1
|
Altinok FA, Petrella M, Masi A, Borruto AM, Ciccocioppo R, Ozturk Y. Exploring the supraspinal antihyperalgesic effects of levetiracetam in the rat model of chronic constriction injury. Can J Physiol Pharmacol 2025. [PMID: 40245838 DOI: 10.1139/cjpp-2024-0302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Neuropathic pain severely impacts quality of life and effective treatments are needed. To address this, the present study investigated the antihyperalgesic mechanisms of levetiracetam administered at the supraspinal level, together with its effects on ion channel activities. The ventral posterolateral nucleus of the thalamus was selected as the location for micro-injection. Thermal hyperalgesia and mechanical allodynia were assessed via in vivo experiments using the Hargreave's and e-Von Frey apparatus, respectively. Levetiracetam displayed statistically meaningful time and dose-dependent effects in the chronic constriction injury model, with statistical probability values less than 0.05. It was discovered that the antihyperalgesic effects were more pronounced in mechanical allodynia. Electrophysiological studies conducted through whole-cell patch clamp recordings indicated that levetiracetam tended to activate or increase the permeability of one or more channels for ion flow that are active only at hyperpolarized membrane potentials (-130 to -90 mV), suggesting the potential participation of hyperpolarization-activated cyclic nucleotide-gated, inwardly-rectifying K+, or G protein-gated inwardly-rectifying K+ channels. The findings could guide future drug development studies towards levetiracetam and its derivatives as effective treatments for neuropathic pain.
Collapse
Affiliation(s)
- Feyza Alyu Altinok
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, 26470 Eskisehir, Turkey
| | - Michele Petrella
- Department of Pharmacological Sciences and Experimental Medicine, University of Camerino, 62032 Camerino, Italy
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, S-581 85, Linköping, Sweden
| | - Alessio Masi
- Department of Neuroscience, Psychology, Drug Research and Child's Health, NEUROFARBA, Università di Firenze, 50139 Firenze, Italy
| | - Anna Maria Borruto
- Department of Pharmacological Sciences and Experimental Medicine, University of Camerino, 62032 Camerino, Italy
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, S-581 85, Linköping, Sweden
| | - Roberto Ciccocioppo
- Department of Pharmacological Sciences and Experimental Medicine, University of Camerino, 62032 Camerino, Italy
| | - Yusuf Ozturk
- Department of Pharmacology, Faculty of Pharmacy, Istanbul Aydin University, 34295 Istanbul, Turkey
| |
Collapse
|
2
|
Melrose J. Glycosaminoglycans, Instructive Biomolecules That Regulate Cellular Activity and Synaptic Neuronal Control of Specific Tissue Functional Properties. Int J Mol Sci 2025; 26:2554. [PMID: 40141196 PMCID: PMC11942259 DOI: 10.3390/ijms26062554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/22/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Glycosaminoglycans (GAGs) are a diverse family of ancient biomolecules that evolved over millennia as key components in the glycocalyx that surrounds all cells. GAGs have molecular recognition and cell instructive properties when attached to cell surface and extracellular matrix (ECM) proteoglycans (PGs), which act as effector molecules that regulate cellular behavior. The perception of mechanical cues which arise from perturbations in the ECM microenvironment allow the cell to undertake appropriate biosynthetic responses to maintain ECM composition and tissue function. ECM PGs substituted with GAGs provide structural support to weight-bearing tissues and an ability to withstand shear forces in some tissue contexts. This review outlines the structural complexity of GAGs and the diverse functional properties they convey to cellular and ECM PGs. PGs have important roles in cartilaginous weight-bearing tissues and fibrocartilages subject to tension and high shear forces and also have important roles in vascular and neural tissues. Specific PGs have roles in synaptic stabilization and convey specificity and plasticity in the regulation of neurophysiological responses in the CNS/PNS that control tissue function. A better understanding of GAG instructional roles over cellular behavior may be insightful for the development of GAG-based biotherapeutics designed to treat tissue dysfunction in disease processes and in novel tissue repair strategies following trauma. GAGs have a significant level of sophistication over the control of cellular behavior in many tissue contexts, which needs to be fully deciphered in order to achieve a useful therapeutic product. GAG biotherapeutics offers exciting opportunities in the modern glycomics arena.
Collapse
Affiliation(s)
- James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia;
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Sydney Medical School, Northern, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
3
|
Wu PP, Cao BR, Tian FY, Gao ZB. Development of SV2A Ligands for Epilepsy Treatment: A Review of Levetiracetam, Brivaracetam, and Padsevonil. Neurosci Bull 2024; 40:594-608. [PMID: 37897555 PMCID: PMC11127901 DOI: 10.1007/s12264-023-01138-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/16/2023] [Indexed: 10/30/2023] Open
Abstract
Epilepsy is a common neurological disorder that is primarily treated with antiseizure medications (ASMs). Although dozens of ASMs are available in the clinic, approximately 30% of epileptic patients have medically refractory seizures; other limitations in most traditional ASMs include poor tolerability and drug-drug interactions. Therefore, there is an urgent need to develop alternative ASMs. Levetiracetam (LEV) is a first-line ASM that is well tolerated, has promising efficacy, and has little drug-drug interaction. Although it is widely accepted that LEV acts through a unique therapeutic target synaptic vesicle protein (SV) 2A, the molecular basis of its action remains unknown. Even so, the next-generation SV2A ligands against epilepsy based on the structure of LEV have achieved clinical success. This review highlights the research and development (R&D) process of LEV and its analogs, brivaracetam and padsevonil, to provide ideas and experience for the R&D of novel ASMs.
Collapse
Affiliation(s)
- Peng-Peng Wu
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bi-Rong Cao
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fu-Yun Tian
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
| | - Zhao-Bing Gao
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
| |
Collapse
|
4
|
Kaisis E, Thei LJ, Stephens GJ, Dallas ML. Protofibrillar Amyloid Beta Modulation of Recombinant hCaV2.2 (N-Type) Voltage-Gated Channels. Pharmaceuticals (Basel) 2022; 15:ph15121459. [PMID: 36558910 PMCID: PMC9783047 DOI: 10.3390/ph15121459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
Cav2.2 channels are key regulators of presynaptic Ca2+ influx and their dysfunction and/or aberrant regulation has been implicated in many disease states; however, the nature of their involvement in Alzheimer's disease (AD) is less clear. In this short communication, we show that recombinant hCav2.2/b1b/a2d1 channels are modulated by human synthetic AD-related protofibrillar amyloid beta Ab1-42 peptides. Structural studies revealed a time-dependent increase in protofibril length, with the majority of protofibrils less than 100 nm at 24 h, while at 48 h, the majority were longer than 100 nm. Cav2.2 modulation by Ab1-42 was different between a 'low' (100 nM) and 'high' (1 µM) concentration in terms of distinct effects on individual biophysical parameters. A concentration of 100 nM Ab1-42 caused no significant changes in the measured biophysical properties of Cav2.2 currents. In contrast, 1 µM Ab1-42 caused an inhibitory decrease in the current density (pA/pF) and maximum conductance (Gmax), and a depolarizing shift in the slope factor (k). These data highlight a differential modulation of Cav2.2 channels by the Ab1-42 peptide. Discrete changes in the presynaptic Ca2+ flux have been reported to occur at an early stage of AD; therefore, this study reveals a potential mechanistic link between amyloid accumulation and Cav2.2 channel modulation.
Collapse
|
5
|
Saunders TS, Gadd DA, Spires‐Jones TL, King D, Ritchie C, Muniz‐Terrera G. Associations between cerebrospinal fluid markers and cognition in ageing and dementia: A systematic review. Eur J Neurosci 2022; 56:5650-5713. [PMID: 35338546 PMCID: PMC9790745 DOI: 10.1111/ejn.15656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/08/2022] [Accepted: 03/13/2022] [Indexed: 12/30/2022]
Abstract
A biomarker associated with cognition in neurodegenerative dementias would aid in the early detection of disease progression, complement clinical staging and act as a surrogate endpoint in clinical trials. The current systematic review evaluates the association between cerebrospinal fluid protein markers of synapse loss and neuronal injury and cognition. We performed a systematic search which revealed 67 studies reporting an association between cerebrospinal fluid markers of interest and neuropsychological performance. Despite the substantial heterogeneity between studies, we found some evidence for an association between neurofilament-light and worse cognition in Alzheimer's diseases, frontotemporal dementia and typical cognitive ageing. Moreover, there was an association between cerebrospinal fluid neurogranin and cognition in those with an Alzheimer's-like cerebrospinal fluid biomarker profile. Some evidence was found for cerebrospinal fluid neuronal pentraxin-2 as a correlate of cognition across dementia syndromes. Due to the substantial heterogeneity of the field, no firm conclusions can be drawn from this review. Future research should focus on improving standardization and reporting as well as establishing the importance of novel markers such as neuronal pentraxin-2 and whether such markers can predict longitudinal cognitive decline.
