Asturias, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Facultad de Medicina y Ciencias de la Salud, Universidad de Oviedo, Asturias, Spain
| | - Esther Alcorta
- Departamento de Biología Funcional (Área de Genética), Facultad de Medicina y Ciencias de la Salud, Universidad de Oviedo, c/Julián Clavería s/n, 33006, Oviedo, Asturias, Spain.
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Facultad de Medicina y Ciencias de la Salud, Universidad de Oviedo, Asturias, Spain.
| | - Carolina Gomez-Diaz
- Departamento de Biología Funcional (Área de Genética), Facultad de Medicina y Ciencias de la Salud, Universidad de Oviedo, c/Julián Clavería s/n, 33006, Oviedo, Asturias, Spain.
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Facultad de Medicina y Ciencias de la Salud, Universidad de Oviedo, Asturias, Spain.
| |
Collapse
|
2
|
Shweta, Sharma K, Shakarad M, Agrawal N, Maurya SK. Drosophila glial system: an approach towards understanding molecular complexity of neurodegenerative diseases. Mol Biol Rep 2024; 51:1146. [PMID: 39532789 DOI: 10.1007/s11033-024-10075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Glia is pivotal in regulating neuronal stem cell proliferation, functioning, and nervous system homeostasis, significantly influencing neuronal health and disorders. Dysfunction in glial activity is a key factor in the development and progression of brain pathology. However, a deeper understanding of the intricate nature of glial cells and their diverse role in neurological disorders is still required. To this end, we conducted data mining to retrieve literature from PubMed and Google Scholar using the keywords: glia, Drosophila, neurodegeneration, and mammals. The retrieved literature was manually screened and used to comprehensively understand and present the different glial types in Drosophila, i.e., perineurial, subperineurial, cortex, astrocyte-like and ensheathing glia, their relevance with mammalian counterparts, mainly microglia and astrocytes, and their potential to reveal complex neuron-glial molecular networks in managing neurodegenerative processes.
Collapse
Affiliation(s)
- Shweta
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, 110007, India
| | - Khushboo Sharma
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Mallikarjun Shakarad
- Evolutionary Biology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Namita Agrawal
- Fly Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, 110007, India
| | - Shashank Kumar Maurya
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
3
|
Markey KM, Saunders JC, Smuts J, von Reyn CR, Garcia ADR. Astrocyte development—More questions than answers. Front Cell Dev Biol 2023; 11:1063843. [PMID: 37051466 PMCID: PMC10083403 DOI: 10.3389/fcell.2023.1063843] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/14/2023] [Indexed: 03/28/2023] Open
Abstract
The past 15–20 years has seen a remarkable shift in our understanding of astrocyte contributions to central nervous system (CNS) function. Astrocytes have emerged from the shadows of neuroscience and are now recognized as key elements in a broad array of CNS functions. Astrocytes comprise a substantial fraction of cells in the human CNS. Nevertheless, fundamental questions surrounding their basic biology remain poorly understood. While recent studies have revealed a diversity of essential roles in CNS function, from synapse formation and function to blood brain barrier maintenance, fundamental mechanisms of astrocyte development, including their expansion, migration, and maturation, remain to be elucidated. The coincident development of astrocytes and synapses highlights the need to better understand astrocyte development and will facilitate novel strategies for addressing neurodevelopmental and neurological dysfunction. In this review, we provide an overview of the current understanding of astrocyte development, focusing primarily on mammalian astrocytes and highlight outstanding questions that remain to be addressed. We also include an overview of Drosophila glial development, emphasizing astrocyte-like glia given their close anatomical and functional association with synapses. Drosophila offer an array of sophisticated molecular genetic tools and they remain a powerful model for elucidating fundamental cellular and molecular mechanisms governing astrocyte development. Understanding the parallels and distinctions between astrocyte development in Drosophila and vertebrates will enable investigators to leverage the strengths of each model system to gain new insights into astrocyte function.
Collapse
Affiliation(s)
- Kathryn M. Markey
- Department of Biology, Drexel University, Philadelphia, PA, United States
| | | | - Jana Smuts
- Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA, United States
| | - Catherine R. von Reyn
- Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA, United States
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| | - A. Denise R. Garcia
- Department of Biology, Drexel University, Philadelphia, PA, United States
- Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA, United States
- *Correspondence: A. Denise R. Garcia,
| |
Collapse
|
4
|
Calvin-Cejudo L, Martin F, Mendez LR, Coya R, Castañeda-Sampedro A, Gomez-Diaz C, Alcorta E. Neuron-glia interaction at the receptor level affects olfactory perception in adult Drosophila. iScience 2022; 26:105837. [PMID: 36624835 PMCID: PMC9823236 DOI: 10.1016/j.isci.2022.105837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/17/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Some types of glia play an active role in neuronal signaling by modifying their activity although little is known about their role in sensory information signaling at the receptor level. In this research, we report a functional role for the glia that surround the soma of the olfactory receptor neurons (OSNs) in adult Drosophila. Specific genetic modifications have been targeted to this cell type to obtain live individuals who are tested for olfactory preference and display changes both increasing and reducing sensitivity. A closer look at the antenna by Ca2+ imaging shows that odor activates the OSNs, which subsequently produce an opposite and smaller effect in the glia that partially counterbalances neuronal activation. Therefore, these glia may play a dual role in preventing excessive activation of the OSNs at high odorant concentrations and tuning the chemosensory window for the individual according to the network structure in the receptor organ.
