1
|
Carpio A, Dreher JC, Ferrera D, Galán D, Mercado F, Obeso I. Causal computations of supplementary motor area on spatial impulsivity. Sci Rep 2024; 14:17040. [PMID: 39048603 PMCID: PMC11269645 DOI: 10.1038/s41598-024-67673-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
Spatial proximity to important stimuli often induces impulsive behaviour. How we overcome impulsive tendencies is what determines behaviour to be adaptive. Here, we used virtual reality to investigate whether the spatial proximity of stimuli is causally related to the supplementary motor area (SMA) functions. In two experiments, we set out to investigate these processes using a virtual environment that recreates close and distant spaces to test the causal contributions of the SMA in spatial impulsivity. In an online first experiment (N = 93) we validated and measured the influence of distant stimuli using a go/no-go task with close (21 cm) or distant stimuli (360 cm). In experiment 2 (N = 28), we applied transcranial static magnetic stimulation (tSMS) over the SMA (double-blind, crossover, sham-controlled design) to test its computations in controlling impulsive tendencies towards close vs distant stimuli. Reaction times and error rates (omission and commission) were analysed. In addition, the EZ Model parameters (a, v, Ter and MDT) were computed. Close stimuli elicited faster responses compared to distant stimuli but also exhibited higher error rates, specifically in commission errors (experiment 1). Real stimulation over SMA slowed response latencies (experiment 2), an effect mediated by an increase in decision thresholds (a). Current findings suggest that impulsivity might be modulated by spatial proximity, resulting in accelerated actions that may lead to an increase of inaccurate responses to nearby objects. Our study also provides a first starting point on the role of the SMA in regulating spatial impulsivity.
Collapse
Affiliation(s)
- Alberto Carpio
- Department of Psychology, School of Health Sciences, Universidad Rey Juan Carlos, Av. Atenas S/N, 28922, Alcorcón, Madrid, Spain
| | - Jean-Claude Dreher
- Neuroeconomics, Reward and Decision-Making Team, Centre National de La Recherche Scientifique, Institut Des Sciences Cognitives Marc Jeannerod, UMR 5229, 69675, Bron, France
| | - David Ferrera
- Department of Psychology, School of Health Sciences, Universidad Rey Juan Carlos, Av. Atenas S/N, 28922, Alcorcón, Madrid, Spain
| | - Diego Galán
- Department of Psychology, School of Health Sciences, Universidad Rey Juan Carlos, Av. Atenas S/N, 28922, Alcorcón, Madrid, Spain
| | - Francisco Mercado
- Department of Psychology, School of Health Sciences, Universidad Rey Juan Carlos, Av. Atenas S/N, 28922, Alcorcón, Madrid, Spain.
| | - Ignacio Obeso
- HM Hospitales - Centro Integral de Neurociencias HM CINAC, HM Hospitales Puerta del Sur, Móstoles, Madrid, Spain.
- CINC-CSIC, Avda Leon S/N, 28805, Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
2
|
Luabeya GN, Yan X, Freud E, Crawford JD. Influence of gaze, vision, and memory on hand kinematics in a placement task. J Neurophysiol 2024; 132:147-161. [PMID: 38836297 DOI: 10.1152/jn.00362.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 05/24/2024] [Accepted: 06/01/2024] [Indexed: 06/06/2024] Open
Abstract
People usually reach for objects to place them in some position and orientation, but the placement component of this sequence is often ignored. For example, reaches are influenced by gaze position, visual feedback, and memory delays, but their influence on object placement is unclear. Here, we tested these factors in a task where participants placed and oriented a trapezoidal block against two-dimensional (2-D) visual templates displayed on a frontally located computer screen. In experiment 1, participants matched the block to three possible orientations: 0° (horizontal), +45° and -45°, with gaze fixated 10° to the left/right. The hand and template either remained illuminated (closed-loop), or visual feedback was removed (open-loop). Here, hand location consistently overshot the template relative to gaze, especially in the open-loop task; likewise, orientation was influenced by gaze position (depending on template orientation and visual feedback). In experiment 2, a memory delay was added, and participants sometimes performed saccades (toward, away from, or across the template). In this task, the influence of gaze on orientation vanished, but location errors were influenced by both template orientation and final gaze position. Contrary to our expectations, the previous saccade metrics also impacted placement overshoot. Overall, hand orientation was influenced by template orientation in a nonlinear fashion. These results demonstrate interactions between gaze and orientation signals in the planning and execution of hand placement and suggest different neural mechanisms for closed-loop, open-loop, and memory delay placement.NEW & NOTEWORTHY Eye-hand coordination studies usually focus on object acquisition, but placement is equally important. We investigated how gaze position influences object placement toward a 2-D template with different levels of visual feedback. Like reach, placement overestimated goal location relative to gaze and was influenced by previous saccade metrics. Gaze also modulated hand orientation, depending on template orientation and level of visual feedback. Gaze influence was feedback-dependent, with location errors having no significant effect after a memory delay.
Collapse
Affiliation(s)
- Gaelle N Luabeya
- Centre for Vision Research and Vision: Science to Applications Program, York University, Toronto, Ontario, Canada
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Xiaogang Yan
- Centre for Vision Research and Vision: Science to Applications Program, York University, Toronto, Ontario, Canada
| | - Erez Freud
- Centre for Vision Research and Vision: Science to Applications Program, York University, Toronto, Ontario, Canada
- Department of Biology, York University, Toronto, Ontario, Canada
- Department of Psychology, York University, Toronto, Ontario, Canada
| | - J Douglas Crawford
- Centre for Vision Research and Vision: Science to Applications Program, York University, Toronto, Ontario, Canada
- Department of Biology, York University, Toronto, Ontario, Canada
- Department of Psychology, York University, Toronto, Ontario, Canada
- Department of Kinesiology & Health Sciences, York University, Toronto, Ontario, Canada
- Centre for Integrative and Applied Neuroscience, York University, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Ambron E, Garcea FE, Cason S, Medina J, Detre JA, Coslett HB. The influence of hand posture on tactile processing: Evidence from a 7T functional magnetic resonance imaging study. Cortex 2024; 173:138-149. [PMID: 38394974 DOI: 10.1016/j.cortex.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/19/2023] [Accepted: 12/13/2023] [Indexed: 02/25/2024]
Abstract
Although behavioral evidence has shown that postural changes influence the ability to localize or detect tactile stimuli, little is known regarding the brain areas that modulate these effects. This 7T functional magnetic resonance imaging (fMRI) study explores the effects of touch of the hand as a function of hand location (right or left side of the body) and hand configuration (open or closed). We predicted that changes in hand configuration would be represented in contralateral primary somatosensory cortex (S1) and the anterior intraparietal area (aIPS), whereas change in position of the hand would be associated with alterations in activation in the superior parietal lobule. Multivoxel pattern analysis and a region of interest approach partially supported our predictions. Decoding accuracy for hand location was above chance level in superior parietal lobule (SPL) and in the anterior intraparietal (aIPS) area; above chance classification of hand configuration was observed in SPL and S1. This evidence confirmed the role of the parietal cortex in postural effects on touch and the possible role of S1 in coding the body form representation of the hand.
Collapse
Affiliation(s)
- Elisabetta Ambron
- Laboratory for Cognition and Neural Stimulation, Perelman School of Medicine at the University of Pennsylvania, USA; Department Neurology, University of Pennsylvania, USA.
| | - Frank E Garcea
- Department of Neurosurgery, University of Rochester Medical Center, NY, USA; Department of Neuroscience, University of Rochester Medical Center, NY, USA; Del Monte Institute for Neuroscience, University of Rochester Medical Center, NY, USA.
| | - Samuel Cason
- Laboratory for Cognition and Neural Stimulation, Perelman School of Medicine at the University of Pennsylvania, USA; Department Neurology, University of Pennsylvania, USA
| | - Jared Medina
- Department of Psychological and Brain Sciences, University of Delaware, USA
| | - John A Detre
- Department Neurology, University of Pennsylvania, USA
| | - H Branch Coslett
- Laboratory for Cognition and Neural Stimulation, Perelman School of Medicine at the University of Pennsylvania, USA; Department Neurology, University of Pennsylvania, USA
| |
Collapse
|
4
|
Tariciotti L, Mattioli L, Viganò L, Gallo M, Gambaretti M, Sciortino T, Gay L, Conti Nibali M, Gallotti A, Cerri G, Bello L, Rossi M. Object-oriented hand dexterity and grasping abilities, from the animal quarters to the neurosurgical OR: a systematic review of the underlying neural correlates in non-human, human primate and recent findings in awake brain surgery. Front Integr Neurosci 2024; 18:1324581. [PMID: 38425673 PMCID: PMC10902498 DOI: 10.3389/fnint.2024.1324581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/17/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction The sensorimotor integrations subserving object-oriented manipulative actions have been extensively investigated in non-human primates via direct approaches, as intracortical micro-stimulation (ICMS), cytoarchitectonic analysis and anatomical tracers. However, the understanding of the mechanisms underlying complex motor behaviors is yet to be fully integrated in brain mapping paradigms and the consistency of these findings with intraoperative data obtained during awake neurosurgical procedures for brain tumor removal is still largely unexplored. Accordingly, there is a paucity of systematic studies reviewing the cross-species analogies in neural activities during object-oriented hand motor tasks in primates and investigating the concordance with intraoperative findings during brain mapping. The current systematic review was designed to summarize the cortical and subcortical neural correlates of object-oriented fine hand actions, as revealed by fMRI and PET studies, in non-human and human primates and how those were translated into neurosurgical studies testing dexterous hand-movements during intraoperative brain mapping. Methods A systematic literature review was conducted following the PRISMA guidelines. PubMed, EMBASE and Web of Science databases were searched. Original articles were included if they: (1) investigated cortical activation sites on fMRI and/or PET during grasping task; (2) included humans or non-human primates. A second query was designed on the databases above to collect studies reporting motor, hand manipulation and dexterity tasks for intraoperative brain mapping in patients undergoing awake brain surgery for any condition. Due to the heterogeneity in neurosurgical applications, a qualitative synthesis was deemed more appropriate. Results We provided an updated overview of the current state of the art in translational neuroscience about the extended frontoparietal grasping-praxis network with a specific focus on the comparative functioning in non-human primates, healthy humans and how the latter knowledge has been implemented in the neurosurgical operating room during brain tumor resection. Discussion The anatomical and functional correlates we reviewed confirmed the evolutionary continuum from monkeys to humans, allowing a cautious but practical adoption of such evidence in intraoperative brain mapping protocols. Integrating the previous results in the surgical practice helps preserve complex motor abilities, prevent long-term disability and poor quality of life and allow the maximal safe resection of intrinsic brain tumors.