Collapse
Affiliation(s)
- Tyler S. Saunders
- UK Dementia Research InstituteThe University of EdinburghEdinburghUK
- Center for Discovery Brain SciencesThe University of EdinburghEdinburghUK
- Center for Clinical Brain SciencesThe University of EdinburghEdinburghUK
- Center for Dementia PreventionThe University of EdinburghEdinburghUK
| | - Danni A. Gadd
- Center for Genomic and Experimental Medicine, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Tara L. Spires‐Jones
- UK Dementia Research InstituteThe University of EdinburghEdinburghUK
- Center for Discovery Brain SciencesThe University of EdinburghEdinburghUK
| | - Declan King
- UK Dementia Research InstituteThe University of EdinburghEdinburghUK
- Center for Discovery Brain SciencesThe University of EdinburghEdinburghUK
| | - Craig Ritchie
- Center for Clinical Brain SciencesThe University of EdinburghEdinburghUK
- Center for Dementia PreventionThe University of EdinburghEdinburghUK
| | - Graciela Muniz‐Terrera
- Center for Clinical Brain SciencesThe University of EdinburghEdinburghUK
- Center for Dementia PreventionThe University of EdinburghEdinburghUK
| |
Collapse
|
6
|
Juengling FD, Wuest F, Kalra S, Agosta F, Schirrmacher R, Thiel A, Thaiss W, Müller HP, Kassubek J. Simultaneous PET/MRI: The future gold standard for characterizing motor neuron disease-A clinico-radiological and neuroscientific perspective. Front Neurol 2022; 13:890425. [PMID: 36061999 PMCID: PMC9428135 DOI: 10.3389/fneur.2022.890425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 07/20/2022] [Indexed: 01/18/2023] Open
Abstract
Neuroimaging assessment of motor neuron disease has turned into a cornerstone of its clinical workup. Amyotrophic lateral sclerosis (ALS), as a paradigmatic motor neuron disease, has been extensively studied by advanced neuroimaging methods, including molecular imaging by MRI and PET, furthering finer and more specific details of the cascade of ALS neurodegeneration and symptoms, facilitated by multicentric studies implementing novel methodologies. With an increase in multimodal neuroimaging data on ALS and an exponential improvement in neuroimaging technology, the need for harmonization of protocols and integration of their respective findings into a consistent model becomes mandatory. Integration of multimodal data into a model of a continuing cascade of functional loss also calls for the best attempt to correlate the different molecular imaging measurements as performed at the shortest inter-modality time intervals possible. As outlined in this perspective article, simultaneous PET/MRI, nowadays available at many neuroimaging research sites, offers the perspective of a one-stop shop for reproducible imaging biomarkers on neuronal damage and has the potential to become the new gold standard for characterizing motor neuron disease from the clinico-radiological and neuroscientific perspectives.
Collapse
Affiliation(s)
- Freimut D. Juengling
- Division of Oncologic Imaging, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Faculty of Medicine, University Bern, Bern, Switzerland
| | - Frank Wuest
- Division of Oncologic Imaging, University of Alberta, Edmonton, AB, Canada
| | - Sanjay Kalra
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Neurology, University of Alberta, Edmonton, AB, Canada
| | - Federica Agosta
- Division of Neuroscience, San Raffaele Scientific Institute, University Vita Salute San Raffaele, Milan, Italy
| | - Ralf Schirrmacher
- Division of Oncologic Imaging, University of Alberta, Edmonton, AB, Canada
- Medical Isotope and Cyclotron Facility, University of Alberta, Edmonton, AB, Canada
| | - Alexander Thiel
- Lady Davis Institute for Medical Research, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Wolfgang Thaiss
- Department of Nuclear Medicine, University of Ulm Medical Center, Ulm, Germany
- Department of Diagnostic and Interventional Radiology, University of Ulm Medical Center, Ulm, Germany
| | - Hans-Peter Müller
- Department of Neurology, Ulm University Medical Center, Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
7
|
Wang R, Gao H, Xie H, Jia Z, Chen Q. Molecular imaging biomarkers in familial frontotemporal lobar degeneration: Progress and prospects. Front Neurol 2022; 13:933217. [PMID: 36051222 PMCID: PMC9424494 DOI: 10.3389/fneur.2022.933217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/25/2022] [Indexed: 12/01/2022] Open
Abstract
Familial frontotemporal lobar degeneration (FTLD) is a pathologically heterogeneous group of neurodegenerative diseases with diverse genotypes and clinical phenotypes. Three major mutations were reported in patients with familial FTLD, namely, progranulin (GRN), microtubule-associated protein tau (MAPT), and the chromosome 9 open reading frame 72 (C9orf72) repeat expansion, which could cause neurodegenerative pathological changes years before symptom onset. Noninvasive quantitative molecular imaging with PET or single-photon emission CT (SPECT) allows for selective visualization of the molecular targets in vivo to investigate brain metabolism, perfusion, neuroinflammation, and pathophysiological changes. There was increasing evidence that several molecular imaging biomarkers tend to serve as biomarkers to reveal the early brain abnormalities in familial FTLD. Tau-PET with 18F-flortaucipir and 11C-PBB3 demonstrated the elevated tau position in patients with FTLD and also showed the ability to differentiate patterns among the different subtypes of the mutations in familial FTLD. Furthermore, dopamine transporter imaging with the 11C-DOPA and 11C-CFT in PET and the 123I-FP-CIT in SPECT revealed the loss of dopaminergic neurons in the asymptomatic and symptomatic patients of familial FTLD. In addition, PET imaging with the 11C-MP4A has demonstrated reduced acetylcholinesterase (AChE) activity in patients with FTLD, while PET with the 11C-DAA1106 and 11C-PK11195 revealed an increased level of microglial activation associated with neuroinflammation even before the onset of symptoms in familial FTLD. 18F-fluorodeoxyglucose (FDG)-PET indicated hypometabolism in FTLD with different mutations preceded the atrophy on MRI. Identifying molecular imaging biomarkers for familial FTLD is important for the in-vivo assessment of underlying pathophysiological changes with disease progression and future disease-modifying therapy. We review the recent progress of molecular imaging in familial FTLD with focused on the possible implication of these techniques and their prospects in specific mutation types.
Collapse
Affiliation(s)
- Ruihan Wang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Hui Gao
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Hongsheng Xie
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Qin Chen
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Qin Chen
| |
Collapse
|
8
|
Wilson H, de Natale ER, Politis M. Concise Review: Recent advances in neuroimaging techniques to assist clinical trials on cell-based therapies in neurodegenerative diseases. Stem Cells 2022; 40:724-735. [PMID: 35671344 DOI: 10.1093/stmcls/sxac039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/17/2022] [Indexed: 11/14/2022]
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD), are progressive disorders for which a curative therapy is still lacking. Cell-based therapy aims at replacing dysfunctional cellular populations by repairing damaged tissue and by enriching the microenvironment of selective brain areas, and thus constitutes a promising disease-modifying treatment of neurodegenerative diseases. Scientific research has engineered a wide range of human-derived cellular populations to help overcome some of the logistical, safety, and ethical issues associated with this approach. Open-label studies and clinical trials in human participants have employed neuroimaging techniques, such as positron emission tomography (PET) and magnetic resonance imaging (MRI), to assess the success of the transplantation, to evaluate the functional integration of the implanted tissue into the host environment and to understand the pathophysiological changes associated with the therapy. Neuroimaging has constituted an outcome measure of large, randomized clinical trials, and has given answers to clarify the pathophysiology underlying some of the complications linked with this therapy. Novel PET radiotracers and MRI sequences for the staging of neurodegenerative diseases and to study alterations at molecular level significantly expands the translational potential of neuroimaging to assist pre-clinical and clinical research on cell-based therapy in these disorders. This concise review summarizes the current use of neuroimaging in human studies of cell-based replacement therapy and focuses on future application of PET and MRI techniques to evaluate the pathophysiology and treatment efficacy, as well as to aid patient selection and as an outcome measure to improve treatment success.