Collapse
Affiliation(s)
- Laura Calvin-Cejudo
- Group of Neurobiology of the Sensory Systems (NEUROSEN), Department of Functional Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Fernando Martin
- Group of Neurobiology of the Sensory Systems (NEUROSEN), Department of Functional Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Luis R. Mendez
- Group of Neurobiology of the Sensory Systems (NEUROSEN), Department of Functional Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Ruth Coya
- Group of Neurobiology of the Sensory Systems (NEUROSEN), Department of Functional Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Ana Castañeda-Sampedro
- Group of Neurobiology of the Sensory Systems (NEUROSEN), Department of Functional Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Carolina Gomez-Diaz
- Group of Neurobiology of the Sensory Systems (NEUROSEN), Department of Functional Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Esther Alcorta
- Group of Neurobiology of the Sensory Systems (NEUROSEN), Department of Functional Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
- Corresponding author
| |
Collapse
|
5
|
Chen D, Cheng H, Liu S, Al-Sheikh U, Fan Y, Duan D, Zou W, Zhu L, Kang L. The Voltage-Gated Calcium Channel EGL-19 Acts on Glia to Drive Olfactory Adaptation. Front Mol Neurosci 2022; 15:907064. [PMID: 35782381 PMCID: PMC9247319 DOI: 10.3389/fnmol.2022.907064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Calcium channelopathies have been strongly linked to cardiovascular, muscular, neurological and psychiatric disorders. The voltage-gated calcium channels (VGCC) are vital transducers of membrane potential changes to facilitate the dynamics of calcium ions and release of neurotransmitter. Whether these channels function in the glial cell to mediate calcium variations and regulate behavioral outputs, is poorly understood. Our results showed that odorant and mechanical stimuli evoked robust calcium increases in the amphid sheath (AMsh) glia from C. elegans, which were largely dependent on the L-Type VGCC EGL-19. Moreover, EGL-19 modulates the morphologies of both ASH sensory neurons and AMsh glia. Tissue-specific knock-down of EGL-19 in AMsh glia regulated sensory adaptability of ASH neurons and promoted olfactory adaptation. Our results reveal a novel role of glial L-Type VGCC EGL-19 on olfaction, lead to improved understanding of the functions of VGCCs in sensory transduction.
Collapse
Affiliation(s)
- Du Chen
- Department of Neurobiology and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Hankui Cheng
- Department of Neurobiology and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Siyan Liu
- Department of Neurobiology and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Umar Al-Sheikh
- Department of Neurobiology and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Yuedan Fan
- Department of Neurobiology and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Duo Duan
- Department of Neurobiology and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Wenjuan Zou
- Department of Neurobiology and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Linhui Zhu
- Department of Neurobiology and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Lijun Kang
- Department of Neurobiology and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Lijun Kang
| |
Collapse
|
6
|
Bajar BT, Phi NT, Randhawa H, Akin O. Developmental neural activity requires neuron-astrocyte interactions. Dev Neurobiol 2022; 82:235-244. [PMID: 35225404 PMCID: PMC9018619 DOI: 10.1002/dneu.22870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/06/2021] [Accepted: 01/12/2022] [Indexed: 11/10/2022]
Abstract
Developmental neural activity is a common feature of neural circuit assembly. Although glia have established roles in synapse development, the contribution of neuron-glia interactions to developmental activity remains largely unexplored. Here we show that astrocytes are necessary for developmental activity during synaptogenesis in Drosophila. Using wide-field epifluorescence and two-photon imaging, we show that the glia of the central nervous system participate in developmental activity with type-specific patterns of intracellular calcium dynamics. Genetic ablation of astrocytes, but not of cortex or ensheathing glia, leads to severe attenuation of neuronal activity. Similarly, inhibition of neuronal activity results in the loss of astrocyte calcium dynamics. By altering these dynamics, we show that astrocytic calcium cycles can influence neuronal activity but are not necessary per se. Taken together, our results indicate that, in addition to their recognized role in the structural maturation of synapses, astrocytes are also necessary for the function of synapses during development.