Collapse
Affiliation(s)
- Leonardo Tariciotti
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Luca Mattioli
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Luca Viganò
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Matteo Gallo
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Matteo Gambaretti
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Tommaso Sciortino
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Lorenzo Gay
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Marco Conti Nibali
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Alberto Gallotti
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Gabriella Cerri
- MoCA Laboratory, Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Lorenzo Bello
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Marco Rossi
- Neurosurgical Oncology Unit, Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
5
|
Klein LK, Maiello G, Stubbs K, Proklova D, Chen J, Paulun VC, Culham JC, Fleming RW. Distinct Neural Components of Visually Guided Grasping during Planning and Execution. J Neurosci 2023; 43:8504-8514. [PMID: 37848285 PMCID: PMC10711727 DOI: 10.1523/jneurosci.0335-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/18/2023] [Accepted: 09/06/2023] [Indexed: 10/19/2023] Open
Abstract
Selecting suitable grasps on three-dimensional objects is a challenging visuomotor computation, which involves combining information about an object (e.g., its shape, size, and mass) with information about the actor's body (e.g., the optimal grasp aperture and hand posture for comfortable manipulation). Here, we used functional magnetic resonance imaging to investigate brain networks associated with these distinct aspects during grasp planning and execution. Human participants of either sex viewed and then executed preselected grasps on L-shaped objects made of wood and/or brass. By leveraging a computational approach that accurately predicts human grasp locations, we selected grasp points that disentangled the role of multiple grasp-relevant factors, that is, grasp axis, grasp size, and object mass. Representational Similarity Analysis revealed that grasp axis was encoded along dorsal-stream regions during grasp planning. Grasp size was first encoded in ventral stream areas during grasp planning then in premotor regions during grasp execution. Object mass was encoded in ventral stream and (pre)motor regions only during grasp execution. Premotor regions further encoded visual predictions of grasp comfort, whereas the ventral stream encoded grasp comfort during execution, suggesting its involvement in haptic evaluation. These shifts in neural representations thus capture the sensorimotor transformations that allow humans to grasp objects.SIGNIFICANCE STATEMENT Grasping requires integrating object properties with constraints on hand and arm postures. Using a computational approach that accurately predicts human grasp locations by combining such constraints, we selected grasps on objects that disentangled the relative contributions of object mass, grasp size, and grasp axis during grasp planning and execution in a neuroimaging study. Our findings reveal a greater role of dorsal-stream visuomotor areas during grasp planning, and, surprisingly, increasing ventral stream engagement during execution. We propose that during planning, visuomotor representations initially encode grasp axis and size. Perceptual representations of object material properties become more relevant instead as the hand approaches the object and motor programs are refined with estimates of the grip forces required to successfully lift the object.
Collapse
Affiliation(s)
- Lina K Klein
- Department of Experimental Psychology, Justus Liebig University Giessen, 35390 Giessen, Germany
| | - Guido Maiello
- School of Psychology, University of Southampton, Southampton SO17 1PS, United Kingdom
| | - Kevin Stubbs
- Department of Psychology, University of Western Ontario, London, Ontario N6A 5C2, Canada
| | - Daria Proklova
- Department of Psychology, University of Western Ontario, London, Ontario N6A 5C2, Canada
| | - Juan Chen
- Center for the Study of Applied Psychology, Guangdong Key Laboratory of Mental Health and Cognitive Science, and the School of Psychology, South China Normal University, Guangzhou, 510631, China
- Key Laboratory of Brain, Cognition and Education Sciences, South China Normal University, Guangzhou 510631, China
| | - Vivian C Paulun
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Jody C Culham
- Department of Psychology, University of Western Ontario, London, Ontario N6A 5C2, Canada
| | - Roland W Fleming
- Department of Experimental Psychology, Justus Liebig University Giessen, 35390 Giessen, Germany
- Center for Mind, Brain and Behavior, University of Marburg and Justus Liebig University Giessen, Giessen, Germany, 35390
| |
Collapse
|
6
|
Casartelli L, Maronati C, Cavallo A. From neural noise to co-adaptability: Rethinking the multifaceted architecture of motor variability. Phys Life Rev 2023; 47:245-263. [PMID: 37976727 DOI: 10.1016/j.plrev.2023.10.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
In the last decade, the source and the functional meaning of motor variability have attracted considerable attention in behavioral and brain sciences. This construct classically combined different levels of description, variable internal robustness or coherence, and multifaceted operational meanings. We provide here a comprehensive review of the literature with the primary aim of building a precise lexicon that goes beyond the generic and monolithic use of motor variability. In the pars destruens of the work, we model three domains of motor variability related to peculiar computational elements that influence fluctuations in motor outputs. Each domain is in turn characterized by multiple sub-domains. We begin with the domains of noise and differentiation. However, the main contribution of our model concerns the domain of adaptability, which refers to variation within the same exact motor representation. In particular, we use the terms learning and (social)fitting to specify the portions of motor variability that depend on our propensity to learn and on our largely constitutive propensity to be influenced by external factors. A particular focus is on motor variability in the context of the sub-domain named co-adaptability. Further groundbreaking challenges arise in the modeling of motor variability. Therefore, in a separate pars construens, we attempt to characterize these challenges, addressing both theoretical and experimental aspects as well as potential clinical implications for neurorehabilitation. All in all, our work suggests that motor variability is neither simply detrimental nor beneficial, and that studying its fluctuations can provide meaningful insights for future research.
Collapse
Affiliation(s)
- Luca Casartelli
- Theoretical and Cognitive Neuroscience Unit, Scientific Institute IRCCS E. MEDEA, Italy
| | - Camilla Maronati
- Move'n'Brains Lab, Department of Psychology, Università degli Studi di Torino, Italy
| | - Andrea Cavallo
- Move'n'Brains Lab, Department of Psychology, Università degli Studi di Torino, Italy; C'MoN Unit, Fondazione Istituto Italiano di Tecnologia, Genova, Italy.
| |
Collapse
|
7
|
Piller S, Senna I, Wiebusch D, Ben-Zion I, Ernst MO. Grasping behavior does not recover after sight restoration from congenital blindness. Curr Biol 2023; 33:2104-2110.e4. [PMID: 37130520 DOI: 10.1016/j.cub.2023.04.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/17/2023] [Accepted: 04/11/2023] [Indexed: 05/04/2023]
Abstract
We investigated whether early visual input is essential for establishing the ability to use predictions in the control of actions and for perception. To successfully interact with objects, it is necessary to pre-program bodily actions such as grasping movements (feedforward control). Feedforward control requires a model for making predictions, which is typically shaped by previous sensory experience and interaction with the environment.1 Vision is the most crucial sense for establishing such predictions.2,3 We typically rely on visual estimations of the to-be-grasped object's size and weight in order to scale grip force and hand aperture accordingly.4,5,6 Size-weight expectations play a role also for perception, as evident in the size-weight illusion (SWI), in which the smaller of two equal-weight objects is misjudged to be heavier.7,8 Here, we investigated predictions for action and perception by testing the development of feedforward controlled grasping and of the SWI in young individuals surgically treated for congenital cataracts several years after birth. Surprisingly, what typically developing individuals do easily within the first years of life, namely to adeptly grasp new objects based on visually predicted properties, cataract-treated individuals did not learn after years of visual experience. Contrary, the SWI exhibited significant development. Even though the two tasks differ in substantial ways, these results may suggest a potential dissociation in using visual experience to make predictions about an object's features for perception or action. What seems a very simple task-picking up small objects-is in truth a highly complex computation that necessitates early structured visual input to develop.
Collapse
Affiliation(s)
- Sophia Piller
- Applied Cognitive Psychology, Faculty for Computer Science, Engineering, and Psychology, Ulm University, Albert-Einstein-Allee 43, 89081 Ulm, Germany; Transfer Center for Neuroscience and Education (ZNL), Ulm University, Parkstraße 11, 89073 Ulm, Germany.
| | - Irene Senna
- Applied Cognitive Psychology, Faculty for Computer Science, Engineering, and Psychology, Ulm University, Albert-Einstein-Allee 43, 89081 Ulm, Germany; Department of Psychology, Liverpool Hope University, Hope Park, Liverpool L16 9JD, UK
| | - Dennis Wiebusch
- Applied Cognitive Psychology, Faculty for Computer Science, Engineering, and Psychology, Ulm University, Albert-Einstein-Allee 43, 89081 Ulm, Germany
| | - Itay Ben-Zion
- Pediatric Ophthalmology Service, Padeh Medical Center, Tiberias 1528001, Israel
| | - Marc O Ernst
- Applied Cognitive Psychology, Faculty for Computer Science, Engineering, and Psychology, Ulm University, Albert-Einstein-Allee 43, 89081 Ulm, Germany
| |
Collapse
|
8
|
Dadario NB, Tanglay O, Stafford JF, Davis EJ, Young IM, Fonseka RD, Briggs RG, Yeung JT, Teo C, Sughrue ME. Topology of the lateral visual system: The fundus of the superior temporal sulcus and parietal area H connect nonvisual cerebrum to the lateral occipital lobe. Brain Behav 2023; 13:e2945. [PMID: 36912573 PMCID: PMC10097165 DOI: 10.1002/brb3.2945] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Mapping the topology of the visual system is critical for understanding how complex cognitive processes like reading can occur. We aim to describe the connectivity of the visual system to understand how the cerebrum accesses visual information in the lateral occipital lobe. METHODS Using meta-analytic software focused on task-based functional MRI studies, an activation likelihood estimation (ALE) of the visual network was created. Regions of interest corresponding to the cortical parcellation scheme previously published under the Human Connectome Project were co-registered onto the ALE to identify the hub-like regions of the visual network. Diffusion Spectrum Imaging-based fiber tractography was performed to determine the structural connectivity of these regions with extraoccipital cortices. RESULTS The fundus of the superior temporal sulcus (FST) and parietal area H (PH) were identified as hub-like regions for the visual network. FST and PH demonstrated several areas of coactivation beyond the occipital lobe and visual network. Furthermore, these parcellations were highly interconnected with other cortical regions throughout extraoccipital cortices related to their nonvisual functional roles. A cortical model demonstrating connections to these hub-like areas was created. CONCLUSIONS FST and PH are two hub-like areas that demonstrate extensive functional coactivation and structural connections to nonvisual cerebrum. Their structural interconnectedness with language cortices along with the abnormal activation of areas commonly located in the temporo-occipital region in dyslexic individuals suggests possible important roles of FST and PH in the integration of information related to language and reading. Future studies should refine our model by examining the functional roles of these hub areas and their clinical significance.