Collapse
Affiliation(s)
- Heather Wilson
- Neurodegeneration Imaging Group, University of Exeter Medical School, London, UK
| | | | - Marios Politis
- Neurodegeneration Imaging Group, University of Exeter Medical School, London, UK
| |
Collapse
|
9
|
Rossi R, Arjmand S, Bærentzen SL, Gjedde A, Landau AM. Synaptic Vesicle Glycoprotein 2A: Features and Functions. Front Neurosci 2022; 16:864514. [PMID: 35573314 PMCID: PMC9096842 DOI: 10.3389/fnins.2022.864514] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/05/2022] [Indexed: 01/05/2023] Open
Abstract
In recent years, the field of neuroimaging dramatically moved forward by means of the expeditious development of specific radioligands of novel targets. Among these targets, the synaptic vesicle glycoprotein 2A (SV2A) is a transmembrane protein of synaptic vesicles, present in all synaptic terminals, irrespective of neurotransmitter content. It is involved in key functions of neurons, focused on the regulation of neurotransmitter release. The ubiquitous expression in gray matter regions of the brain is the basis of its candidacy as a marker of synaptic density. Following the development of molecules derived from the structure of the anti-epileptic drug levetiracetam, which selectively binds to SV2A, several radiolabeled markers have been synthetized to allow the study of SV2A distribution with positron emission tomography (PET). These radioligands permit the evaluation of in vivo changes of SV2A distribution held to be a potential measure of synaptic density in physiological and pathological conditions. The use of SV2A as a biomarker of synaptic density raises important questions. Despite numerous studies over the last decades, the biological function and the expressional properties of SV2A remain poorly understood. Some functions of SV2A were claimed, but have not been fully elucidated. While the expression of SV2A is ubiquitous, stronger associations between SV2A and Υ amino butyric acid (GABA)-ergic rather than glutamatergic synapses were observed in some brain structures. A further issue is the unclear interaction between SV2A and its tracers, which reflects a need to clarify what really is detected with neuroimaging tools. Here, we summarize the current knowledge of the SV2A protein and we discuss uncertain aspects of SV2A biology and physiology. As SV2A expression is ubiquitous, but likely more strongly related to a certain type of neurotransmission in particular circumstances, a more extensive knowledge of the protein would greatly facilitate the analysis and interpretation of neuroimaging results by allowing the evaluation not only of an increase or decrease of the protein level, but also of the type of neurotransmission involved.
Collapse
Affiliation(s)
- Rachele Rossi
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Shokouh Arjmand
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Simone Larsen Bærentzen
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Albert Gjedde
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Anne M Landau
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
10
|
Contreras-García IJ, Cárdenas-Rodríguez N, Romo-Mancillas A, Bandala C, Zamudio SR, Gómez-Manzo S, Hernández-Ochoa B, Mendoza-Torreblanca JG, Pichardo-Macías LA. Levetiracetam Mechanisms of Action: From Molecules to Systems. Pharmaceuticals (Basel) 2022; 15:475. [PMID: 35455472 PMCID: PMC9030752 DOI: 10.3390/ph15040475] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Epilepsy is a chronic disease that affects millions of people worldwide. Antiepileptic drugs (AEDs) are used to control seizures. Even though parts of their mechanisms of action are known, there are still components that need to be studied. Therefore, the search for novel drugs, new molecular targets, and a better understanding of the mechanisms of action of existing drugs is still crucial. Levetiracetam (LEV) is an AED that has been shown to be effective in seizure control and is well-tolerable, with a novel mechanism of action through an interaction with the synaptic vesicle protein 2A (SV2A). Moreover, LEV has other molecular targets that involve calcium homeostasis, the GABAergic system, and AMPA receptors among others, that might be integrated into a single mechanism of action that could explain the antiepileptogenic, anti-inflammatory, neuroprotective, and antioxidant properties of LEV. This puts it as a possible multitarget drug with clinical applications other than for epilepsy. According to the above, the objective of this work was to carry out a comprehensive and integrative review of LEV in relation to its clinical uses, structural properties, therapeutical targets, and different molecular, genetic, and systemic action mechanisms in order to consider LEV as a candidate for drug repurposing.
Collapse
Affiliation(s)
| | - Noemí Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
| | - Antonio Romo-Mancillas
- Laboratorio de Diseño Asistido por Computadora y Síntesis de Fármacos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico;
| | - Cindy Bandala
- Neurociencia Básica, Instituto Nacional de Rehabilitación LGII, Secretaría de Salud, Ciudad de México 14389, Mexico;
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Sergio R. Zamudio
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico;
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico;
| | - Beatriz Hernández-Ochoa
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Ciudad de México 06720, Mexico;
| | | | - Luz Adriana Pichardo-Macías
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico;
| |
Collapse
|
11
|
Kong Y, Zhang S, Huang L, Zhang C, Xie F, Zhang Z, Huang Q, Jiang D, Li J, Zhou W, Hua T, Sun B, Wang J, Guan Y. Positron Emission Computed Tomography Imaging of Synaptic Vesicle Glycoprotein 2A in Alzheimer's Disease. Front Aging Neurosci 2021; 13:731114. [PMID: 34795573 PMCID: PMC8593388 DOI: 10.3389/fnagi.2021.731114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder seen in age-dependent dementia. There is currently no effective treatment for AD, which may be attributed in part to lack of a clear underlying mechanism. Early diagnosis of AD is of great significance to control the development of the disease. Synaptic loss is an important pathology in the early stage of AD, therefore the measurement of synaptic density using molecular imaging technology may be an effective way to early diagnosis of AD. Synaptic vesicle glycoprotein 2A (SV2A) is located in the presynaptic vesicle membrane of virtually all synapses. SV2A Positron Emission Computed Tomography (PET) could provide a way to measure synaptic density quantitatively in living humans and to track changes in synaptic density in AD. In view of the fact that synaptic loss is the pathology of both epilepsy and AD, this review summarizes the potential role of SV2A in the pathogenesis of AD, and suggests that SV2A should be used as an important target molecule of PET imaging agent for the early diagnosis of AD.
Collapse
Affiliation(s)
- Yanyan Kong
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Shibo Zhang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Lin Huang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Chencheng Zhang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Xie
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhengwei Zhang
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Qi Huang
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Donglang Jiang
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Junpeng Li
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Weiyan Zhou
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Tao Hua
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiao Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Patel S, Knight A, Krause S, Teceno T, Tresse C, Li S, Cai Z, Gouasmat A, Carroll VM, Barret O, Gottmukkala V, Zhang W, Xiang X, Morley T, Huang Y, Passchier J. Preclinical In Vitro and In Vivo Characterization of Synaptic Vesicle 2A-Targeting Compounds Amenable to F-18 Labeling as Potential PET Radioligands for Imaging of Synapse Integrity. Mol Imaging Biol 2021; 22:832-841. [PMID: 31728839 DOI: 10.1007/s11307-019-01428-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE Current synaptic vesicle 2A (SV2A) positron emission tomography (PET) imaging agents include the nanomolar affinity probes [11C]UCB-J and [18F]UCB-H derived from the anti-epileptic drug levitaracetam (Keppra®). An industry-utilized "de-risking" approach was used to carry out initial pharmacological characterization and to assess potential next-generation candidates amenable to F-18 radiolabeling for preliminary evaluation. PROCEDURES Radioligand binding methods were employed in mammalian brain homogenates to determine the SV2A affinity (Kd) and maximal binding capacity (Bmax) of [3H]UCB-J. Novel leads were then screened to identify compounds minimally with comparable binding affinities with UCB-J in order to select a F-18-labeled candidate for subsequent in vivo assessment in rat. In parallel, mammalian brain tissue section autoradiography was performed to assess specific SV2A distribution. RESULTS [3H]UCB-J bound with high affinity to a single population of sites in the rat brain (Kd = 2.6 ± 0.25 nM; Bmax = 810 ± 25 fmol/mg protein) and control human cortex (Kd = 2.9 ± 0.54 nM; Bmax = 10,000 ± 640 fmol/mg protein). Distribution of specific SV2A binding was shown to be homogeneous throughout the rodent brain and primarily in gray matter regions of rodent and human brain sections. Analog screening identified MNI-1038, MNI-1126/SDM-8, and SDM-2 as having comparable binding affinities with the currently available PET ligands. Subsequent [18F]MNI-1126/[18F]SDM-8 dynamic micro-PET imaging in rats revealed in vivo uptake and accumulation in the brain with favorable kinetics. Chase studies using 30 mg/kg levetiracetam confirmed that in vivo brain uptake of [18F]MNI-1126/[18F]SDM-8 was reversible. CONCLUSIONS Taken together, these data suggest [18F]MNI-1126/[18F]SDM-8 (since renamed as [18F]SynVesT-1) characterized via an in vitro screening cascade provided a measurable in vivo SV2A specific signal in the rodent brain. This tracer as well as the close analog [18F]SDM-2 (since renamed as [18F]SynVesT-2) is currently undergoing further evaluation in preclinical and clinical studies.