Collapse
Affiliation(s)
- Bryce T. Bajar
- Department of Biological Chemistry, Medical Scientist Training Program, Neuroscience Interdepartmental Program, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095
| | - Nguyen T. Phi
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095
| | - Harpreet Randhawa
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095
| | - Orkun Akin
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095
| |
Collapse
|
7
|
Yildirim K, Winkler B, Pogodalla N, Mackensen S, Baldenius M, Garcia L, Naffin E, Rodrigues S, Klämbt C. Redundant functions of the SLC5A transporters Rumpel, Bumpel, and Kumpel in ensheathing glial cells. Biol Open 2021; 11:274028. [PMID: 34897385 PMCID: PMC8790523 DOI: 10.1242/bio.059128] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/26/2021] [Indexed: 11/20/2022] Open
Abstract
Neuronal processing is energy demanding, and relies on sugar metabolism. To nurture the Drosophila nervous system, the blood-brain barrier forming glial cells take up trehalose from the hemolymph and then distribute the metabolic products further to all neurons. This function is provided by glucose and lactate transporters of the solute carrier (SLC) 5A family. Here we identified three SLC5A genes that are specifically expressed in overlapping sets of CNS glial cells, rumpel, bumpel and kumpel. We generated mutants in all genes and all mutants are viable and fertile, lacking discernible phenotypes. Loss of rumpel causes subtle locomotor phenotypes and flies display increased daytime sleep. In addition, in bumpel kumpel double mutants, and to an even greater extent in rumpel bumpel kumpel triple mutants, oogenesis is disrupted at the onset of the vitollegenic phase. This indicates a partially redundant functions between these genes. Rescue experiments exploring this effect indicate that oogenesis can be affected by CNS glial cells. Moreover, expression of heterologous mammalian SLC5A transporters, with known transport properties, suggest that Bumpel and/or Kumpel transport glucose or lactate. Overall, our results imply a redundancy in SLC5A nutrient sensing functions in Drosophila glial cells, affecting ovarian development and behavior.
Collapse
Affiliation(s)
- Kerem Yildirim
- Institute for Neuro- and Behavioral Biology, University of Münster, Badestr. 9, 48149 Münster, Germany.,Centre for Organismal Studies (COS) Heidelberg, University of Heidelberg, Im Neuenheimer Feld 230, 9120 Heidelberg, Germany
| | - Bente Winkler
- Institute for Neuro- and Behavioral Biology, University of Münster, Badestr. 9, 48149 Münster, Germany
| | - Nicole Pogodalla
- Institute for Neuro- and Behavioral Biology, University of Münster, Badestr. 9, 48149 Münster, Germany
| | - Steffi Mackensen
- Institute for Neuro- and Behavioral Biology, University of Münster, Badestr. 9, 48149 Münster, Germany
| | - Marie Baldenius
- Institute for Neuro- and Behavioral Biology, University of Münster, Badestr. 9, 48149 Münster, Germany
| | - Luis Garcia
- Institute for Neuro- and Behavioral Biology, University of Münster, Badestr. 9, 48149 Münster, Germany
| | - Elke Naffin
- Institute for Neuro- and Behavioral Biology, University of Münster, Badestr. 9, 48149 Münster, Germany
| | - Silke Rodrigues
- Institute for Neuro- and Behavioral Biology, University of Münster, Badestr. 9, 48149 Münster, Germany
| | - Christian Klämbt
- Institute for Neuro- and Behavioral Biology, University of Münster, Badestr. 9, 48149 Münster, Germany
| |
Collapse
|
8
|
Cai XT, Li H, Jensen MB, Maksoud E, Borneo J, Liang Y, Quake SR, Luo L, Haghighi P, Jasper H. Gut cytokines modulate olfaction through metabolic reprogramming of glia. Nature 2021; 596:97-102. [PMID: 34290404 PMCID: PMC8911385 DOI: 10.1038/s41586-021-03756-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 06/22/2021] [Indexed: 02/06/2023]
Abstract
Infection-induced aversion against enteropathogens is a conserved sickness behaviour that can promote host survival1,2. The aetiology of this behaviour remains poorly understood, but studies in Drosophila have linked olfactory and gustatory perception to avoidance behaviours against toxic microorganisms3-5. Whether and how enteric infections directly influence sensory perception to induce or modulate such behaviours remains unknown. Here we show that enteropathogen infection in Drosophila can modulate olfaction through metabolic reprogramming of ensheathing glia of the antennal lobe. Infection-induced unpaired cytokine expression in the intestine activates JAK-STAT signalling in ensheathing glia, inducing the expression of glial monocarboxylate transporters and the apolipoprotein glial lazarillo (GLaz), and affecting metabolic coupling of glia and neurons at the antennal lobe. This modulates olfactory discrimination, promotes the avoidance of bacteria-laced food and increases fly survival. Although transient in young flies, gut-induced metabolic reprogramming of ensheathing glia becomes constitutive in old flies owing to age-related intestinal inflammation, which contributes to an age-related decline in olfactory discrimination. Our findings identify adaptive glial metabolic reprogramming by gut-derived cytokines as a mechanism that causes lasting changes in a sensory system in ageing flies.