Collapse
Affiliation(s)
- Nicholas B Dadario
- Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Onur Tanglay
- Omniscient Neurotechnology, Sydney, New South Wales, Australia
| | - Jordan F Stafford
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | | | - R Dineth Fonseka
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, New South Wales, Australia
| | - Robert G Briggs
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | - Charles Teo
- Cingulum Health, Sydney, New South Wales, Australia
| | - Michael E Sughrue
- Omniscient Neurotechnology, Sydney, New South Wales, Australia.,Cingulum Health, Sydney, New South Wales, Australia.,Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
9
|
Breveglieri R, Borgomaneri S, Filippini M, Tessari A, Galletti C, Davare M, Fattori P. Complementary contribution of the medial and lateral human parietal cortex to grasping: a repetitive TMS study. Cereb Cortex 2022; 33:5122-5134. [PMID: 36245221 PMCID: PMC10152058 DOI: 10.1093/cercor/bhac404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/13/2022] [Accepted: 09/15/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
The dexterous control of our grasping actions relies on the cooperative activation of many brain areas. In the parietal lobe, 2 grasp-related areas collaborate to orchestrate an accurate grasping action: dorsolateral area AIP and dorsomedial area V6A. Single-cell recordings in monkeys and fMRI studies in humans have suggested that both these areas specify grip aperture and wrist orientation, but encode these grasping parameters differently, depending on the context. To elucidate the causal role of phAIP and hV6A, we stimulated these areas, while participants were performing grasping actions (unperturbed grasping). rTMS over phAIP impaired the wrist orientation process, whereas stimulation over hV6A impaired grip aperture encoding. In a small percentage of trials, an unexpected reprogramming of grip aperture or wrist orientation was required (perturbed grasping). In these cases, rTMS over hV6A or over phAIP impaired reprogramming of both grip aperture and wrist orientation. These results represent the first direct demonstration of a different encoding of grasping parameters by 2 grasp-related parietal areas.
Collapse
Affiliation(s)
- Rossella Breveglieri
- University of Bologna Department of Biomedical and Neuromotor Sciences, , 40126 Bologna , Italy
| | - Sara Borgomaneri
- University of Bologna Center for studies and research in Cognitive Neuroscience, , 47521 Cesena , Italy
- IRCCS Santa Lucia Foundation , 00179 Rome , Italy
| | - Matteo Filippini
- University of Bologna Department of Biomedical and Neuromotor Sciences, , 40126 Bologna , Italy
| | - Alessia Tessari
- University of Bologna Department of Psychology, , 40127 Bologna , Italy
| | - Claudio Galletti
- University of Bologna Department of Biomedical and Neuromotor Sciences, , 40126 Bologna , Italy
| | - Marco Davare
- Faculty of Life Sciences and Medicine, King's College London, SE1 1UL London, United Kingdom
| | - Patrizia Fattori
- University of Bologna Department of Biomedical and Neuromotor Sciences, , 40126 Bologna , Italy
- University of Bologna Alma Mater Research Institute For Human-Centered Artificial Intelligence (Alma Human AI), , Bologna , Italy
| |
Collapse
|
10
|
van Polanen V, Buckingham G, Davare M. The effects of TMS over the anterior intraparietal area on anticipatory fingertip force scaling and the size-weight illusion. J Neurophysiol 2022; 128:290-301. [PMID: 35294305 PMCID: PMC9363003 DOI: 10.1152/jn.00265.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 02/10/2022] [Accepted: 03/12/2022] [Indexed: 11/22/2022] Open
Abstract
When lifting an object skillfully, fingertip forces need to be carefully scaled to the object's weight, which can be inferred from its apparent size and material. This anticipatory force scaling ensures smooth and efficient lifting movements. However, even with accurate motor plans, weight perception can still be biased. In the size-weight illusion, objects of different size but equal weight are perceived to differ in heaviness, with the small object perceived to be heavier than the large object. The neural underpinnings of anticipatory force scaling to object size and the size-weight illusion are largely unknown. In this study, we tested the role of anterior intraparietal cortex (aIPS) in predictive force scaling and the size-weight illusion, by applying continuous theta burst stimulation (cTBS) prior to participants lifting objects of different sizes. Participants received cTBS over aIPS, the primary motor cortex (control area), or Sham stimulation. We found no evidence that aIPS stimulation affected the size-weight illusion. Effects were, however, found on anticipatory force scaling, where grip force was less tuned to object size during initial lifts. These findings suggest that aIPS is not involved in the perception of object weight but plays a transient role in the sensorimotor predictions related to object size. NEW & NOTEWORTHY Skilled object manipulation requires forming anticipatory motor plans according to the object's properties. Here, we demonstrate the role of anterior intraparietal sulcus (aIPS) in anticipatory grip force scaling to object size, particularly during initial lifting experience. Interestingly, this role was not maintained after continued practice and was not related to perceptual judgments measured with the size-weight illusion.
Collapse
Affiliation(s)
- Vonne van Polanen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Biomedical Sciences group, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Gavin Buckingham
- Department of Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| | - Marco Davare
- Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| |
Collapse
|
11
|
Velji-Ibrahim J, Crawford JD, Cattaneo L, Monaco S. Action planning modulates the representation of object features in human fronto-parietal and occipital cortex. Eur J Neurosci 2022; 56:4803-4818. [PMID: 35841138 PMCID: PMC9545676 DOI: 10.1111/ejn.15776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/19/2022] [Accepted: 06/09/2022] [Indexed: 11/27/2022]
Abstract
The visual cortex has been extensively studied to investigate its role in object recognition but to a lesser degree to determine how action planning influences the representation of objects' features. We used functional MRI and pattern classification methods to determine if during action planning, object features (orientation and location) could be decoded in an action‐dependent way. Sixteen human participants used their right dominant hand to perform movements (Align or Open reach) towards one of two 3D‐real oriented objects that were simultaneously presented and placed on either side of a fixation cross. While both movements required aiming towards target location, Align but not Open reach movements required participants to precisely adjust hand orientation. Therefore, we hypothesized that if the representation of object features is modulated by the upcoming action, pre‐movement activity pattern would allow more accurate dissociation between object features in Align than Open reach tasks. We found such dissociation in the anterior and posterior parietal cortex, as well as in the dorsal premotor cortex, suggesting that visuomotor processing is modulated by the upcoming task. The early visual cortex showed significant decoding accuracy for the dissociation between object features in the Align but not Open reach task. However, there was no significant difference between the decoding accuracy in the two tasks. These results demonstrate that movement‐specific preparatory signals modulate object representation in the frontal and parietal cortex, and to a lesser extent in the early visual cortex, likely through feedback functional connections.
Collapse
Affiliation(s)
- Jena Velji-Ibrahim
- CIMeC - Center for Mind/Brain Sciences, University of Trento, Trento, Italy.,Center for Vision Research, York University, Toronto, Ontario, Canada.,School of Kinesiology and Health Science, Toronto, Ontario, Canada
| | - J Douglas Crawford
- Center for Vision Research, York University, Toronto, Ontario, Canada.,School of Kinesiology and Health Science, Toronto, Ontario, Canada.,Departments of Biology and Psychology, York University, Toronto, Ontario, Canada
| | - Luigi Cattaneo
- CIMeC - Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| | - Simona Monaco
- CIMeC - Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| |
Collapse
|
12
|
Multisensory information about changing object properties can be used to quickly correct predictive force scaling for object lifting. Exp Brain Res 2022; 240:2121-2133. [PMID: 35786747 DOI: 10.1007/s00221-022-06404-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/18/2022] [Indexed: 11/04/2022]
Abstract
Sensory information about object properties, such as size or material, can be used to make an estimate of object weight and to generate an accurate motor plan to lift the object. When object properties change, the motor plan needs to be corrected based on the new information. The current study investigated whether such corrections could be made quickly, after the movement was initiated. Participants had to grasp and lift objects of different weights that could be indicated with different cues. During the reaching phase, the cue could change to indicate a different weight and participants had to quickly adjust their planned forces in order to lift the object skilfully. The object weight was cued with different object sizes (Experiment 1) or materials (Experiment 2) and the cue was presented in different sensory modality conditions: visually, haptically or both (visuohaptic). Results showed that participants could adjust their planned forces based on both size and material. Furthermore, corrections could be made in the visual, haptic and visuohaptic conditions, although the multisensory condition did not outperform the conditions with one sensory modality. These results suggest that motor plans can be quickly corrected based on sensory information about object properties from different sensory modalities. These findings provide insights into the information that can be shared between brain areas for the online control of hand-object interactions.
Collapse
|
13
|
Ranzini M, Scarpazza C, Radua J, Cutini S, Semenza C, Zorzi M. A common neural substrate for number comparison, hand reaching and grasping: a SDM-PSI meta-analysis of neuroimaging studies. Cortex 2022; 148:31-67. [DOI: 10.1016/j.cortex.2021.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/01/2021] [Accepted: 12/04/2021] [Indexed: 12/14/2022]
|
14
|
Lega C, Chelazzi L, Cattaneo L. Two Distinct Systems Represent Contralateral and Ipsilateral Sensorimotor Processes in the Human Premotor Cortex: A Dense TMS Mapping Study. Cereb Cortex 2021; 30:2250-2266. [PMID: 31828296 DOI: 10.1093/cercor/bhz237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 08/19/2019] [Accepted: 09/13/2019] [Indexed: 11/12/2022] Open
Abstract
Animal brains contain behaviorally committed representations of the surrounding world, which integrate sensory and motor information. In primates, sensorimotor mechanisms reside in part in the premotor cortex (PM), where sensorimotor neurons are topographically clustered according to functional specialization. Detailed functional cartography of the human PM is still under investigation. We explored the topographic distribution of spatially dependent sensorimotor functions in healthy volunteers performing left or right, hand or foot, responses to visual cues presented in the left or right hemispace, thus combining independently stimulus side, effector side, and effector type. Event-related transcranial magnetic stimulation was applied to single spots of a dense grid of 10 points on the participants' left hemiscalp, covering the whole PM. Results showed: (1) spatially segregated hand and foot representations, (2) focal representations of contralateral cues and movements in the dorsal PM, and (3) distributed representations of ipsilateral cues and movements in the ventral and dorso-medial PM. The present novel causal information indicates that (1) the human PM is somatotopically organized and (2) the left PM contains sensory-motor representations of both hemispaces and of both hemibodies, but the hemispace and hemibody contralateral to the PM are mapped on a distinct, nonoverlapping cortical region compared to the ipsilateral ones.