Collapse
Affiliation(s)
- Shil Patel
- Codiak Biosciences, 500 Technology Square, 9th Floor, Cambridge, MA, 02139, USA.
| | - Ashley Knight
- Centre for Addiction and Mental Health, University of Toronto, 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - Stephen Krause
- Eisai Inc., 100 Tice Blvd, Woodcliff Lake, NJ, 07677, USA
| | - Tyler Teceno
- Eisai Inc., 100 Tice Blvd, Woodcliff Lake, NJ, 07677, USA
| | - Cedric Tresse
- Invicro, LLC, 27 Drydock Ave. 7th Floor West, Boston, MA, 02210, USA
| | - Songye Li
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 801 Howard Avenue, New Haven, CT, 06510, USA
| | - Zhengxin Cai
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 801 Howard Avenue, New Haven, CT, 06510, USA
| | | | - Vincent M Carroll
- Invicro, LLC, 27 Drydock Ave. 7th Floor West, Boston, MA, 02210, USA
| | - Olivier Barret
- Invicro, LLC, 27 Drydock Ave. 7th Floor West, Boston, MA, 02210, USA
| | - Vijay Gottmukkala
- Invicro, LLC, 27 Drydock Ave. 7th Floor West, Boston, MA, 02210, USA
| | - Wenjie Zhang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xianhong Xiang
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan Second Road, Yuexiu District, Guangzhou, 510080, China
| | - Thomas Morley
- Invicro, LLC, 27 Drydock Ave. 7th Floor West, Boston, MA, 02210, USA
| | - Yiyun Huang
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 801 Howard Avenue, New Haven, CT, 06510, USA
| | - Jan Passchier
- Invicro, LLC, 27 Drydock Ave. 7th Floor West, Boston, MA, 02210, USA
| |
Collapse
|
13
|
Novel PET Biomarkers to Disentangle Molecular Pathways across Age-Related Neurodegenerative Diseases. Cells 2020; 9:cells9122581. [PMID: 33276490 PMCID: PMC7761606 DOI: 10.3390/cells9122581] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022] Open
Abstract
There is a need to disentangle the etiological puzzle of age-related neurodegenerative diseases, whose clinical phenotypes arise from known, and as yet unknown, pathways that can act distinctly or in concert. Enhanced sub-phenotyping and the identification of in vivo biomarker-driven signature profiles could improve the stratification of patients into clinical trials and, potentially, help to drive the treatment landscape towards the precision medicine paradigm. The rapidly growing field of neuroimaging offers valuable tools to investigate disease pathophysiology and molecular pathways in humans, with the potential to capture the whole disease course starting from preclinical stages. Positron emission tomography (PET) combines the advantages of a versatile imaging technique with the ability to quantify, to nanomolar sensitivity, molecular targets in vivo. This review will discuss current research and available imaging biomarkers evaluating dysregulation of the main molecular pathways across age-related neurodegenerative diseases. The molecular pathways focused on in this review involve mitochondrial dysfunction and energy dysregulation; neuroinflammation; protein misfolding; aggregation and the concepts of pathobiology, synaptic dysfunction, neurotransmitter dysregulation and dysfunction of the glymphatic system. The use of PET imaging to dissect these molecular pathways and the potential to aid sub-phenotyping will be discussed, with a focus on novel PET biomarkers.
Collapse
|
14
|
Jensen BK, Schuldi MH, McAvoy K, Russell KA, Boehringer A, Curran BM, Krishnamurthy K, Wen X, Westergard T, Ma L, Haeusler AR, Edbauer D, Pasinelli P, Trotti D. Synaptic dysfunction induced by glycine-alanine dipeptides in C9orf72-ALS/FTD is rescued by SV2 replenishment. EMBO Mol Med 2020; 12:e10722. [PMID: 32347002 PMCID: PMC7207170 DOI: 10.15252/emmm.201910722] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 12/16/2022] Open
Abstract
The most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is an intronic hexanucleotide repeat expansion in the C9orf72 gene. In disease, RNA transcripts containing this expanded region undergo repeat-associated non-AUG translation to produce dipeptide repeat proteins (DPRs), which are detected in brain and spinal cord of patients and are neurotoxic both in vitro and in vivo paradigms. We reveal here a novel pathogenic mechanism for the most abundantly detected DPR in ALS/FTD autopsy tissues, poly-glycine-alanine (GA). Previously, we showed motor dysfunction in a GA mouse model without loss of motor neurons. Here, we demonstrate that mobile GA aggregates are present within neurites, evoke a reduction in synaptic vesicle-associated protein 2 (SV2), and alter Ca2+ influx and synaptic vesicle release. These phenotypes could be corrected by restoring SV2 levels. In GA mice, loss of SV2 was observed without reduction of motor neuron number. Notably, reduction in SV2 was seen in cortical and motor neurons derived from patient induced pluripotent stem cell lines, suggesting synaptic alterations also occur in patients.
Collapse
Affiliation(s)
- Brigid K Jensen
- Jefferson Weinberg ALS CenterDepartment of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Martin H Schuldi
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
| | - Kevin McAvoy
- Jefferson Weinberg ALS CenterDepartment of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Katelyn A Russell
- Jefferson Weinberg ALS CenterDepartment of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Ashley Boehringer
- Jefferson Weinberg ALS CenterDepartment of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Bridget M Curran
- Department of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Karthik Krishnamurthy
- Jefferson Weinberg ALS CenterDepartment of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Xinmei Wen
- Jefferson Weinberg ALS CenterDepartment of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Thomas Westergard
- Jefferson Weinberg ALS CenterDepartment of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Le Ma
- Department of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Aaron R Haeusler
- Jefferson Weinberg ALS CenterDepartment of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
| | - Piera Pasinelli
- Jefferson Weinberg ALS CenterDepartment of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Davide Trotti
- Jefferson Weinberg ALS CenterDepartment of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| |
Collapse
|
15
|
Wilson H, Pagano G, de Natale ER, Mansur A, Caminiti SP, Polychronis S, Middleton LT, Price G, Schmidt KF, Gunn RN, Rabiner EA, Politis M. Mitochondrial Complex 1, Sigma 1, and Synaptic Vesicle 2A in Early Drug-Naive Parkinson's Disease. Mov Disord 2020; 35:1416-1427. [PMID: 32347983 DOI: 10.1002/mds.28064] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Dysfunction of mitochondrial energy generation may contribute to neurodegeneration, leading to synaptic loss in Parkinson's disease (PD). The objective of this study was to find cross-sectional and longitudinal changes in PET markers of synaptic vesicle protein 2A, sigma 1 receptor, and mitochondrial complex 1 in drug-naive PD patients. METHODS Twelve early drug-naive PD patients and 16 healthy controls underwent a 3-Tesla MRI and PET imaging to quantify volume of distribution of [11 C]UCB-J, [11 C]SA-4503, and [18 F]BCPP-EF for synaptic vesicle protein 2A, sigma 1 receptor, and mitochondrial complex 1, respectively. Nine PD patients completed approximately 1-year follow-up assessments. RESULTS Reduced [11 C]UCB-J volume of distribution in the caudate, putamen, thalamus, brain stem, and dorsal raphe and across cortical regions was observed in drug-naive PD patients compared with healthy controls. [11 C]UCB-J volume of distribution was reduced in the locus coeruleus and substantia nigra but did not reach statistical significance. No significant differences were found in [11 C]SA-4503 and [18 F]BCPP-EF volume of distribution in PD compared with healthy controls. Lower brain stem [11 C]UCB-J volume of distribution correlated with Movement Disorder Society Unified Parkinson's Disease Rating Scale part III and total scores. No significant longitudinal changes were identified in PD patients at follow-up compared with baseline. CONCLUSIONS Our findings represent the first in vivo evidence of mitochondrial, endoplasmic reticulum, and synaptic dysfunction in drug-naive PD patients. Synaptic dysfunction likely occurs early in disease pathophysiology and has relevance to symptomatology. Mitochondrial complex 1 and sigma 1 receptor pathology warrants further investigations in PD. Studies in larger cohorts with longer follow-up will determine the validity of these PET markers to track disease progression. © 2020 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Heather Wilson
- Neurodegeneration Imaging Group, University of Exeter Medical School, London, UK.,Neurodegeneration Imaging Group, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Gennaro Pagano
- Neurodegeneration Imaging Group, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Edoardo Rosario de Natale
- Neurodegeneration Imaging Group, University of Exeter Medical School, London, UK.,Neurodegeneration Imaging Group, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Ayla Mansur
- Invicro, Centre for Imaging Sciences, Hammersmith Hospital, London, UK.,Division of Brain Sciences, Department of Medicine, Imperial College London, UK
| | - Silvia Paola Caminiti
- Neurodegeneration Imaging Group, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Sotirios Polychronis
- Neurodegeneration Imaging Group, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Lefkos T Middleton
- School of Public Health, Imperial College London, UK.,Public Health Directorate, Imperial College NHS Healthcare Trust, London, UK.,MINDMAPS Consortium, London, UK
| | - Geraint Price
- School of Public Health, Imperial College London, UK.,MINDMAPS Consortium, London, UK
| | | | - Roger N Gunn
- Invicro, Centre for Imaging Sciences, Hammersmith Hospital, London, UK.,Division of Brain Sciences, Department of Medicine, Imperial College London, UK.,MINDMAPS Consortium, London, UK
| | - Eugenii A Rabiner