Collapse
Affiliation(s)
- Xiaoyu Tracy Cai
- Immunology Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.,Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA.,University of Southern California, Los Angeles, CA 90007, USA
| | - Hongjie Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA,Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Martin Borch Jensen
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA.,Gordian Biotechnology, 953 Indiana St., San Francisco, CA 94107, USA
| | - Elie Maksoud
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Jovencio Borneo
- FACS lab, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Yuxin Liang
- NGS lab, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Stephen R. Quake
- Department of Bioengineering and Department of Applied Physics, Stanford University, Stanford, CA 94305, USA,Chan Zuckerberg Biohub, Stanford, CA 94305, USA
| | - Liqun Luo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Pejmun Haghighi
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Heinrich Jasper
- Immunology Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.,Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA.,Corresponding author: Heinrich Jasper, Genentech, 1 DNA Way, South San Francisco, California 94080, USA.
| |
Collapse
|
9
|
Kim T, Shin H, Song B, Won C, Yoshida H, Yamaguchi M, Cho KS, Lee I. Overexpression of
H3K36
methyltransferase
NSD
in glial cells affects brain development in
Drosophila. Glia 2020; 68:2503-2516. [DOI: 10.1002/glia.23867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/21/2020] [Accepted: 05/16/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Taejoon Kim
- Department of Biological Sciences, CHANS Research Center Konkuk University Seoul South Korea
| | - Hyewon Shin
- Department of Biological Sciences, CHANS Research Center Konkuk University Seoul South Korea
| | - Bokyeong Song
- Department of Biological Sciences, CHANS Research Center Konkuk University Seoul South Korea
| | - Chihyun Won
- Department of Biological Sciences, CHANS Research Center Konkuk University Seoul South Korea
| | - Hideki Yoshida
- Department of Applied Biology Kyoto Institute of Technology Kyoto Japan
| | | | - Kyoung Sang Cho
- Department of Biological Sciences, CHANS Research Center Konkuk University Seoul South Korea
| | - Im‐Soon Lee
- Department of Biological Sciences, CHANS Research Center Konkuk University Seoul South Korea
| |
Collapse
|
10
|
Bittern J, Pogodalla N, Ohm H, Brüser L, Kottmeier R, Schirmeier S, Klämbt C. Neuron-glia interaction in the Drosophila nervous system. Dev Neurobiol 2020; 81:438-452. [PMID: 32096904 DOI: 10.1002/dneu.22737] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/11/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022]
Abstract
Animals are able to move and react in manifold ways to external stimuli. Thus, environmental stimuli need to be detected, information must be processed, and, finally, an output decision must be transmitted to the musculature to get the animal moving. All these processes depend on the nervous system which comprises an intricate neuronal network and many glial cells. Glial cells have an equally important contribution in nervous system function as their neuronal counterpart. Manifold roles are attributed to glia ranging from controlling neuronal cell number and axonal pathfinding to regulation of synapse formation, function, and plasticity. Glial cells metabolically support neurons and contribute to the blood-brain barrier. All of the aforementioned aspects require extensive cell-cell interactions between neurons and glial cells. Not surprisingly, many of these processes are found in all phyla executed by evolutionarily conserved molecules. Here, we review the recent advance in understanding neuron-glia interaction in Drosophila melanogaster to suggest that work in simple model organisms will shed light on the function of mammalian glial cells, too.
Collapse
Affiliation(s)
- Jonas Bittern
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Nicole Pogodalla
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Henrike Ohm
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Lena Brüser
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Rita Kottmeier
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Stefanie Schirmeier
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Christian Klämbt
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| |
Collapse
|
11
|
Hernandez E, MacNamee SE, Kaplan LR, Lance K, Garcia-Verdugo HD, Farhadi DS, Deer C, Lee SW, Oland LA. The astrocyte network in the ventral nerve cord neuropil of the Drosophila third-instar larva. J Comp Neurol 2020; 528:1683-1703. [PMID: 31909826 DOI: 10.1002/cne.24852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 11/10/2022]
Abstract
Understanding neuronal function at the local and circuit level requires understanding astrocyte function. We have provided a detailed analysis of astrocyte morphology and territory in the Drosophila third-instar ventral nerve cord where there already exists considerable understanding of the neuronal network. Astrocyte shape varies more than previously reported; many have bilaterally symmetrical partners, many have a high percentage of their arborization in adjacent segments, and many have branches that follow structural features. Taken together, our data are consistent with, but not fully explained by, a model of a developmental growth process dominated by competitive or repulsive interactions between astrocytes. Our data suggest that the model should also include cell-autonomous aspects, as well as the use of structural features for growth. Variation in location of arborization territory for identified astrocytes was great enough that a standardized scheme of neuropil division among the six astrocytes that populate each hemi-segment is not possible at the third instar. The arborizations of the astrocytes can extend across neuronal functional domains. The ventral astrocyte in particular, whose territory can extend well into the proprioceptive region of the neuropil, has no obvious branching pattern that correlates with domains of particular sensory modalities, suggesting that the astrocyte would respond to neuronal activity in any of the sensory modalities, perhaps integrating across them. This study sets the stage for future studies that will generate a robust, functionally oriented connectome that includes both partners in neuronal circuits-the neurons and the glial cells, providing the foundation necessary for studies to elucidate neuron-glia interactions in this neuropil.