Collapse
Affiliation(s)
- Carlotta Lega
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Leonardo Chelazzi
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy.,Italian Institute of Neuroscience, Section of Verona, Verona, Italy
| | - Luigi Cattaneo
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy.,Italian Institute of Neuroscience, Section of Verona, Verona, Italy
| |
Collapse
|
15
|
Savaki HE, Kavroulakis E, Papadaki E, Maris TG, Simos PG. Action Observation Responses Are Influenced by Movement Kinematics and Target Identity. Cereb Cortex 2021; 32:490-503. [PMID: 34259867 DOI: 10.1093/cercor/bhab225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In order to inform the debate whether cortical areas related to action observation provide a pragmatic or a semantic representation of goal-directed actions, we performed 2 functional magnetic resonance imaging (fMRI) experiments in humans. The first experiment, involving observation of aimless arm movements, resulted in activation of most of the components known to support action execution and action observation. Given the absence of a target/goal in this experiment and the activation of parieto-premotor cortical areas, which were associated in the past with direction, amplitude, and velocity of movement of biological effectors, our findings suggest that during action observation we could be monitoring movement kinematics. With the second, double dissociation fMRI experiment, we revealed the components of the observation-related cortical network affected by 1) actions that have the same target/goal but different reaching and grasping kinematics and 2) actions that have very similar kinematics but different targets/goals. We found that certain areas related to action observation, including the mirror neuron ones, are informed about movement kinematics and/or target identity, hence providing a pragmatic rather than a semantic representation of goal-directed actions. Overall, our findings support a process-driven simulation-like mechanism of action understanding, in agreement with the theory of motor cognition, and question motor theories of action concept processing.
Collapse
Affiliation(s)
- Helen E Savaki
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology Hellas, Iraklion, Crete 70013, Greece.,Faculty of Medicine, School of Health Sciences, University of Crete, Iraklion, Crete 70013, Greece
| | - Eleftherios Kavroulakis
- Faculty of Medicine, School of Health Sciences, University of Crete, Iraklion, Crete 70013, Greece
| | - Efrosini Papadaki
- Faculty of Medicine, School of Health Sciences, University of Crete, Iraklion, Crete 70013, Greece.,Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology Hellas, Iraklion, Crete 70013, Greece
| | - Thomas G Maris
- Faculty of Medicine, School of Health Sciences, University of Crete, Iraklion, Crete 70013, Greece.,Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology Hellas, Iraklion, Crete 70013, Greece
| | - Panagiotis G Simos
- Faculty of Medicine, School of Health Sciences, University of Crete, Iraklion, Crete 70013, Greece.,Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology Hellas, Iraklion, Crete 70013, Greece
| |
Collapse
|
16
|
Knights E, Mansfield C, Tonin D, Saada J, Smith FW, Rossit S. Hand-Selective Visual Regions Represent How to Grasp 3D Tools: Brain Decoding during Real Actions. J Neurosci 2021; 41:5263-5273. [PMID: 33972399 PMCID: PMC8211542 DOI: 10.1523/jneurosci.0083-21.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 02/02/2023] Open
Abstract
Most neuroimaging experiments that investigate how tools and their actions are represented in the brain use visual paradigms where tools or hands are displayed as 2D images and no real movements are performed. These studies discovered selective visual responses in occipitotemporal and parietal cortices for viewing pictures of hands or tools, which are assumed to reflect action processing, but this has rarely been directly investigated. Here, we examined the responses of independently visually defined category-selective brain areas when participants grasped 3D tools (N = 20; 9 females). Using real-action fMRI and multivoxel pattern analysis, we found that grasp typicality representations (i.e., whether a tool is grasped appropriately for use) were decodable from hand-selective areas in occipitotemporal and parietal cortices, but not from tool-, object-, or body-selective areas, even if partially overlapping. Importantly, these effects were exclusive for actions with tools, but not for biomechanically matched actions with control nontools. In addition, grasp typicality decoding was significantly higher in hand than tool-selective parietal regions. Notably, grasp typicality representations were automatically evoked even when there was no requirement for tool use and participants were naive to object category (tool vs nontools). Finding a specificity for typical tool grasping in hand-selective, rather than tool-selective, regions challenges the long-standing assumption that activation for viewing tool images reflects sensorimotor processing linked to tool manipulation. Instead, our results show that typicality representations for tool grasping are automatically evoked in visual regions specialized for representing the human hand, the primary tool of the brain for interacting with the world.
Collapse
Affiliation(s)
- Ethan Knights
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, United Kingdom
| | - Courtney Mansfield
- School of Psychology, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Diana Tonin
- School of Psychology, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Janak Saada
- Department of Radiology, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich NR4 7UY, United Kingdom
| | - Fraser W Smith
- School of Psychology, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Stéphanie Rossit
- School of Psychology, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
17
|
Sheets JR, Briggs RG, Dadario NB, Young IM, Bai MY, Poologaindran A, Baker CM, Conner AK, Sughrue ME. A Cortical Parcellation Based Analysis of Ventral Premotor Area Connectivity. Neurol Res 2021; 43:595-607. [PMID: 33749536 DOI: 10.1080/01616412.2021.1902702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction. The ventral premotor area (VPM) plays a crucial role in executing various aspects of motor control. These include hand reaching, joint coordination, and direction of movement in space. While many studies discuss the VPM and its relationship to the rest of the motor network, there is minimal literature examining the connectivity of the VPM outside of the motor network. Using region-based fMRI studies, we built a neuroanatomical model to account for these extra-motor connections.Methods. Thirty region-based fMRI studies were used to generate an activation likelihood estimation (ALE) using BrainMap software. Cortical parcellations overlapping the ALE were used to construct a preliminary model of the VPM connections outside the motor network. Diffusion spectrum imaging (DSI)-based fiber tractography was performed to determine the connectivity between cortical parcellations in both hemispheres, and a laterality index (LI) was calculated with resultant tract volumes. The resulting connections were described using the cortical parcellation scheme developed by the Human Connectome Project (HCP).Results. Four cortical regions were found to comprise the VPM. These four regions included 6v, 4, 3b, and 3a. Across mapped brains, these areas showed consistent interconnections between each other. Additionally, ipsilateral connections to the primary motor cortex, supplementary motor area, and dorsal premotor cortex were demonstrated. Inter-hemispheric asymmetries were identified, especially with areas 1, 55b, and MI connecting to the ipsilateral VPM regions.Conclusion. We describe a preliminary cortical model for the underlying connectivity of the ventral premotor area. Future studies should further characterize the neuroanatomic underpinnings of this network for neurosurgical applications.
Collapse
Affiliation(s)
- John R Sheets
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Robert G Briggs
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Nicholas B Dadario
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | | | - Michael Y Bai
- Department of Neurosurgery, Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, Australia
| | | | - Cordell M Baker
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Andrew K Conner
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Michael E Sughrue
- Department of Neurosurgery, Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, Australia
| |
Collapse
|
18
|
Bencivenga F, Sulpizio V, Tullo MG, Galati G. Assessing the effective connectivity of premotor areas during real vs imagined grasping: a DCM-PEB approach. Neuroimage 2021; 230:117806. [PMID: 33524574 DOI: 10.1016/j.neuroimage.2021.117806] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 12/16/2022] Open
Abstract
The parieto-frontal circuit underlying grasping, which requires the serial involvement of the anterior intraparietal area (aIPs) and the ventral premotor cortex (PMv), has been recently extended enlightening the role of the dorsal premotor cortex (PMd). The supplementary motor area (SMA) has been also suggested to encode grip force for grasping actions; furthermore, both PMd and SMA are known to play a crucial role in motor imagery. Here, we aimed at assessing the dynamic couplings between left aIPs, PMv, PMd, SMA and primary motor cortex (M1) by comparing executed and imagined right-hand grasping, using Dynamic Causal Modelling (DCM) and Parametrical Empirical Bayes (PEB) analyses. 24 subjects underwent an fMRI exam (3T) during which they were asked to perform or imagine a grasping movement visually cued by photographs of commonly used objects. We tested whether the two conditions a) exert a modulatory effect on both forward and feedback couplings among our areas of interest, and b) differ in terms of strength and sign of these parameters. Results of the real condition confirmed the serial involvement of aIPs, PMv and M1. PMv also exerted a positive influence on PMd and SMA, but received an inhibitory feedback only from PMd. Our results suggest that a general motor program for grasping is planned by the aIPs-PMv circuit; then, PMd and SMA encode high-level features of the movement. During imagery, the connection strength from aIPs to PMv was weaker and the information flow stopped in PMv; thus, a less complex motor program was planned. Moreover, results suggest that SMA and PMd cooperate to prevent motor execution. In conclusion, the comparison between execution and imagery reveals that during grasping premotor areas dynamically interplay in different ways, depending on task demands.
Collapse
Affiliation(s)
- Federica Bencivenga
- Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy; PhD program in Behavioral Neuroscience, Sapienza University, Rome, Italy; Cognitive and Motor Rehabilitation and Neuroimaging Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.
| | - Valentina Sulpizio
- Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy; Cognitive and Motor Rehabilitation and Neuroimaging Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Maria Giulia Tullo
- Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy; PhD program in Behavioral Neuroscience, Sapienza University, Rome, Italy; Cognitive and Motor Rehabilitation and Neuroimaging Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Gaspare Galati
- Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy; Cognitive and Motor Rehabilitation and Neuroimaging Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| |
Collapse
|
19
|
The Topography of Visually Guided Grasping in the Premotor Cortex: A Dense-Transcranial Magnetic Stimulation (TMS) Mapping Study. J Neurosci 2020; 40:6790-6800. [PMID: 32709693 DOI: 10.1523/jneurosci.0560-20.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 11/21/2022] Open
Abstract
Visuomotor transformations at the cortical level occur along a network where posterior parietal regions are connected to homologous premotor regions. Grasping-related activity is represented in a diffuse, ventral and dorsal system in the posterior parietal regions, but no systematic causal description of a premotor counterpart of a similar diffuse grasping representation is available. To fill this gap, we measured the kinematics of right finger movements in 17 male and female human participants during grasping of three objects of different sizes. Single-pulse transcranial magnetic stimulation was applied 100 ms after visual presentation of the object over a regular grid of 8 spots covering the left premotor cortex (PMC) and 2 Sham stimulations. Maximum finger aperture during reach was used as the feature to classify object size in different types of classifiers. Classification accuracy was taken as a measure of the efficiency of visuomotor transformations for grasping. Results showed that transcranial magnetic stimulation reduced classification accuracy compared with Sham stimulation when it was applied to 2 spots in the ventral PMC and 1 spot in the medial PMC, corresponding approximately to the ventral PMC and the dorsal portion of the supplementary motor area. Our results indicate a multifocal representation of object geometry for grasping in the PMC that matches the known multifocal parietal maps of grasping representations. Additionally, we confirm that, by applying a uniform spatial sampling procedure, transcranial magnetic stimulation can produce cortical functional maps independent of a priori spatial assumptions.SIGNIFICANCE STATEMENT Visually guided actions activate a large frontoparietal network. Here, we used a dense grid of transcranial magnetic stimulation spots covering the whole premotor cortex (PMC), to identify with accurate spatial mapping the functional specialization of the human PMC during grasping movement. Results corroborate previous findings about the role of the ventral PMC in preshaping the fingers according to the size of the target. Crucially, we found that the medial part of PMC, putatively covering the supplementary motor area, plays a direct role in object grasping. In concert with findings in nonhuman primates, these results indicate a multifocal representation of object geometry for grasping in the PMC and expand our understanding of how our brain integrates visual and motor information to perform visually guided actions.