- Invicro, Centre for Imaging Sciences, Hammersmith Hospital, London, UK.,MINDMAPS Consortium, London, UK.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Marios Politis
- Neurodegeneration Imaging Group, University of Exeter Medical School, London, UK.,Neurodegeneration Imaging Group, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK.,MINDMAPS Consortium, London, UK
| |
Collapse
|
16
|
Young PNE, Estarellas M, Coomans E, Srikrishna M, Beaumont H, Maass A, Venkataraman AV, Lissaman R, Jiménez D, Betts MJ, McGlinchey E, Berron D, O'Connor A, Fox NC, Pereira JB, Jagust W, Carter SF, Paterson RW, Schöll M. Imaging biomarkers in neurodegeneration: current and future practices. Alzheimers Res Ther 2020; 12:49. [PMID: 32340618 PMCID: PMC7187531 DOI: 10.1186/s13195-020-00612-7] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/01/2020] [Indexed: 12/12/2022]
Abstract
There is an increasing role for biological markers (biomarkers) in the understanding and diagnosis of neurodegenerative disorders. The application of imaging biomarkers specifically for the in vivo investigation of neurodegenerative disorders has increased substantially over the past decades and continues to provide further benefits both to the diagnosis and understanding of these diseases. This review forms part of a series of articles which stem from the University College London/University of Gothenburg course "Biomarkers in neurodegenerative diseases". In this review, we focus on neuroimaging, specifically positron emission tomography (PET) and magnetic resonance imaging (MRI), giving an overview of the current established practices clinically and in research as well as new techniques being developed. We will also discuss the use of machine learning (ML) techniques within these fields to provide additional insights to early diagnosis and multimodal analysis.
Collapse
Affiliation(s)
- Peter N E Young
- Wallenberg Centre for Molecular and Translational Medicine and the Department of Psychiatry and Neurochemistry, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mar Estarellas
- Centre for Medical Image Computing (CMIC), Department of Computer Science & Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Emma Coomans
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Meera Srikrishna
- Wallenberg Centre for Molecular and Translational Medicine and the Department of Psychiatry and Neurochemistry, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Helen Beaumont
- Neuroscience and Aphasia Research Unit, Division of Neuroscience and Experimental Psychology, The University of Manchester, Manchester, UK
| | - Anne Maass
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Ashwin V Venkataraman
- Division of Brain Sciences, Imperial College London, London, UK
- United Kingdom Dementia Research Institute, Imperial College London, London, UK
| | - Rikki Lissaman
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff, UK
| | - Daniel Jiménez
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
- Department of Neurological Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Matthew J Betts
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | | | - David Berron
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Antoinette O'Connor
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Nick C Fox
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Joana B Pereira
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - William Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Stephen F Carter
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Wolfson Molecular Imaging Centre, Division of Neuroscience and Experimental Psychology, MAHSC, University of Manchester, Manchester, UK
| | - Ross W Paterson
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Michael Schöll
- Wallenberg Centre for Molecular and Translational Medicine and the Department of Psychiatry and Neurochemistry, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden.
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK.
- Department of Clinical Physiology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
17
|
Braun R, Anthuber L, Hirsch D, Wangsa D, Lack J, McNeil NE, Heselmeyer-Haddad K, Torres I, Wangsa D, Brown MA, Tubbs A, Auslander N, Gertz EM, Brauer PR, Cam MC, Sackett DL, Habermann JK, Nussenzweig A, Ruppin E, Zhang Z, Rosenberg DW, Ried T. Single-Cell-Derived Primary Rectal Carcinoma Cell Lines Reflect Intratumor Heterogeneity Associated with Treatment Response. Clin Cancer Res 2020; 26:3468-3480. [PMID: 32253233 DOI: 10.1158/1078-0432.ccr-19-1984] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 01/22/2020] [Accepted: 04/01/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE The standard treatment of patients with locally advanced rectal cancer consists of preoperative chemoradiotherapy (CRT) followed by surgery. However, the response of individual tumors to CRT is extremely diverse, presenting a clinical dilemma. This broad variability in treatment response is likely attributable to intratumor heterogeneity (ITH). EXPERIMENTAL DESIGN We addressed the impact of ITH on response to CRT by establishing single-cell-derived cell lines (SCDCL) from a treatment-naïve rectal cancer biopsy after xenografting. RESULTS Individual SCDCLs derived from the same tumor responded profoundly different to CRT in vitro. Clonal reconstruction of the tumor and derived cell lines based on whole-exome sequencing revealed nine separate clusters with distinct proportions in the SCDCLs. Missense mutations in SV2A and ZWINT were clonal in the resistant SCDCL, but not detected in the sensitive SCDCL. Single-cell genetic analysis by multiplex FISH revealed the expansion of a clone with a loss of PIK3CA in the resistant SCDCL. Gene expression profiling by tRNA-sequencing identified the activation of the Wnt, Akt, and Hedgehog signaling pathways in the resistant SCDCLs. Wnt pathway activation in the resistant SCDCLs was confirmed using a reporter assay. CONCLUSIONS Our model system of patient-derived SCDCLs provides evidence for the critical role of ITH for treatment response in patients with rectal cancer and shows that distinct genetic aberration profiles are associated with treatment response. We identified specific pathways as the molecular basis of treatment response of individual clones, which could be targeted in resistant subclones of a heterogenous tumor.
Collapse
Affiliation(s)
- Rüdiger Braun
- Section of Cancer Genomics, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Lena Anthuber
- Section of Cancer Genomics, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Daniela Hirsch
- Section of Cancer Genomics, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Darawalee Wangsa
- Section of Cancer Genomics, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Justin Lack
- NIAID Collaborative Bioinformatics Resource (NCBR), National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland.,Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Nicole E McNeil
- Section of Cancer Genomics, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | | | - Irianna Torres
- Section of Cancer Genomics, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Danny Wangsa
- Section of Cancer Genomics, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Markus A Brown
- Section of Cancer Genomics, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Anthony Tubbs
- Laboratory of Genome Integrity, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Noam Auslander
- Cancer Data Science Laboratory, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - E Michael Gertz
- Cancer Data Science Laboratory, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Philip R Brauer
- Section of Cancer Genomics, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Margaret C Cam
- Office of Science and Technology Resources, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Dan L Sackett
- Eunice Kennedy Shriver National Institute of Child Health & Human Development, NIH, Bethesda, Maryland
| | - Jens K Habermann
- Section of Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Medical Center Schleswig-Holstein, Campus Lübeck, Germany
| | - Andre Nussenzweig
- Laboratory of Genome Integrity, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Zhongqiu Zhang
- Department of Surgery, Waterbury Hospital, University of Connecticut School of Medicine, Waterbury, Connecticut
| | - Daniel W Rosenberg
- Center for Molecular Oncology, University of Connecticut Health, Farmington, Waterbury, Connecticut
| | - Thomas Ried
- Section of Cancer Genomics, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
| |
Collapse
|
18
|
Yaghoubi A, Khazaei M, Hasanian SM, Avan A, C. Cho W, Soleimanpour S. Bacteriotherapy in Breast Cancer. Int J Mol Sci 2019; 20:5880. [PMID: 31771178 PMCID: PMC6928964 DOI: 10.3390/ijms20235880] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the second most common cause of cancer-related mortality among women around the world. Conventional treatments in the fight against breast cancer, such as chemotherapy, are being challenged regarding their effectiveness. Thus, strategies for the treatment of breast cancer need to be continuously refined to achieve a better patient outcome. We know that a number of bacteria are pathogenic and some are even associated with tumor development, however, recent studies have demonstrated interesting results suggesting some bacteria may have potential for cancer therapy. Therefore, the therapeutic role of bacteria has aroused attention in medical and pharmaceutical studies. Furthermore, genetic engineering has been used in bacterial therapy and may led to greater efficacy with few side effects. Some genetically modified non-pathogenic bacterial species are more successful due to their selectivity for cancer cells but with low toxicity for normal cells. Some live, attenuated, or genetically modified bacterias are capable to multiply in tumors and inhibit their growth. This article aims to review the role of bacteria and their products including bacterial peptides, bacteriocins, and toxins for the treatment of breast cancer.