Collapse
Key Words
- RRID:Abcam Cat# ab6953, RRID:AB_955010
- RRID:BDSC Cat# 30125, RRID:BDSC_30125
- RRID:BDSC Cat# 38760, RRID:BDSC_38760
- RRID:BDSC Cat# 4775, RRID:BDSC_4775
- RRID:BDSC Cat# 5692, RRID:BDSC_5692
- RRID:BDSC Cat# 64085, RRID:BDSC_64085
- RRID:BDSC Cat# 6938, RRID:BDSC_6938
- RRID:Bio-rad Cat # MCA1360, RRID:AB_322378
- RRID:Cell Signaling Technology Cat # 3724, RRID:AB_1549585
- RRID:DSHB Cat# 1D4, RRID:AB_528235
- RRID:DSHB Cat# nc82, RRID:AB_2314866
- RRID:Jackson ImmunoResearch Labs Cat# 115-167-003, RRID:AB_2338709
- RRID:Molecular Probes Cat# 6455, RRID:AB_2314543
- RRID:Molecular Probes Cat# A-21236, RRID:AB_141725
- RRID:Novus Cat # NBP1-06712, RRID:AB_1625981
- RRID:Thermo Fisher Scientific Cat# A-11034, RRID:AB_2576217.
- glial cells
- neuron-glia interaction
Collapse
Affiliation(s)
- Ernesto Hernandez
- Department of Neuroscience, University of Arizona, Tucson, Arizona.,University of Illinois at Chicago School of Medicine, Rockford, Illinois
| | - Sarah E MacNamee
- Department of Neuroscience, University of Arizona, Tucson, Arizona.,Inscopix, Palo Alto, California
| | - Leah R Kaplan
- Department of Neuroscience, University of Arizona, Tucson, Arizona.,Consortium for Science, Policy & Outcomes, Arizona State University, Washington, DC, Washington
| | - Kim Lance
- Department of Neuroscience, University of Arizona, Tucson, Arizona
| | | | - Dara S Farhadi
- Department of Neuroscience, University of Arizona, Tucson, Arizona.,College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona
| | - Christine Deer
- Department of Neuroscience, University of Arizona, Tucson, Arizona.,Research Technologies Group, Data Visualization Team, University of Arizona, University Information Technology Service, Tucson, Arizona
| | - Si W Lee
- Department of Neuroscience, University of Arizona, Tucson, Arizona
| | - Lynne A Oland
- Department of Neuroscience, University of Arizona, Tucson, Arizona
| |
Collapse
|
12
|
Lee KM, Mathies LD, Grotewiel M. Alcohol sedation in adult Drosophila is regulated by Cysteine proteinase-1 in cortex glia. Commun Biol 2019; 2:252. [PMID: 31286069 PMCID: PMC6610072 DOI: 10.1038/s42003-019-0492-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/30/2019] [Indexed: 02/06/2023] Open
Abstract
Although numerous studies have demonstrated that neuronal mechanisms regulate alcohol-related behaviors, very few have investigated the direct role of glia in behavioral responses to alcohol. The results described here begin to fill this gap in the alcohol behavior and gliobiology fields. Since Drosophila exhibit conserved behavioral responses to alcohol and their CNS glia are similar to mammalian CNS glia, we used Drosophila to begin exploring the role of glia in alcohol behavior. We found that knockdown of Cysteine proteinase-1 (Cp1) in glia increased Drosophila alcohol sedation and that this effect was specific to cortex glia and adulthood. These data implicate Cp1 and cortex glia in alcohol-related behaviors. Cortex glia are functionally homologous to mammalian astrocytes and Cp1 is orthologous to mammalian Cathepsin L. Our studies raise the possibility that cathepsins may influence behavioral responses to alcohol in mammals via roles in astrocytes.