Collapse
|
20
|
Perini F, Powell T, Watt SJ, Downing PE. Neural representations of haptic object size in the human brain revealed by multivoxel fMRI patterns. J Neurophysiol 2020; 124:218-231. [PMID: 32519597 DOI: 10.1152/jn.00160.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The brain must interpret sensory input from diverse receptor systems to estimate object properties. Much has been learned about the brain mechanisms behind these processes in vision, but our understanding of haptic perception remains less clear. Here we examined haptic judgments of object size, which require integrating multiple cutaneous and proprioceptive afferent signals, as a model problem. To identify candidate human brain regions that support this process, participants (n = 16) in an event-related functional MRI experiment grasped objects to categorize them as one of four sizes. Object sizes were calibrated psychophysically to be equally distinct for each participant. We applied representational similarity logic to whole brain, multivoxel searchlight analyses to identify brain regions that exhibit size-relevant voxelwise activity patterns. Of particular interest was to identify regions for which more similar sizes produce more similar patterns of activity, which constitutes evidence of a metric size code. Regions of the intraparietal sulcus and the lateral prefrontal cortex met this criterion, both within hands and across hands. We suggest that these regions compute representations of haptic size that abstract over the specific peripheral afferent signals generated in a grasp. Results of a matched visual size task, performed by the same participants and analyzed in the same fashion, identified similar regions, indicating that these representations may be partly modality general. We consider these results with respect to perspectives on magnitude estimation in general and to computational views on perceptual signal integration.NEW & NOTEWORTHY Our understanding of the neural basis of haptics (perceiving the world through touch) remains incomplete. We used functional MRI to study human haptic judgments of object size, which require integrating multiple afferent signals. Multivoxel pattern analyses identified intraparietal and prefrontal regions that encode size haptically in a metric and hand-invariant fashion. Effector-independent haptic size estimates are useful on their own and in combination with other sensory estimates for a variety of perceptual and motor tasks.
Collapse
Affiliation(s)
- Francesca Perini
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Thomas Powell
- Netherlands Applied Science Organisation (TNO), Oude Waalsdorperweg 63, Den Haag, The Netherlands
| | - Simon J Watt
- School of Psychology, Bangor University, Bangor, United Kingdom
| | - Paul E Downing
- School of Psychology, Bangor University, Bangor, United Kingdom
| |
Collapse
|
21
|
Cattaneo L, Giampiccolo D, Meneghelli P, Tramontano V, Sala F. Cortico-cortical connectivity between the superior and inferior parietal lobules and the motor cortex assessed by intraoperative dual cortical stimulation. Brain Stimul 2020; 13:819-831. [DOI: 10.1016/j.brs.2020.02.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/07/2020] [Accepted: 02/18/2020] [Indexed: 01/02/2023] Open
|
22
|
Parietal Cortex Integrates Saccade and Object Orientation Signals to Update Grasp Plans. J Neurosci 2020; 40:4525-4535. [PMID: 32354854 DOI: 10.1523/jneurosci.0300-20.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 11/21/2022] Open
Abstract
Coordinated reach-to-grasp movements are often accompanied by rapid eye movements (saccades) that displace the desired object image relative to the retina. Parietal cortex compensates for this by updating reach goals relative to current gaze direction, but its role in the integration of oculomotor and visual orientation signals for updating grasp plans is unknown. Based on a recent perceptual experiment, we hypothesized that inferior parietal cortex (specifically supramarginal gyrus [SMG]) integrates saccade and visual signals to update grasp plans in additional intraparietal/superior parietal regions. To test this hypothesis in humans (7 females, 6 males), we used a functional magnetic resonance paradigm, where saccades sometimes interrupted grasp preparation toward a briefly presented object that later reappeared (with the same/different orientation) just before movement. Right SMG and several parietal grasp regions, namely, left anterior intraparietal sulcus and bilateral superior parietal lobule, met our criteria for transsaccadic orientation integration: they showed task-dependent saccade modulations and, during grasp execution, they were specifically sensitive to changes in object orientation that followed saccades. Finally, SMG showed enhanced functional connectivity with both prefrontal saccade regions (consistent with oculomotor input) and anterior intraparietal sulcus/superior parietal lobule (consistent with sensorimotor output). These results support the general role of parietal cortex for the integration of visuospatial perturbations, and provide specific cortical modules for the integration of oculomotor and visual signals for grasp updating.SIGNIFICANCE STATEMENT How does the brain simultaneously compensate for both external and internally driven changes in visual input? For example, how do we grasp an unstable object while eye movements are simultaneously changing its retinal location? Here, we used fMRI to identify a group of inferior parietal (supramarginal gyrus) and superior parietal (intraparietal and superior parietal) regions that show saccade-specific modulations during unexpected changes in object/grasp orientation, and functional connectivity with frontal cortex saccade centers. This provides a network, complementary to the reach goal updater, that integrates visuospatial updating into grasp plans, and may help to explain some of the more complex symptoms associated with parietal damage, such as constructional ataxia.
Collapse
|
23
|
Allart E, Viard R, Lopes R, Devanne H, Delval A. Influence of Motor Deficiency and Spatial Neglect on the Contralesional Posterior Parietal Cortex Functional and Structural Connectivity in Stroke Patients. Brain Topogr 2019; 33:176-190. [PMID: 31832813 DOI: 10.1007/s10548-019-00749-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023]
Abstract
The posterior parietal cortex (PPC) is a key structure for visual attention and upper limb function, two features that could be impaired after stroke, and could be implied in their recovery. If it is well established that stroke is responsible for intra- and interhemispheric connectivity troubles, little is known about those existing for the contralesional PPC. In this study, we aimed at mapping the functional (using resting state fMRI) and structural (using diffusion tensor imagery) networks from 3 subparts of the PPC of the contralesional hemisphere (the anterior intraparietal sulcus), the posterior intraparietal sulcus and the superior parieto-occipital cortex to bilateral frontal areas and ipsilesional homologous PPC parts in 11 chronic stroke patients compared to 13 healthy controls. We also aimed at assessing the relationship between connectivity and the severity of visuospatial and motor deficiencies. We showed that interhemispheric functional and structural connectivity between PPCs was altered in stroke patients compared to controls, without any specificity among seeds. Alterations of parieto-frontal intra- and interhemispheric connectivity were less observed. Neglect severity was associated with several alterations in intra- and interhemispheric connectivity, whereas we did not find any behavioral/connectivity correlations for motor deficiency. The results of this exploratory study shed a new light on the influence of the contralesional PPC in post-stroke patients, they have to be confirmed and refined in further larger studies.
Collapse
Affiliation(s)
- Etienne Allart
- Neurorehabilitation Unit, Lille University Medical Center, 59000, Lille, France. .,Inserm U1171-Degenerative and Vascular Cognitive Disorders, University Lille, 59000, Lille, France.
| | - Romain Viard
- Inserm U1171-Degenerative and Vascular Cognitive Disorders, University Lille, 59000, Lille, France.,Clinical Imaging Core FaCility, Lille University Medical Center, 59000, Lille, France
| | - Renaud Lopes
- Inserm U1171-Degenerative and Vascular Cognitive Disorders, University Lille, 59000, Lille, France.,Clinical Imaging Core FaCility, Lille University Medical Center, 59000, Lille, France
| | - Hervé Devanne
- Department of Clinical Neurophysiology, Lille University Medical Center, 59000, Lille, France.,URePSSS Unité de Recherche Pluridisciplinaire Sport Santé Société (EA7369), ULCO, 62228, Calais, France
| | - Arnaud Delval
- Inserm U1171-Degenerative and Vascular Cognitive Disorders, University Lille, 59000, Lille, France.,Department of Clinical Neurophysiology, Lille University Medical Center, 59000, Lille, France
| |
Collapse
|
24
|
Borra E, Luppino G. Large-scale temporo–parieto–frontal networks for motor and cognitive motor functions in the primate brain. Cortex 2019; 118:19-37. [DOI: 10.1016/j.cortex.2018.09.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/21/2018] [Accepted: 09/28/2018] [Indexed: 10/28/2022]
|
25
|
Styrkowiec PP, Nowik AM, Króliczak G. The neural underpinnings of haptically guided functional grasping of tools: An fMRI study. Neuroimage 2019; 194:149-162. [DOI: 10.1016/j.neuroimage.2019.03.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 01/26/2019] [Accepted: 03/19/2019] [Indexed: 10/27/2022] Open
|
26
|
Allart E, Devanne H, Delval A. Contribution of transcranial magnetic stimulation in assessing parietofrontal connectivity during gesture production in healthy individuals and brain-injured patients. Neurophysiol Clin 2019; 49:115-123. [DOI: 10.1016/j.neucli.2018.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 01/30/2023] Open
|
27
|
The neural basis of hand choice: An fMRI investigation of the Posterior Parietal Interhemispheric Competition model. Neuroimage 2018; 185:208-221. [PMID: 30342238 DOI: 10.1016/j.neuroimage.2018.10.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 10/02/2018] [Accepted: 10/13/2018] [Indexed: 11/23/2022] Open
Abstract
The current study investigates a new neurobiological model of human hand choice: The Posterior Parietal Interhemispheric Competition (PPIC) model. The model specifies that neural populations in bilateral posterior intraparietal and superior parietal cortex (pIP-SPC) encode actions in hand-specific terms, and compete for selection across and within hemispheres. Actions with both hands are encoded bilaterally, but the contralateral hand is overrepresented. We use a novel fMRI paradigm to test the PPIC model. Participants reach to visible targets while in the scanner, and conditions involving free choice of which hand to use (Choice) are compared with when hand-use is instructed. Consistent with the PPIC model, bilateral pIP-SPC is preferentially responsive for the Choice condition, and for actions made with the contralateral hand. In the right pIP-SPC, these effects include anterior intraparietal and superior parieto-occipital cortex. Left dorsal premotor cortex, and an area in the right lateral occipitotemporal cortex show the same response pattern, while the left inferior parietal lobule is preferentially responsive for the Choice condition and when using the ipsilateral hand. Behaviourally, hand choice is biased by target location - for targets near the left/right edges of the display, the hand in ipsilateral hemispace is favoured. Moreover, consistent with a competitive process, response times are prolonged for choices to more ambiguous targets, where hand choice is relatively unbiased, and fMRI responses in bilateral pIP-SPC parallel this pattern. Our data provide support for the PPIC model, and reveal a selective network of brain areas involved in free hand choice, including bilateral posterior parietal cortex, left-lateralized inferior parietal and dorsal premotor cortices, and the right lateral occipitotemporal cortex.