Collapse
Affiliation(s)
- Atieh Yaghoubi
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad 91387-35499, Iran;
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 91387-35499, Iran
| | - Majid Khazaei
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9138735499, Iran;
| | - Seyed Mahdi Hasanian
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical, Sciences, Mashhad 91387-35499, Iran;
| | - Amir Avan
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad 91387-35499, Iran;
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad 91387-35499, Iran;
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 91387-35499, Iran
| |
Collapse
|
19
|
Stout K, Dunn A, Hoffman C, Miller GW. The Synaptic Vesicle Glycoprotein 2: Structure, Function, and Disease Relevance. ACS Chem Neurosci 2019; 10:3927-3938. [PMID: 31394034 PMCID: PMC11562936 DOI: 10.1021/acschemneuro.9b00351] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The synaptic vesicle glycoprotein 2 (SV2) family is comprised of three paralogues: SV2A, SV2B, and SV2C. In vertebrates, SV2s are 12-transmembrane proteins present on every secretory vesicle, including synaptic vesicles, and are critical to neurotransmission. Structural and functional studies suggest that SV2 proteins may play several roles to promote proper vesicular function. Among these roles are their potential to stabilize the transmitter content of vesicles, to maintain and orient the releasable pool of vesicles, and to regulate vesicular calcium sensitivity to ensure efficient, coordinated release of the transmitter. The SV2 family is highly relevant to human health in a number of ways. First, SV2A plays a role in neuronal excitability and as such is the specific target for the antiepileptic drug levetiracetam. SV2 proteins also act as the target by which potent neurotoxins, particularly botulinum, gain access to neurons and exert their toxicity. Both SV2B and SV2C are increasingly implicated in diseases such as Alzheimer's disease and Parkinson's disease. Interestingly, despite decades of intensive research, their exact function remains elusive. Thus, SV2 proteins are intriguing in their potentially diverse roles within the presynaptic terminal, and several recent developments have enhanced our understanding and appreciation of the protein family. Here, we review the structure and function of SV2 proteins as well as their relevance to disease and therapeutic development.
Collapse
Affiliation(s)
- Kristen Stout
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, United States
| | - Amy Dunn
- The Jackson Laboratory, Bar Harbor, Maine, United States
| | - Carlie Hoffman
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States
| | - Gary W. Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States
| |
Collapse
|
20
|
Wang J, Li W, Zhou F, Feng R, Wang F, Zhang S, Li J, Li Q, Wang Y, Xie J, Wen T. ATP11B deficiency leads to impairment of hippocampal synaptic plasticity. J Mol Cell Biol 2019; 11:688-702. [PMID: 31152587 PMCID: PMC7261485 DOI: 10.1093/jmcb/mjz042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/28/2019] [Accepted: 03/15/2019] [Indexed: 12/13/2022] Open
Abstract
Synaptic plasticity is known to regulate and support signal transduction between neurons, while synaptic dysfunction contributes to multiple neurological and other brain disorders; however, the specific mechanism underlying this process remains unclear. In the present study, abnormal neural and dendritic morphology was observed in the hippocampus following knockout of Atp11b both in vitro and in vivo. Moreover, ATP11B modified synaptic ultrastructure and promoted spine remodeling via the asymmetrical distribution of phosphatidylserine and enhancement of glutamate release, glutamate receptor expression, and intracellular Ca2+ concentration. Furthermore, experimental results also indicate that ATP11B regulated synaptic plasticity in hippocampal neurons through the MAPK14 signaling pathway. In conclusion, our data shed light on the possible mechanisms underlying the regulation of synaptic plasticity and lay the foundation for the exploration of proteins involved in signal transduction during this process.
Collapse
Affiliation(s)
- Jiao Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Weihao Li
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Fangfang Zhou
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Ruili Feng
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Fushuai Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Shibo Zhang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jie Li
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Qian Li
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yajiang Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jiang Xie
- School of Computer Engineering and Science, Shanghai University, Shanghai, China
| | - Tieqiao Wen
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
21
|
Tokudome K, Shimizu S, Serikawa T, Ohno Y. [Function of synaptic vesicle protein 2A (SV2A) as a novel therapeutic target for epilepsy]. Nihon Yakurigaku Zasshi 2018; 152:275-280. [PMID: 30531097 DOI: 10.1254/fpj.152.275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Epilepsy is a chronic neurologic disease characterized by recurrent seizures, affecting nearly 1% of the population. Synaptic vesicle protein 2A (SV2A) is a membrane protein specifically expressed in synaptic vesicles and is now implicated in the pathogenesis of epileptic disorders. This is because 1) Sv2a-knockout mice exhibit severe seizures, 2) SV2A serves as a specific binding site for certain antiepileptics (e.g., levetiracetam and its analogues) and 3) the SV2A expression changes under various epileptic conditions both in animals (e.g., kindling) and humans (e.g., intractable temporal lobe epilepsy and focal cortical dysplasia). Furthermore, it has been shown that a missense mutation in the SV2A gene caused intractable epilepsy, involuntary movements and developmental retardation, indicating a causative role of SV2A dysfunction in epilepsy. In order to explore the mechanism of SV2A in modulating development of epileptogenesis, we recently developed a novel rat model (Sv2aL174Q rat) carrying a missense mutation (Leu174Gln) in the Sv2a gene. These rats were highly susceptible to the kindling development associated with repeated pentylenetetrazole treatments or electrical stimulations of the amygdala. In addition, the Sv2aL174Q mutation specifically impaired depolarization-induced GABA, but not glutamate, release in the hippocampus and amygdala. All this evidence indicates that the SV2A-GABAergic system plays a crucial role in modulating epileptogenesis and encourages discovery research into the novel antiepileptic agents which enhance the function of the SV2A-GABA system.