Collapse
Affiliation(s)
- Kristen M. Lee
- Neuroscience Graduate Program, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Laura D. Mathies
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298 USA
- Virginia Commonwealth University Alcohol Research Center, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Mike Grotewiel
- Neuroscience Graduate Program, Virginia Commonwealth University, Richmond, VA 23298 USA
- Virginia Commonwealth University Alcohol Research Center, Virginia Commonwealth University, Richmond, VA 23298 USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298 USA
| |
Collapse
|
13
|
The sulfite oxidase Shopper controls neuronal activity by regulating glutamate homeostasis in Drosophila ensheathing glia. Nat Commun 2018; 9:3514. [PMID: 30158546 PMCID: PMC6115356 DOI: 10.1038/s41467-018-05645-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 07/13/2018] [Indexed: 01/01/2023] Open
Abstract
Specialized glial subtypes provide support to developing and functioning neural networks. Astrocytes modulate information processing by neurotransmitter recycling and release of neuromodulatory substances, whereas ensheathing glial cells have not been associated with neuromodulatory functions yet. To decipher a possible role of ensheathing glia in neuronal information processing, we screened for glial genes required in the Drosophila central nervous system for normal locomotor behavior. Shopper encodes a mitochondrial sulfite oxidase that is specifically required in ensheathing glia to regulate head bending and peristalsis. shopper mutants show elevated sulfite levels affecting the glutamate homeostasis which then act on neuronal network function. Interestingly, human patients lacking the Shopper homolog SUOX develop neurological symptoms, including seizures. Given an enhanced expression of SUOX by oligodendrocytes, our findings might indicate that in both invertebrates and vertebrates more than one glial cell type may be involved in modulating neuronal activity.
Collapse
|
14
|
Herrero A, Duhart JM, Ceriani MF. Neuronal and Glial Clocks Underlying Structural Remodeling of Pacemaker Neurons in Drosophila. Front Physiol 2017; 8:918. [PMID: 29184510 PMCID: PMC5694478 DOI: 10.3389/fphys.2017.00918] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/30/2017] [Indexed: 11/24/2022] Open
Abstract
A number of years ago we reported that ventral Lateral Neurons (LNvs), which are essential in the control of rest-activity cycles in Drosophila, undergo circadian remodeling of their axonal projections. This structural plasticity gives rise to changes in the degree of connectivity, which could provide a means of transmitting time of day information. Thus far, work from different laboratories has shown that circadian remodeling of adult projections relies on activity-dependent and -independent mechanisms. In terms of clock- dependent mechanisms, several neuronal types undergoing circadian remodeling hinted to a differential effect of clock genes; while per mutants exhibited poorly developed axonal terminals giving rise to low complexity arbors, tim mutants displayed a characteristic hyper branching phenotype, suggesting these genes could be playing additional roles to those ascribed to core clock function. To shed light onto this possibility we altered clock gene levels through RNAi- mediated downregulation and expression of a dominant negative form exclusively in the adult LNvs. These experiments confirmed that the LNv clock is necessary to drive the remodeling process. We next explored the contribution of glia to the structural plasticity of the small LNvs through acute disruption of their internal clock. Interestingly, impaired glial clocks also abolished circadian structural remodeling, without affecting other clock-controlled outputs. Taken together our data shows that both neuronal and glial clocks are recruited to define the architecture of the LNv projections along the day, thus enabling a precise reconfiguration of the circadian network.
Collapse
Affiliation(s)
| | | | - Maria F. Ceriani
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir, IIB-BA CONICET, Buenos Aires, Argentina
| |
Collapse
|
15
|
Abstract
Amine neurotransmitters, such as noradrenaline, mediate arousal, attention, and reward in the CNS. New data suggest that, from flies to mammals, a major mechanism for amine transmitter action is to raise astrocyte [Ca2+]i and release gliotransmitters that modulate neuronal activity and behavior.