Collapse
|
28
|
Affiliation(s)
- Errol R. Hoffmann
- Department of Systems Engineering and Engineering Management, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Alan H. S. Chan
- Department of Systems Engineering and Engineering Management, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Christy K. Y. Lam
- Department of Systems Engineering and Engineering Management, City University of Hong Kong, Kowloon Tong, Hong Kong
| |
Collapse
|
29
|
Santandrea E, Breveglieri R, Bosco A, Galletti C, Fattori P. Preparatory activity for purposeful arm movements in the dorsomedial parietal area V6A: Beyond the online guidance of movement. Sci Rep 2018; 8:6926. [PMID: 29720690 PMCID: PMC5931970 DOI: 10.1038/s41598-018-25117-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/11/2018] [Indexed: 11/09/2022] Open
Abstract
Over the years, electrophysiological recordings in macaque monkeys performing visuomotor tasks brought about accumulating evidence for the expression of neuronal properties (e.g., selectivity in the visuospatial and somatosensory domains, encoding of visual affordances and motor cues) in the posterior parietal area V6A that characterize it as an ideal neural substrate for online control of prehension. Interestingly, neuroimaging studies suggested a role of putative human V6A also in action preparation; moreover, pre-movement population activity in monkey V6A has been recently shown to convey grip-related information for upcoming grasping. Here we directly test whether macaque V6A neurons encode preparatory signals that effectively differentiate between dissimilar actions before movement. We recorded the activity of single V6A neurons during execution of two visuomotor tasks requiring either reach-to-press or reach-to-grasp movements in different background conditions, and described the nature and temporal dynamics of V6A activity preceding movement execution. We found striking consistency in neural discharges measured during pre-movement and movement epochs, suggesting that the former is a preparatory activity exquisitely linked to the subsequent execution of particular motor actions. These findings strongly support a role of V6A beyond the online guidance of movement, with preparatory activity implementing suitable motor programs that subsequently support action execution.
Collapse
Affiliation(s)
- Elisa Santandrea
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Rossella Breveglieri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Annalisa Bosco
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
30
|
Hamidreza Kasaei S, Oliveira M, Lim GH, Seabra Lopes L, Tomé AM. Towards lifelong assistive robotics: A tight coupling between object perception and manipulation. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2018.02.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
31
|
Blinch J, Doan JB, Gonzalez CLR. Complexity of movement preparation and the spatiotemporal coupling of bimanual reach-to-grasp movements. Exp Brain Res 2018; 236:1801-1813. [PMID: 29666884 DOI: 10.1007/s00221-018-5264-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 04/12/2018] [Indexed: 10/17/2022]
Abstract
There is a movement preparation cost for bimanual asymmetric reaching movements compared to bimanual symmetric movements. This is likely caused by the complex spatiotemporal coupling of bimanual asymmetric movements. The spatiotemporal coupling of bimanual reach-to-grasp movements has been investigated, but not the potential movement preparation costs. The purpose of the present study was to investigate the relationship between movement preparation costs and spatiotemporal coupling of reach-to-grasp movements. Twenty-four participants made unimanual, bimanual symmetric, and bimanual asymmetric reach-to-grasp movements in four-choice reaction time tasks. There was a movement preparation cost for bimanual symmetric reach-to-grasp movements compared to unimanual movements, which was not previously seen for reaching movements. Coordinating two symmetric grasps probably caused this bimanual symmetric cost, as we have previously shown that there is no bimanual symmetric cost for reaching movements. It was also surprising that the complexity of movement preparation was comparable for bimanual symmetric and asymmetric reach-to-grasp movements. However, the spatial coupling of bimanual asymmetric movements at movement initiation suggested that they were prepared as bimanual symmetric movements. Online control was then used to modify these symmetric reach-to-grasp movements into asymmetric movements. Preparing bimanual symmetric reach-to-grasp movements in advance instead of asymmetric movements likely prevented a bimanual asymmetric cost.
Collapse
Affiliation(s)
- Jarrod Blinch
- Department of Kinesiology and Physical Education, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada.
- Department of Kinesiology and Sport Management, Texas Tech University, Box 43011, Lubbock, TX, 79409-3011, USA.
| | - Jon B Doan
- Department of Kinesiology and Physical Education, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada
| | - Claudia L R Gonzalez
- Department of Kinesiology and Physical Education, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada
| |
Collapse
|
32
|
Chen Y, Monaco S, Crawford JD. Neural substrates for allocentric-to-egocentric conversion of remembered reach targets in humans. Eur J Neurosci 2018. [PMID: 29512943 DOI: 10.1111/ejn.13885] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Targets for goal-directed action can be encoded in allocentric coordinates (relative to another visual landmark), but it is not known how these are converted into egocentric commands for action. Here, we investigated this using a slow event-related fMRI paradigm, based on our previous behavioural finding that the allocentric-to-egocentric (Allo-Ego) conversion for reach is performed at the first possible opportunity. Participants were asked to remember (and eventually reach towards) the location of a briefly presented target relative to another visual landmark. After a first memory delay, participants were forewarned by a verbal instruction if the landmark would reappear at the same location (potentially allowing them to plan a reach following the auditory cue before the second delay), or at a different location where they had to wait for the final landmark to be presented before response, and then reach towards the remembered target location. As predicted, participants showed landmark-centred directional selectivity in occipital-temporal cortex during the first memory delay, and only developed egocentric directional selectivity in occipital-parietal cortex during the second delay for the 'Same cue' task, and during response for the 'Different cue' task. We then compared cortical activation between these two tasks at the times when the Allo-Ego conversion occurred, and found common activation in right precuneus, right presupplementary area and bilateral dorsal premotor cortex. These results confirm that the brain converts allocentric codes to egocentric plans at the first possible opportunity, and identify the four most likely candidate sites specific to the Allo-Ego transformation for reaches.
Collapse
Affiliation(s)
- Ying Chen
- Center for Vision Research, Room 0009, Lassonde Building, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.,Departments of Psychology, Biology, and Kinesiology and Health Science, York University, Toronto, ON, Canada.,Canadian Action and Perception Network (CAPnet), Toronto, ON, Canada
| | - Simona Monaco
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| | - J Douglas Crawford
- Center for Vision Research, Room 0009, Lassonde Building, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.,Departments of Psychology, Biology, and Kinesiology and Health Science, York University, Toronto, ON, Canada.,Canadian Action and Perception Network (CAPnet), Toronto, ON, Canada.,Vision: Science to Applications (VISTA) Program, York University, Toronto, ON, Canada
| |
Collapse
|
33
|
Rossit S, Harvey M, Butler SH, Szymanek L, Morand S, Monaco S, McIntosh RD. Impaired peripheral reaching and on-line corrections in patient DF: Optic ataxia with visual form agnosia. Cortex 2018; 98:84-101. [DOI: 10.1016/j.cortex.2017.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 02/15/2017] [Accepted: 04/07/2017] [Indexed: 11/16/2022]
|
34
|
Human neuroimaging reveals the subcomponents of grasping, reaching and pointing actions. Cortex 2018; 98:128-148. [DOI: 10.1016/j.cortex.2017.05.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/22/2017] [Accepted: 05/18/2017] [Indexed: 01/14/2023]
|
35
|
Abstract
This chapter reviews clinical and scientific approaches to optic ataxia. This double historic track allows us to address important issues such as the link between Bálint syndrome and optic ataxia, the alleged double dissociation between optic ataxia and visual agnosia, and the use of optic ataxia to argue for a specific vision-for-action occipitoposterior parietal stream. Clinical cases are described and reveal that perceptual deficits have been long shown to accompany ataxia. Importantly, the term ataxia appears to be misleading as patients exhibit a combination of visual and nonvisual perceptual, attentional, and visuomotor guidance deficits, which are confirmed by experimental approaches. Three major features of optic ataxia are described. The first is a spatial feature whereby the deficits exhibited by patients appear to be specific to peripheral vision, akin to the field effect. Visuomotor field examination allows us to quantify this deficit and reveals that it consists of a highly reliable retinocentric hypometria. The third is a temporal feature whereby these deficits are exacerbated under temporal constraints, i.e., when attending to dynamic stimuli. These two aspects combine in a situation where patients have to quickly respond to a target presented in peripheral vision that is experimentally displaced upon movement onset. In addition to the field effect, a hand effect can be described in conditions where the hand is not visible. Spatial and temporal aspects as well as field and hand effects may rely on several posterior parietal modules that remain to be precisely identified both anatomically and functionally. It is concluded that optic ataxia is not a visuomotor deficit and there is no dissociation between perception and action capacities in optic ataxia, hence a fortiori no double dissociation between optic ataxia and visual agnosia. Future directions for understanding the basic pathophysiology of optic ataxia are proposed.