Collapse
Affiliation(s)
- Kentaro Tokudome
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences
| | - Saki Shimizu
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences
| | - Tadao Serikawa
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences
| | - Yukihiro Ohno
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences
| |
Collapse
|
22
|
Frederiksen SD, Warfvinge K, Ohlsson L, Edvinsson L. Expression of Pituitary Adenylate Cyclase-activating Peptide, Calcitonin Gene-related Peptide and Headache Targets in the Trigeminal Ganglia of Rats and Humans. Neuroscience 2018; 393:319-332. [DOI: 10.1016/j.neuroscience.2018.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/28/2018] [Accepted: 10/02/2018] [Indexed: 11/16/2022]
|
23
|
CACHD1 is an α2δ-Like Protein That Modulates Ca V3 Voltage-Gated Calcium Channel Activity. J Neurosci 2018; 38:9186-9201. [PMID: 30181139 DOI: 10.1523/jneurosci.3572-15.2018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 06/03/2018] [Accepted: 06/13/2018] [Indexed: 11/21/2022] Open
Abstract
The putative cache (Ca2+ channel and chemotaxis receptor) domain containing 1 (CACHD1) protein has predicted structural similarities to members of the α2δ voltage-gated Ca2+ channel auxiliary subunit family. CACHD1 mRNA and protein were highly expressed in the male mammalian CNS, in particular in the thalamus, hippocampus, and cerebellum, with a broadly similar tissue distribution to CaV3 subunits, in particular CaV3.1. In expression studies, CACHD1 increased cell-surface localization of CaV3.1, and these proteins were in close proximity at the cell surface, consistent with the formation of CACHD1-CaV3.1 complexes. In functional electrophysiological studies, coexpression of human CACHD1 with CaV3.1, CaV3.2, and CaV3.3 caused a significant increase in peak current density and corresponding increases in maximal conductance. By contrast, α2δ-1 had no effect on peak current density or maximal conductance in CaV3.1, CaV3.2, or CaV3.3. A comparison of CACHD1-mediated increases in CaV3.1 current density and gating currents revealed an increase in channel open probability. In hippocampal neurons from male and female embryonic day 19 rats, CACHD1 overexpression increased CaV3-mediated action potential firing frequency and neuronal excitability. These data suggest that CACHD1 is structurally an α2δ-like protein that functionally modulates CaV3 voltage-gated calcium channel activity.SIGNIFICANCE STATEMENT This is the first study to characterize the Ca2+ channel and chemotaxis receptor domain containing 1 (CACHD1) protein. CACHD1 is widely expressed in the CNS, in particular in the thalamus, hippocampus, and cerebellum. CACHD1 distribution is similar to that of low voltage-activated (CaV3, T-type) calcium channels, in particular to CaV3.1, a protein that regulates neuronal excitability and is a potential therapeutic target in conditions such as epilepsy and pain. CACHD1 is structurally an α2δ-like protein that functionally increases CaV3 calcium current. CACHD1 increases the presence of CaV3.1 at the cell surface, forms complexes with CaV3.1 at the cell surface, and causes an increase in channel open probability. In hippocampal neurons, CACHD1 causes increases in neuronal firing. Thus, CACHD1 represents a novel protein that modulates CaV3 activity.
Collapse
|
24
|
Brodie MJ, Besag F, Ettinger AB, Mula M, Gobbi G, Comai S, Aldenkamp AP, Steinhoff BJ. Epilepsy, Antiepileptic Drugs, and Aggression: An Evidence-Based Review. Pharmacol Rev 2016; 68:563-602. [PMID: 27255267 PMCID: PMC4931873 DOI: 10.1124/pr.115.012021] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Antiepileptic drugs (AEDs) have many benefits but also many side effects, including aggression, agitation, and irritability, in some patients with epilepsy. This article offers a comprehensive summary of current understanding of aggressive behaviors in patients with epilepsy, including an evidence-based review of aggression during AED treatment. Aggression is seen in a minority of people with epilepsy. It is rarely seizure related but is interictal, sometimes occurring as part of complex psychiatric and behavioral comorbidities, and it is sometimes associated with AED treatment. We review the common neurotransmitter systems and brain regions implicated in both epilepsy and aggression, including the GABA, glutamate, serotonin, dopamine, and noradrenaline systems and the hippocampus, amygdala, prefrontal cortex, anterior cingulate cortex, and temporal lobes. Few controlled clinical studies have used behavioral measures to specifically examine aggression with AEDs, and most evidence comes from adverse event reporting from clinical and observational studies. A systematic approach was used to identify relevant publications, and we present a comprehensive, evidence-based summary of available data surrounding aggression-related behaviors with each of the currently available AEDs in both adults and in children/adolescents with epilepsy. A psychiatric history and history of a propensity toward aggression/anger should routinely be sought from patients, family members, and carers; its presence does not preclude the use of any specific AEDs, but those most likely to be implicated in these behaviors should be used with caution in such cases.
Collapse
Affiliation(s)
- Martin J Brodie
- Epilepsy Unit, West Glasgow Ambulatory Care Hospital-Yorkhill, Glasgow, Scotland (M.J.B.); East London National Health Service Foundation Trust, Bedford, United Kingdom (F.B.); University College London School of Pharmacy, London, United Kingdom (F.B.); Winthrop University Hospital, Mineola, New York (A.B.E.); Epilepsy Group, Atkinson Morley Regional Neuroscience Centre, St. George's University Hospitals National Health Service Foundation Trust, London, United Kingdom (M.M.); Institute of Medical and Biomedical Sciences, St. George's, University of London, London, United Kingdom (M.M.); Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada (G.G., S.C.); McGill University Health Center, McGill University, Montreal, Quebec, Canada (G.G., S.C.); Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy (S.C.); Epilepsy Centre Kempenhaeghe, Heeze, The Netherlands (A.P.A.); Maastricht University Medical Centre, Maastricht, The Netherlands (A.P.A.); and Kork Epilepsy Centre, Kehl-Kork, Germany (B.J.S.)
| | - Frank Besag
- Epilepsy Unit, West Glasgow Ambulatory Care Hospital-Yorkhill, Glasgow, Scotland (M.J.B.); East London National Health Service Foundation Trust, Bedford, United Kingdom (F.B.); University College London School of Pharmacy, London, United Kingdom (F.B.); Winthrop University Hospital, Mineola, New York (A.B.E.); Epilepsy Group, Atkinson Morley Regional Neuroscience Centre, St. George's University Hospitals National Health Service Foundation Trust, London, United Kingdom (M.M.); Institute of Medical and Biomedical Sciences, St. George's, University of London, London, United Kingdom (M.M.); Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada (G.G., S.C.); McGill University Health Center, McGill University, Montreal, Quebec, Canada (G.G., S.C.); Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy (S.C.); Epilepsy Centre Kempenhaeghe, Heeze, The Netherlands (A.P.A.); Maastricht University Medical Centre, Maastricht, The Netherlands (A.P.A.); and Kork Epilepsy Centre, Kehl-Kork, Germany (B.J.S.)
| | - Alan B Ettinger
- Epilepsy Unit, West Glasgow Ambulatory Care Hospital-Yorkhill, Glasgow, Scotland (M.J.B.); East London National Health Service Foundation Trust, Bedford, United Kingdom (F.B.); University College London School of Pharmacy, London, United Kingdom (F.B.); Winthrop University Hospital, Mineola, New York (A.B.E.); Epilepsy Group, Atkinson Morley Regional Neuroscience Centre, St. George's University Hospitals National Health Service Foundation Trust, London, United Kingdom (M.M.); Institute of Medical and Biomedical Sciences, St. George's, University of London, London, United Kingdom (M.M.); Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada (G.G., S.C.); McGill University Health Center, McGill University, Montreal, Quebec, Canada (G.G., S.C.); Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy (S.C.); Epilepsy Centre Kempenhaeghe, Heeze, The Netherlands (A.P.A.); Maastricht University Medical Centre, Maastricht, The Netherlands (A.P.A.); and Kork Epilepsy Centre, Kehl-Kork, Germany (B.J.S.)
| | - Marco Mula
- Epilepsy Unit, West Glasgow Ambulatory Care Hospital-Yorkhill, Glasgow, Scotland (M.J.B.); East London National Health Service Foundation Trust, Bedford, United Kingdom (F.B.); University College London School of Pharmacy, London, United Kingdom (F.B.); Winthrop University Hospital, Mineola, New York (A.B.E.); Epilepsy Group, Atkinson Morley Regional Neuroscience Centre, St. George's University Hospitals National Health Service Foundation Trust, London, United Kingdom (M.M.); Institute of Medical and Biomedical Sciences, St. George's, University of London, London, United Kingdom (M.M.); Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada (G.G., S.C.); McGill University Health Center, McGill University, Montreal, Quebec, Canada (G.G., S.C.); Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy (S.C.); Epilepsy Centre Kempenhaeghe, Heeze, The Netherlands (A.P.A.); Maastricht University Medical Centre, Maastricht, The Netherlands (A.P.A.); and Kork Epilepsy Centre, Kehl-Kork, Germany (B.J.S.)
| | - Gabriella Gobbi
- Epilepsy Unit, West Glasgow Ambulatory Care Hospital-Yorkhill, Glasgow, Scotland (M.J.B.); East London National Health Service Foundation Trust, Bedford, United Kingdom (F.B.); University College London School of Pharmacy, London, United Kingdom (F.B.); Winthrop University Hospital, Mineola, New York (A.B.E.); Epilepsy Group, Atkinson Morley Regional Neuroscience Centre, St. George's University Hospitals National Health Service Foundation Trust, London, United Kingdom (M.M.); Institute of Medical and Biomedical Sciences, St. George's, University of London, London, United Kingdom (M.M.); Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada (G.G., S.C.); McGill University Health Center, McGill University, Montreal, Quebec, Canada (G.G., S.C.); Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy (S.C.); Epilepsy Centre Kempenhaeghe, Heeze, The Netherlands (A.P.A.); Maastricht University Medical Centre, Maastricht, The Netherlands (A.P.A.); and Kork Epilepsy Centre, Kehl-Kork, Germany (B.J.S.)