Collapse
Affiliation(s)
- Narges Bazargani
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - David Attwell
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
16
|
Ng FS, Sengupta S, Huang Y, Yu AM, You S, Roberts MA, Iyer LK, Yang Y, Jackson FR. TRAP-seq Profiling and RNAi-Based Genetic Screens Identify Conserved Glial Genes Required for Adult Drosophila Behavior. Front Mol Neurosci 2016; 9:146. [PMID: 28066175 PMCID: PMC5177635 DOI: 10.3389/fnmol.2016.00146] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/30/2016] [Indexed: 01/06/2023] Open
Abstract
Although, glial cells have well characterized functions in the developing and mature brain, it is only in the past decade that roles for these cells in behavior and plasticity have been delineated. Glial astrocytes and glia-neuron signaling, for example, are now known to have important modulatory functions in sleep, circadian behavior, memory and plasticity. To better understand mechanisms of glia-neuron signaling in the context of behavior, we have conducted cell-specific, genome-wide expression profiling of adult Drosophila astrocyte-like brain cells and performed RNA interference (RNAi)-based genetic screens to identify glial factors that regulate behavior. Importantly, our studies demonstrate that adult fly astrocyte-like cells and mouse astrocytes have similar molecular signatures; in contrast, fly astrocytes and surface glia-different classes of glial cells-have distinct expression profiles. Glial-specific expression of 653 RNAi constructs targeting 318 genes identified multiple factors associated with altered locomotor activity, circadian rhythmicity and/or responses to mechanical stress (bang sensitivity). Of interest, 1 of the relevant genes encodes a vesicle recycling factor, 4 encode secreted proteins and 3 encode membrane transporters. These results strongly support the idea that glia-neuron communication is vital for adult behavior.
Collapse
Affiliation(s)
- Fanny S Ng
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine Boston, MA, USA
| | - Sukanya Sengupta
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine Boston, MA, USA
| | - Yanmei Huang
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine Boston, MA, USA
| | - Amy M Yu
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine Boston, MA, USA
| | - Samantha You
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine Boston, MA, USA
| | - Mary A Roberts
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine Boston, MA, USA
| | - Lakshmanan K Iyer
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine Boston, MA, USA
| | - Yongjie Yang
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine Boston, MA, USA
| | - F Rob Jackson
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine Boston, MA, USA
| |
Collapse
|
17
|
Omoto JJ, Lovick JK, Hartenstein V. Origins of glial cell populations in the insect nervous system. CURRENT OPINION IN INSECT SCIENCE 2016; 18:96-104. [PMID: 27939718 PMCID: PMC5825180 DOI: 10.1016/j.cois.2016.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/06/2016] [Accepted: 09/15/2016] [Indexed: 06/06/2023]
Abstract
Glia of vertebrates and invertebrates alike represents a diverse population of cells in the nervous system, divided into numerous classes with different structural and functional characteristics. In insects, glia fall within three basic classes: surface, cell body, and neuropil glia. Due to the glial subclass-specific markers and genetic tools available in Drosophila, it is possible to establish the progenitor origin of these different populations and reconstruct their migration and differentiation during development. We review, and posit when appropriate, recently elucidated aspects of glial developmental dynamics. In particular, we focus on the relationships between mature glial subclasses of the larval nervous system (primary glia), born in the embryo, and glia of the adult (secondary glia), generated in the larva.
Collapse
Affiliation(s)
- Jaison J Omoto
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jennifer K Lovick
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
18
|
MacNamee SE, Liu KE, Gerhard S, Tran CT, Fetter RD, Cardona A, Tolbert LP, Oland LA. Astrocytic glutamate transport regulates a Drosophila CNS synapse that lacks astrocyte ensheathment. J Comp Neurol 2016; 524:1979-98. [PMID: 27073064 PMCID: PMC4861170 DOI: 10.1002/cne.24016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 04/08/2016] [Accepted: 04/09/2016] [Indexed: 01/24/2023]
Abstract
Anatomical, molecular, and physiological interactions between astrocytes and neuronal synapses regulate information processing in the brain. The fruit fly Drosophila melanogaster has become a valuable experimental system for genetic manipulation of the nervous system and has enormous potential for elucidating mechanisms that mediate neuron-glia interactions. Here, we show the first electrophysiological recordings from Drosophila astrocytes and characterize their spatial and physiological relationship with particular synapses. Astrocyte intrinsic properties were found to be strongly analogous to those of vertebrate astrocytes, including a passive current-voltage relationship, low membrane resistance, high capacitance, and dye-coupling to local astrocytes. Responses to optogenetic stimulation of glutamatergic premotor neurons were correlated directly with anatomy using serial electron microscopy reconstructions of homologous identified neurons and surrounding astrocytic processes. Robust bidirectional communication was present: neuronal activation triggered astrocytic glutamate transport via excitatory amino acid transporter 1 (Eaat1), and blocking Eaat1 extended glutamatergic interneuron-evoked inhibitory postsynaptic currents in motor neurons. The neuronal synapses were always located within 1 μm of an astrocytic process, but none were ensheathed by those processes. Thus, fly astrocytes can modulate fast synaptic transmission via neurotransmitter transport within these anatomical parameters. J. Comp. Neurol. 524:1979-1998, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sarah E MacNamee