Collapse
Affiliation(s)
- Yves Rossetti
- Integrative Multisensory Perception Action Cognition Team, Lyon Neuroscience Research Centre, Lyon, France.
| | - Laure Pisella
- Integrative Multisensory Perception Action Cognition Team, Lyon Neuroscience Research Centre, Lyon, France
| |
Collapse
|
36
|
Recruitment of Foveal Retinotopic Cortex During Haptic Exploration of Shapes and Actions in the Dark. J Neurosci 2017; 37:11572-11591. [PMID: 29066555 DOI: 10.1523/jneurosci.2428-16.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/05/2017] [Indexed: 12/23/2022] Open
Abstract
The role of the early visual cortex and higher-order occipitotemporal cortex has been studied extensively for visual recognition and to a lesser degree for haptic recognition and visually guided actions. Using a slow event-related fMRI experiment, we investigated whether tactile and visual exploration of objects recruit the same "visual" areas (and in the case of visual cortex, the same retinotopic zones) and if these areas show reactivation during delayed actions in the dark toward haptically explored objects (and if so, whether this reactivation might be due to imagery). We examined activation during visual or haptic exploration of objects and action execution (grasping or reaching) separated by an 18 s delay. Twenty-nine human volunteers (13 females) participated in this study. Participants had their eyes open and fixated on a point in the dark. The objects were placed below the fixation point and accordingly visual exploration activated the cuneus, which processes retinotopic locations in the lower visual field. Strikingly, the occipital pole (OP), representing foveal locations, showed higher activation for tactile than visual exploration, although the stimulus was unseen and location in the visual field was peripheral. Moreover, the lateral occipital tactile-visual area (LOtv) showed comparable activation for tactile and visual exploration. Psychophysiological interaction analysis indicated that the OP showed stronger functional connectivity with anterior intraparietal sulcus and LOtv during the haptic than visual exploration of shapes in the dark. After the delay, the cuneus, OP, and LOtv showed reactivation that was independent of the sensory modality used to explore the object. These results show that haptic actions not only activate "visual" areas during object touch, but also that this information appears to be used in guiding grasping actions toward targets after a delay.SIGNIFICANCE STATEMENT Visual presentation of an object activates shape-processing areas and retinotopic locations in early visual areas. Moreover, if the object is grasped in the dark after a delay, these areas show "reactivation." Here, we show that these areas are also activated and reactivated for haptic object exploration and haptically guided grasping. Touch-related activity occurs not only in the retinotopic location of the visual stimulus, but also at the occipital pole (OP), corresponding to the foveal representation, even though the stimulus was unseen and located peripherally. That is, the same "visual" regions are implicated in both visual and haptic exploration; however, touch also recruits high-acuity central representation within early visual areas during both haptic exploration of objects and subsequent actions toward them. Functional connectivity analysis shows that the OP is more strongly connected with ventral and dorsal stream areas when participants explore an object in the dark than when they view it.
Collapse
|
37
|
Pötter-Nerger M, Reese R, Steigerwald F, Heiden JA, Herzog J, Moll CKE, Hamel W, Ramirez-Pasos U, Falk D, Mehdorn M, Gerloff C, Deuschl G, Volkmann J. Movement-Related Activity of Human Subthalamic Neurons during a Reach-to-Grasp Task. Front Hum Neurosci 2017; 11:436. [PMID: 28936169 PMCID: PMC5594073 DOI: 10.3389/fnhum.2017.00436] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 08/15/2017] [Indexed: 12/31/2022] Open
Abstract
The aim of the study was to record movement-related single unit activity (SUA) in the human subthalamic nucleus (STN) during a standardized motor task of the upper limb. We performed microrecordings from the motor region of the human STN and registered kinematic data in 12 patients with Parkinson’s disease (PD) undergoing deep brain stimulation surgery (seven women, mean age 62.0 ± 4.7 years) while they intraoperatively performed visually cued reach-to-grasp movements using a grip device. SUA was analyzed offline in relation to different aspects of the movement (attention, start of the movement, movement velocity, button press) in terms of firing frequency, firing pattern, and oscillation. During the reach-to-grasp movement, 75/114 isolated subthalamic neurons exhibited movement-related activity changes. The largest proportion of single units showed modulation of firing frequency during several phases of the reach and grasp (polymodal neurons, 45/114), particularly an increase of firing rate during the reaching phase of the movement, which often correlated with movement velocity. The firing pattern (bursting, irregular, or tonic) remained unchanged during movement compared to rest. Oscillatory single unit firing activity (predominantly in the theta and beta frequency) decreased with movement onset, irrespective of oscillation frequency. This study shows for the first time specific, task-related, SUA changes during the reach-to-grasp movement in humans.
Collapse
Affiliation(s)
- Monika Pötter-Nerger
- Department of Neurology, Christian-Albrechts-UniversityKiel, Germany.,Department of Neurology, University Hamburg-EppendorfHamburg, Germany
| | - Rene Reese
- Department of Neurology, Christian-Albrechts-UniversityKiel, Germany.,Department of Neurology, University RostockRostock, Germany
| | - Frank Steigerwald
- Department of Neurology, Christian-Albrechts-UniversityKiel, Germany.,Department of Neurology, Julius-Maximilian UniversityWürzburg, Germany
| | - Jan Arne Heiden
- Department of Neurology, Christian-Albrechts-UniversityKiel, Germany
| | - Jan Herzog
- Department of Neurology, Christian-Albrechts-UniversityKiel, Germany
| | - Christian K E Moll
- Department of Neurophysiology, University Hamburg-EppendorfHamburg, Germany
| | - Wolfgang Hamel
- Department of Neurosurgery, University Hamburg-EppendorfHamburg, Germany
| | - Uri Ramirez-Pasos
- Department of Neurology, Julius-Maximilian UniversityWürzburg, Germany
| | - Daniela Falk
- Department of Neurosurgery, Christian-Albrechts-UniversityKiel, Germany
| | | | - Christian Gerloff
- Department of Neurology, University Hamburg-EppendorfHamburg, Germany
| | - Günther Deuschl
- Department of Neurology, Christian-Albrechts-UniversityKiel, Germany
| | - Jens Volkmann
- Department of Neurology, Christian-Albrechts-UniversityKiel, Germany.,Department of Neurology, Julius-Maximilian UniversityWürzburg, Germany
| |
Collapse
|
38
|
Borra E, Gerbella M, Rozzi S, Luppino G. The macaque lateral grasping network: A neural substrate for generating purposeful hand actions. Neurosci Biobehav Rev 2017; 75:65-90. [DOI: 10.1016/j.neubiorev.2017.01.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/22/2016] [Accepted: 01/12/2017] [Indexed: 10/20/2022]
|
39
|
Planning Functional Grasps of Simple Tools Invokes the Hand-independent Praxis Representation Network: An fMRI Study. J Int Neuropsychol Soc 2017; 23:108-120. [PMID: 28205496 DOI: 10.1017/s1355617716001120] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Neuropsychological and neuroimaging evidence indicates that tool use knowledge and abilities are represented in the praxis representation network (PRN) of the left cerebral hemisphere. We investigated whether PRN would also underlie the planning of function-appropriate grasps of tools, even though such an assumption is inconsistent with some neuropsychological evidence for independent representations of tool grasping and skilled tool use. METHODS Twenty right-handed participants were tested in an event-related functional magnetic resonance imaging (fMRI) study wherein they planned functionally appropriate grasps of tools versus grasps of non-tools matched for size and/or complexity, and later executed the pantomimed grasps of these objects. The dominant right, and non-dominant left hands were used in two different sessions counterbalanced across participants. The tool and non-tool stimuli were presented at three different orientations, some requiring uncomfortable hand rotations for effective grips, with the difficulty matched for both hands. RESULTS Planning functional grasps of tools (vs. non-tools) was associated with significant asymmetrical increases of activity in the temporo/occipital-parieto-frontal networks. The greater involvement of the left hemisphere PRN was particularly evident when hand movement kinematics (including wrist rotations) for grasping tools and non-tools were matched. The networks engaged in the task for the dominant and non-dominant hand were virtually identical. The differences in neural activity for the two object categories disappeared during grasp execution. CONCLUSIONS The greater hand-independent engagement of the left-hemisphere praxis representation network for planning functional grasps reveals a genuine effect of an early affordance/function-based visual processing of tools. (JINS, 2017, 23, 108-120).
Collapse
|
40
|
The role of the frontal aslant tract and premotor connections in visually guided hand movements. Neuroimage 2016; 146:419-428. [PMID: 27829166 DOI: 10.1016/j.neuroimage.2016.10.051] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 09/28/2016] [Accepted: 10/31/2016] [Indexed: 11/20/2022] Open
Abstract
Functional neuroimaging and brain lesion studies demonstrate that secondary motor areas of the frontal lobe play a crucial role in the cortical control of hand movements. However, no study so far has examined frontal white matter connections of the secondary motor network, namely the frontal aslant tract, connecting the supplementary motor complex and the posterior inferior frontal regions, and the U-shaped dorsal and ventral premotor fibers running through the middle frontal gyrus. The aim of the current study is to explore the involvement of the short frontal lobe connections in reaching and reach-to-grasp movements in 32 right-handed healthy subjects by correlating tractography data based on spherical deconvolution approach with kinematical data. We showed that individual differences in the microstructure of the bilateral frontal aslant tract, bilateral ventral and left dorsal premotor tracts were associated with kinematic features of hand actions. Furthermore, bilateral ventral premotor connections were also involved in the closing grip phase necessary for determining efficient and stable grasping of the target object. This work suggests for the first time that hand kinematics and visuomotor processing are associated with the anatomy of the short frontal lobe connections.
Collapse
|
41
|
Hesse C, Miller L, Buckingham G. Visual information about object size and object position are retained differently in the visual brain: Evidence from grasping studies. Neuropsychologia 2016; 91:531-543. [PMID: 27663865 DOI: 10.1016/j.neuropsychologia.2016.09.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/29/2016] [Accepted: 09/20/2016] [Indexed: 10/21/2022]
Abstract
Many experiments have examined how the visual information used for action control is represented in our brain, and whether or not visually-guided and memory-guided hand movements rely on dissociable visual representations that are processed in different brain areas (dorsal vs. ventral). However, little is known about how these representations decay over longer time periods and whether or not different visual properties are retained in a similar fashion. In three experiments we investigated how information about object size and object position affect grasping as visual memory demands increase. We found that position information decayed rapidly with increasing delays between viewing the object and initiating subsequent actions - impacting both the accuracy of the transport component (lower end-point accuracy) and the grasp component (larger grip apertures) of the movement. In contrast, grip apertures and fingertip forces remained well-adjusted to target size in conditions in which positional information was either irrelevant or provided, regardless of delay, indicating that object size is encoded in a more stable manner than object position. The findings provide evidence that different grasp-relevant properties are encoded differently by the visual system. Furthermore, we argue that caution is required when making inferences about object size representations based on alterations in the grip component as these variations are confounded with the accuracy with which object position is represented. Instead fingertip forces seem to provide a reliable and confound-free measure to assess internal size estimations in conditions of increased visual uncertainty.