| | - Stefano Comai
- Epilepsy Unit, West Glasgow Ambulatory Care Hospital-Yorkhill, Glasgow, Scotland (M.J.B.); East London National Health Service Foundation Trust, Bedford, United Kingdom (F.B.); University College London School of Pharmacy, London, United Kingdom (F.B.); Winthrop University Hospital, Mineola, New York (A.B.E.); Epilepsy Group, Atkinson Morley Regional Neuroscience Centre, St. George's University Hospitals National Health Service Foundation Trust, London, United Kingdom (M.M.); Institute of Medical and Biomedical Sciences, St. George's, University of London, London, United Kingdom (M.M.); Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada (G.G., S.C.); McGill University Health Center, McGill University, Montreal, Quebec, Canada (G.G., S.C.); Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy (S.C.); Epilepsy Centre Kempenhaeghe, Heeze, The Netherlands (A.P.A.); Maastricht University Medical Centre, Maastricht, The Netherlands (A.P.A.); and Kork Epilepsy Centre, Kehl-Kork, Germany (B.J.S.)
| | - Albert P Aldenkamp
- Epilepsy Unit, West Glasgow Ambulatory Care Hospital-Yorkhill, Glasgow, Scotland (M.J.B.); East London National Health Service Foundation Trust, Bedford, United Kingdom (F.B.); University College London School of Pharmacy, London, United Kingdom (F.B.); Winthrop University Hospital, Mineola, New York (A.B.E.); Epilepsy Group, Atkinson Morley Regional Neuroscience Centre, St. George's University Hospitals National Health Service Foundation Trust, London, United Kingdom (M.M.); Institute of Medical and Biomedical Sciences, St. George's, University of London, London, United Kingdom (M.M.); Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada (G.G., S.C.); McGill University Health Center, McGill University, Montreal, Quebec, Canada (G.G., S.C.); Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy (S.C.); Epilepsy Centre Kempenhaeghe, Heeze, The Netherlands (A.P.A.); Maastricht University Medical Centre, Maastricht, The Netherlands (A.P.A.); and Kork Epilepsy Centre, Kehl-Kork, Germany (B.J.S.)
| | - Bernhard J Steinhoff
- Epilepsy Unit, West Glasgow Ambulatory Care Hospital-Yorkhill, Glasgow, Scotland (M.J.B.); East London National Health Service Foundation Trust, Bedford, United Kingdom (F.B.); University College London School of Pharmacy, London, United Kingdom (F.B.); Winthrop University Hospital, Mineola, New York (A.B.E.); Epilepsy Group, Atkinson Morley Regional Neuroscience Centre, St. George's University Hospitals National Health Service Foundation Trust, London, United Kingdom (M.M.); Institute of Medical and Biomedical Sciences, St. George's, University of London, London, United Kingdom (M.M.); Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada (G.G., S.C.); McGill University Health Center, McGill University, Montreal, Quebec, Canada (G.G., S.C.); Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy (S.C.); Epilepsy Centre Kempenhaeghe, Heeze, The Netherlands (A.P.A.); Maastricht University Medical Centre, Maastricht, The Netherlands (A.P.A.); and Kork Epilepsy Centre, Kehl-Kork, Germany (B.J.S.)
| |
Collapse
|
25
|
Nabulsi NB, Mercier J, Holden D, Carré S, Najafzadeh S, Vandergeten MC, Lin SF, Deo A, Price N, Wood M, Lara-Jaime T, Montel F, Laruelle M, Carson RE, Hannestad J, Huang Y. Synthesis and Preclinical Evaluation of 11C-UCB-J as a PET Tracer for Imaging the Synaptic Vesicle Glycoprotein 2A in the Brain. J Nucl Med 2016; 57:777-84. [PMID: 26848175 DOI: 10.2967/jnumed.115.168179] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/25/2015] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED The synaptic vesicle glycoprotein 2A (SV2A) is found in secretory vesicles in neurons and endocrine cells. PET with a selective SV2A radiotracer will allow characterization of drugs that modulate SV2A (e.g., antiepileptic drugs) and potentially could be a biomarker of synaptic density (e.g., in neurodegenerative disorders). Here we describe the synthesis and characterization of the SV2A PET radiotracer (11)C-UCB-J ((R)-1-((3-((11)C-methyl-(11)C)pyridin-4-yl)methyl)-4-(3,4,5-trifluorophenyl)pyrrolidin-2-one) in nonhuman primates, including whole-body biodistribution. METHODS (11)C-UCB-J was prepared by C-(11)C-methylation of the 3-pyridyl trifluoroborate precursor with (11)C-methyl iodide via the Suzuki-Miyaura cross-coupling method. Rhesus macaques underwent multiple scans including coinjection with unlabeled UCB-J (17, 50, and 150 μg/kg) or preblocking with the antiepileptic drug levetiracetam at 10 and 30 mg/kg. Scans were acquired for 2 h with arterial sampling and metabolite analysis to measure the input function. Regional volume of distribution (VT) was estimated using the 1-tissue-compartment model. Target occupancy was assessed using the occupancy plot; the dissociation constant (Kd) was determined by fitting self-blocking occupancies to a 1-site model, and the maximum number of receptor binding sites (Bmax) values were derived from baseline VT and from the estimated Kd and the nondisplaceable distribution volume (VND). RESULTS (11)C-UCB-J was synthesized with greater than 98% purity. (11)C-UCB-J exhibited high free fraction (0.46 ± 0.02) and metabolized at a moderate rate (39% ± 5% and 24% ± 3% parent remaining at 30 and 90 min) in plasma. In the monkey brain, (11)C-UCB-J displayed high uptake and fast kinetics. VT was high (∼25-55 mL/cm(3)) in all gray matter regions, consistent with the ubiquitous expression of SV2A. Preblocking with 10 and 30 mg/kg of levetiracetam resulted in approximately 60% and 90% occupancy, respectively. Analysis of the self-blocking scans yielded a Kd estimate of 3.4 nM and Bmax of 125-350 nM, in good agreement with the in vitro inhibition constant (Ki) of 6.3 nM and regional Bmax in humans. Whole-body biodistribution revealed that the liver and the brain are the dose-limiting organs for males and females, respectively. CONCLUSION (11)C-UCB-J exhibited excellent characteristics as an SV2A PET radiotracer in nonhuman primates. The radiotracer is currently undergoing first-in-human evaluation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Anand Deo
- UCB Biopharma, Braine-l'Alleud, Belgium; and
| | | | - Martyn Wood
- UCB Biopharma, Braine-l'Alleud, Belgium; and
| | | | | | | | | | | | | |
Collapse
|
26
|
Neural activity selects myosin IIB and VI with a specific time window in distinct dynamin isoform-mediated synaptic vesicle reuse pathways. J Neurosci 2015; 35:8901-13. [PMID: 26063922 DOI: 10.1523/jneurosci.5028-14.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Presynaptic nerve terminals must maintain stable neurotransmissions via synaptic vesicle (SV) resupply despite encountering wide fluctuations in the number and frequency of incoming action potentials (APs). However, the molecular mechanism linking variation in neural activity to SV resupply is unknown. Myosins II and VI are actin-based cytoskeletal motors that drive dendritic actin dynamics and membrane transport, respectively, at brain synapses. Here we combined genetic knockdown or molecular dysfunction and direct physiological measurement of fast synaptic transmission from paired rat superior cervical ganglion neurons in culture to show that myosins IIB and VI work individually in SV reuse pathways, having distinct dependency and time constants with physiological AP frequency. Myosin VI resupplied the readily releasable pool (RRP) with slow kinetics independently of firing rates but acted quickly within 50 ms after AP. Under high-frequency AP firing, myosin IIB resupplied the RRP with fast kinetics in a slower time window of 200 ms. Knockdown of both myosin and dynamin isoforms by mixed siRNA microinjection revealed that myosin IIB-mediated SV resupply follows amphiphysin/dynamin-1-mediated endocytosis, while myosin VI-mediated SV resupply follows dynamin-3-mediated endocytosis. Collectively, our findings show how distinct myosin isoforms work as vesicle motors in appropriate SV reuse pathways associated with specific firing patterns.
Collapse
|