- Department of Neuroscience, University of Arizona, Tucson, Arizona, 85721
| | - Kendra E Liu
- Department of Neuroscience, University of Arizona, Tucson, Arizona, 85721
| | - Stephan Gerhard
- HHMI Janelia Research Campus, Ashburn, Virginia, 20147.,Institute of Neuroinformatics, University of Zurich and ETH Zurich, CH-8057, Zurich, Switzerland
| | - Cathy T Tran
- Department of Neuroscience, University of Arizona, Tucson, Arizona, 85721
| | | | | | - Leslie P Tolbert
- Department of Neuroscience, University of Arizona, Tucson, Arizona, 85721
| | - Lynne A Oland
- Department of Neuroscience, University of Arizona, Tucson, Arizona, 85721
| |
Collapse
|
19
|
Peco E, Davla S, Camp D, Stacey SM, Landgraf M, van Meyel DJ. Drosophila astrocytes cover specific territories of the CNS neuropil and are instructed to differentiate by Prospero, a key effector of Notch. Development 2016; 143:1170-81. [PMID: 26893340 DOI: 10.1242/dev.133165] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/08/2016] [Indexed: 01/13/2023]
Abstract
Astrocytes are crucial in the formation, fine-tuning, function and plasticity of neural circuits in the central nervous system. However, important questions remain about the mechanisms instructing astrocyte cell fate. We have studied astrogenesis in the ventral nerve cord of Drosophila larvae, where astrocytes exhibit remarkable morphological and molecular similarities to those in mammals. We reveal the births of larval astrocytes from a multipotent glial lineage, their allocation to reproducible positions, and their deployment of ramified arbors to cover specific neuropil territories to form a stereotyped astroglial map. Finally, we unraveled a molecular pathway for astrocyte differentiation in which the Ets protein Pointed and the Notch signaling pathway are required for astrogenesis; however, only Notch is sufficient to direct non-astrocytic progenitors toward astrocytic fate. We found that Prospero is a key effector of Notch in this process. Our data identify an instructive astrogenic program that acts as a binary switch to distinguish astrocytes from other glial cells.
Collapse
Affiliation(s)
- Emilie Peco
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada H3G 1A4 Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada H3G 1A4
| | - Sejal Davla
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada H3G 1A4 McGill Integrated Program in Neuroscience McGill University, Montreal, Quebec, Canada H3A 2B4
| | - Darius Camp
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada H3G 1A4 Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada H3A 1A3
| | - Stephanie M Stacey
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada H3G 1A4 McGill Integrated Program in Neuroscience McGill University, Montreal, Quebec, Canada H3A 2B4
| | - Matthias Landgraf
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Don J van Meyel
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada H3G 1A4 Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada H3G 1A4
| |
Collapse
|
20
|
Sasse S, Neuert H, Klämbt C. Differentiation ofDrosophilaglial cells. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:623-36. [DOI: 10.1002/wdev.198] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/25/2015] [Accepted: 05/24/2015] [Indexed: 01/10/2023]
Affiliation(s)
- Sofia Sasse
- Institut für Neuro- und Verhaltensbiologie; Münster Germany
| | - Helen Neuert
- Institut für Neuro- und Verhaltensbiologie; Münster Germany
| | | |
Collapse
|
21
|
Abstract
Molecular genetic approaches in small model organisms like Drosophila have helped to elucidate fundamental principles of neuronal cell biology. Much less is understood about glial cells, although interest in using invertebrate preparations to define their in vivo functions has increased significantly in recent years. This review focuses on our current understanding of the three major neuron-associated glial cell types found in the Drosophila central nervous system (CNS)-astrocytes, cortex glia, and ensheathing glia. Together, these cells act like mammalian astrocytes: they surround neuronal cell bodies and proximal neurites, are coupled to the vasculature, and associate closely with synapses. Exciting recent work has shown essential roles for these CNS glial cells in neural circuit formation, function, plasticity, and pathology. As we gain a more firm molecular and cellular understanding of how Drosophila CNS glial cells interact with neurons, it is becoming clear they share significant molecular and functional attributes with mammalian astrocytes.
Collapse
|
22
|
Abstract
Brain glial cells, in particular astrocytes and microglia, secrete signaling molecules that regulate glia-glia or glia-neuron communication and synaptic activity. While much is known about roles of glial cells in nervous system development, we are only beginning to understand the physiological functions of such cells in the adult brain. Studies in vertebrate and invertebrate models, in particular mice and Drosophila, have revealed roles of glia-neuron communication in the modulation of complex behavior. This chapter emphasizes recent evidence from studies of rodents and Drosophila that highlight the importance of glial cells and similarities or differences in the neural circuits regulating circadian rhythms and sleep in the two models. The chapter discusses cellular, molecular, and genetic approaches that have been useful in these models for understanding how glia-neuron communication contributes to the regulation of rhythmic behavior.
Collapse
Affiliation(s)
- F Rob Jackson
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA.
| | - Fanny S Ng
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Sukanya Sengupta
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Samantha You
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Yanmei Huang
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|