Collapse
Affiliation(s)
| | - Louisa Miller
- Department of Psychiatry, University of Cambridge, UK
| | - Gavin Buckingham
- Department of Sport and Health Sciences, University of Exeter, UK
| |
Collapse
|
42
|
Vindras P, Blangero A, Ota H, Reilly KT, Rossetti Y, Pisella L. The Pointing Errors in Optic Ataxia Reveal the Role of "Peripheral Magnification" of the PPC. Front Integr Neurosci 2016; 10:27. [PMID: 27507938 PMCID: PMC4960242 DOI: 10.3389/fnint.2016.00027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/11/2016] [Indexed: 12/16/2022] Open
Abstract
Interaction with visual objects in the environment requires an accurate correspondence between visual space and its internal representation within the brain. Many clinical conditions involve some impairment in visuo-motor control and the errors created by the lesion of a specific brain region are neither random nor uninformative. Modern approaches to studying the neuropsychology of action require powerful data-driven analyses and error modeling in order to understand the function of the lesioned areas. In the present paper we carried out mixed-effect analyses of the pointing errors of seven optic ataxia patients and seven control subjects. We found that a small parameter set is sufficient to explain the pointing errors produced by unilateral optic ataxia patients. In particular, the extremely stereotypical errors made when pointing toward the contralesional visual field can be fitted by mathematical models similar to those used to model central magnification in cortical or sub-cortical structure(s). Our interpretation is that visual areas that contain this footprint of central magnification guide pointing movements when the posterior parietal cortex (PPC) is damaged and that the functional role of the PPC is to actively compensate for the under-representation of peripheral vision that accompanies central magnification. Optic ataxia misreaching reveals what would be hand movement accuracy and precision if the human motor system did not include elaborated corrective processes for reaching and grasping to non-foveated targets.
Collapse
Affiliation(s)
- Philippe Vindras
- ImpAct Team, Lyon Neuroscience Research Center CRNL, INSERM U1028, CNRS UMR5292 and University Claude Bernard Lyon I Villeurbanne, France
| | | | - Hisaaki Ota
- Department of Occupational Therapy, School of Health Sciences, Sapporo Medical University Sapporo, Japan
| | - Karen T Reilly
- ImpAct Team, Lyon Neuroscience Research Center CRNL, INSERM U1028, CNRS UMR5292 and University Claude Bernard Lyon I Villeurbanne, France
| | - Yves Rossetti
- ImpAct Team, Lyon Neuroscience Research Center CRNL, INSERM U1028, CNRS UMR5292 and University Claude Bernard Lyon I Villeurbanne, France
| | - Laure Pisella
- ImpAct Team, Lyon Neuroscience Research Center CRNL, INSERM U1028, CNRS UMR5292 and University Claude Bernard Lyon I Villeurbanne, France
| |
Collapse
|
43
|
Abstract
The mirror illusion uses a standard mirror to create a compelling illusion in which movements of one limb seem to be made by the other hidden limb. In this paper we adapt a motor control framework to examine which estimates of the body's configuration are affected by the illusion. We propose that the illusion primarily alters estimates related to upcoming states of the body (the desired state and the predicted state), with smaller effects on the estimate of the body state prior to movement initiation. Support for this proposal is provided both by behavioural effects of the illusion and by neuroimaging evidence from one neural region, V6A, that is critically involved in the mirror illusion and limb state estimation more generally.
Collapse
Affiliation(s)
- Tamer M Soliman
- a Moss Rehabilitation Research Institute , Elkins Park , PA , USA
| | - Laurel J Buxbaum
- a Moss Rehabilitation Research Institute , Elkins Park , PA , USA
| | - Steven A Jax
- a Moss Rehabilitation Research Institute , Elkins Park , PA , USA
| |
Collapse
|
44
|
Shaikh AG, Zee DS, Crawford JD, Jinnah HA. Cervical dystonia: a neural integrator disorder. Brain 2016; 139:2590-2599. [PMID: 27324878 DOI: 10.1093/brain/aww141] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/01/2016] [Indexed: 02/03/2023] Open
Abstract
Ocular motor neural integrators ensure that eyes are held steady in straight-ahead and eccentric positions of gaze. Abnormal function of the ocular motor neural integrator leads to centripetal drifts of the eyes with consequent gaze-evoked nystagmus. In 2002 a neural integrator, analogous to that in the ocular motor system, was proposed for the control of head movements. Recently, a counterpart of gaze-evoked eye nystagmus was identified for head movements; in which the head could not be held steady in eccentric positions on the trunk. These findings lead to a novel pathophysiological explanation in cervical dystonia, which proposed that the abnormalities of head movements stem from a malfunctioning head neural integrator, either intrinsically or as a result of impaired cerebellar, basal ganglia, or peripheral feedback. Here we briefly recapitulate the history of the neural integrator for eye movements, then further develop the idea of a neural integrator for head movements, and finally discuss its putative role in cervical dystonia. We hypothesize that changing the activity in an impaired head neural integrator, by modulating feedback, could treat dystonia.
Collapse
Affiliation(s)
- Aasef G Shaikh
- 1 Department of Neurology, Case Western Reserve University, Cleveland, OH, USA 2 Daroff-DelOsso Ocular Motility Laboratory, Neurology Service, Louis Stoke VA Medical Center, Cleveland, OH, USA
| | - David S Zee
- 3 Department of Neurology, The Johns Hopkins University, Baltimore, MD, USA
| | - J Douglas Crawford
- 4 Centre for Vision Research and Departments of Psychology, Biology, and Kinesiology and Health Sciences, York University, Toronto, ON, Canada
| | - Hyder A Jinnah
- 5 Department of Neurology, Emory University, Atlanta, GA, USA
| |
Collapse
|
45
|
Marangon M, Kubiak A, Króliczak G. Haptically Guided Grasping. fMRI Shows Right-Hemisphere Parietal Stimulus Encoding, and Bilateral Dorso-Ventral Parietal Gradients of Object- and Action-Related Processing during Grasp Execution. Front Hum Neurosci 2016; 9:691. [PMID: 26779002 PMCID: PMC4700263 DOI: 10.3389/fnhum.2015.00691] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/07/2015] [Indexed: 11/13/2022] Open
Abstract
The neural bases of haptically-guided grasp planning and execution are largely unknown, especially for stimuli having no visual representations. Therefore, we used functional magnetic resonance imaging (fMRI) to monitor brain activity during haptic exploration of novel 3D complex objects, subsequent grasp planning, and the execution of the pre-planned grasps. Haptic object exploration, involving extraction of shape, orientation, and length of the to-be-grasped targets, was associated with the fronto-parietal, temporo-occipital, and insular cortex activity. Yet, only the anterior divisions of the posterior parietal cortex (PPC) of the right hemisphere were significantly more engaged in exploration of complex objects (vs. simple control disks). None of these regions were re-recruited during the planning phase. Even more surprisingly, the left-hemisphere intraparietal, temporal, and occipital areas that were significantly invoked for grasp planning did not show sensitivity to object features. Finally, grasp execution, involving the re-recruitment of the critical right-hemisphere PPC clusters, was also significantly associated with two kinds of bilateral parieto-frontal processes. The first represents transformations of grasp-relevant target features and is linked to the dorso-dorsal (lateral and medial) parieto-frontal networks. The second monitors grasp kinematics and belongs to the ventro-dorsal networks. Indeed, signal modulations associated with these distinct functions follow dorso-ventral gradients, with left aIPS showing significant sensitivity to both target features and the characteristics of the required grasp. Thus, our results from the haptic domain are consistent with the notion that the parietal processing for action guidance reflects primarily transformations from object-related to effector-related coding, and these mechanisms are rather independent of sensory input modality.
Collapse
Affiliation(s)
- Mattia Marangon
- Action and Cognition Laboratory, Department of Social Sciences, Institute of Psychology, Adam Mickiewicz University in Poznań Poznań, Poland
| | - Agnieszka Kubiak
- Action and Cognition Laboratory, Department of Social Sciences, Institute of Psychology, Adam Mickiewicz University in Poznań Poznań, Poland
| | - Gregory Króliczak
- Action and Cognition Laboratory, Department of Social Sciences, Institute of Psychology, Adam Mickiewicz University in Poznań Poznań, Poland
| |
Collapse
|
46
|
Di Bono MG, Begliomini C, Castiello U, Zorzi M. Probing the reaching-grasping network in humans through multivoxel pattern decoding. Brain Behav 2015; 5:e00412. [PMID: 26664793 PMCID: PMC4666323 DOI: 10.1002/brb3.412] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/27/2015] [Accepted: 09/13/2015] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION The quest for a putative human homolog of the reaching-grasping network identified in monkeys has been the focus of many neuropsychological and neuroimaging studies in recent years. These studies have shown that the network underlying reaching-only and reach-to-grasp movements includes the superior parieto-occipital cortex (SPOC), the anterior part of the human intraparietal sulcus (hAIP), the ventral and the dorsal portion of the premotor cortex, and the primary motor cortex (M1). Recent evidence for a wider frontoparietal network coding for different aspects of reaching-only and reach-to-grasp actions calls for a more fine-grained assessment of the reaching-grasping network in humans by exploiting pattern decoding methods (multivoxel pattern analysis--MVPA). METHODS Here, we used MPVA on functional magnetic resonance imaging (fMRI) data to assess whether regions of the frontoparietal network discriminate between reaching-only and reach-to-grasp actions, natural and constrained grasping, different grasp types, and object sizes. Participants were required to perform either reaching-only movements or two reach-to-grasp types (precision or whole hand grasp) upon spherical objects of different sizes. RESULTS Multivoxel pattern analysis highlighted that, independently from the object size, all the selected regions of both hemispheres contribute in coding for grasp type, with the exception of SPOC and the right hAIP. Consistent with recent neurophysiological findings on monkeys, there was no evidence for a clear-cut distinction between a dorsomedial and a dorsolateral pathway that would be specialized for reaching-only and reach-to-grasp actions, respectively. Nevertheless, the comparison of decoding accuracy across brain areas highlighted their different contributions to reaching-only and grasping actions. CONCLUSIONS Altogether, our findings enrich the current knowledge regarding the functional role of key brain areas involved in the cortical control of reaching-only and reach-to-grasp actions in humans, by revealing novel fine-grained distinctions among action types within a wide frontoparietal network.
Collapse
Affiliation(s)
| | - Chiara Begliomini
- Department of General Psychology University of Padova Padova Italy ; Cognitive Neuroscience Center University of Padova Padova Italy
| | - Umberto Castiello
- Department of General Psychology University of Padova Padova Italy ; Cognitive Neuroscience Center University of Padova Padova Italy ; Centro Interdisciplinare Beniamino Segre Accademia dei Lincei Roma Italy
| | - Marco Zorzi
- Department of General Psychology University of Padova Padova Italy ; Cognitive Neuroscience Center University of Padova Padova Italy ; IRCCS San Camillo Hospital Venice-Lido Italy
| |
Collapse
|