1
|
Rigon L, Fogliano C, Chaudhuri KR, Poplawska-Domaszewicz K, Falup-Pecurariu C, Murasan I, Wolfschlag M, Odin P, Antonini A. Managing impulse control and related behavioral disorders in Parkinson's disease: where we are in 2025? Expert Rev Neurother 2025; 25:537-554. [PMID: 40152930 DOI: 10.1080/14737175.2025.2485337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/03/2025] [Accepted: 03/24/2025] [Indexed: 03/30/2025]
Abstract
INTRODUCTION Impulse control and related behavioral disorders (ICBDs) commonly complicate Parkinson's disease (PD) course. The ICBDs spectrum encompasses two groups of conditions, with distinct pathophysiology: proper 'impulse control disorders (ICDs)' (e.g. gambling) and the 'ICDs related disorders (ICDs-RD)' (e.g. punding). Behavioral disturbances are associated with dopamine replacement therapies. ICBDs affect quality of life of patients and caregivers, making their management essential for reducing PD overall burden. AREAS COVERED This article reviews current management strategies for ICBDs in PD. The authors highlight strengths and limitations of these strategies, and explore the potential role of emerging treatment options, giving particular focus to new compounds and invasive therapies. EXPERT OPINION Prevention, close monitoring, and caregiver involvement are essential in managing ICBDs in PD. Treatment approaches should be tailored to ICBDs' functional impact and aimed to reduce the pulsatile stimulation of dopamine receptors, especially D2. Dopamine agonist (DA) tapering remains the primary therapeutic approach, alongside psychotherapy and second-line agents, like atypical antipsychotics and serotonin-noradrenaline reuptake inhibitors. Insights into ICDs pathophysiology and DA-specific pharmacodynamics indicate safer profiles for certain preparations (e.g. rotigotine patches) and possibly for D1/D5 agonists like tavapadon. Invasive treatments, including deep brain stimulation and infusion therapies, should be prioritized in advanced-stage PD complicated by ICBDs.
Collapse
Affiliation(s)
- Leonardo Rigon
- Department of Neurorehabilitation, IRCCS San Camillo Hospital, Venice, Italy
- Padova Neuroscience Center (PNC), University of Padua, Padua, Italy
| | - Carmelo Fogliano
- Parkinson's Disease and Movement Disorders Unit, Department of Neuroscience, Centre for Rare Neurological Diseases (ERN-RND), University of Padova, Padova, Italy
| | - K Ray Chaudhuri
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, UK
| | - Karolina Poplawska-Domaszewicz
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, UK
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Cristian Falup-Pecurariu
- Faculty of Medicine, Transilvania University, Brasov, Romania
- Department of Neurology, County Clinic Hospital, Brasov, Romania
| | - Iulia Murasan
- Department of Neurology, County Clinic Hospital, Brasov, Romania
| | - Mirjam Wolfschlag
- Clinical Addiction Research Unit, Department of Clinical Sciences Lund, Psychiatry, Faculty of Medicine Lund University, Lund, Sweden
- Department of Psychiatry Malmö-Trelleborg, Region Skåne, Malmö Addiction Center, Kristianstad, Sweden
| | - Per Odin
- Division of Neurology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Neurology, Rehabilitation Medicine, Memory and Geriatrics, Skåne University Hospital, Lund, Sweden
| | - Angelo Antonini
- Padova Neuroscience Center (PNC), University of Padua, Padua, Italy
- Parkinson's Disease and Movement Disorders Unit, Department of Neuroscience, Centre for Rare Neurological Diseases (ERN-RND), University of Padova, Padova, Italy
- Study Center for Neurodegeneration (CESNE), University of Padova, Padova, Italy
| |
Collapse
|
2
|
Testa G, Sotgiu I, Rusconi ML, Cauda F, Costa T. The Functional Neuroimaging of Autobiographical Memory for Happy Events: A Coordinate-Based Meta-Analysis. Healthcare (Basel) 2024; 12:711. [PMID: 38610134 PMCID: PMC11011908 DOI: 10.3390/healthcare12070711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/14/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Neuroimaging studies using autobiographical recall methods investigated the neural correlates of happy autobiographical memories (AMs). The scope of the present activation likelihood estimation (ALE) meta-analysis was to quantitatively analyze neuroimaging studies of happy AMs conducted with autobiographical recall paradigms. A total of 17 studies (12 fMRI; 5 PET) on healthy individuals were included in this meta-analysis. During recall of happy life events, consistent activation foci were found in the frontal gyrus, the cingulate cortex, the basal ganglia, the parahippocampus/hippocampus, the hypothalamus, and the thalamus. The result of this quantitative coordinate-based ALE meta-analysis provides an objective view of brain responses associated with AM recollection of happy events, thus identifying brain areas consistently activated across studies. This extended brain network included frontal and limbic regions involved in remembering emotionally relevant positive events. The frontal gyrus and the cingulate cortex may be responsible for cognitive appraisal processes during recollection of happy AMs, while the subthalamic nucleus and globus pallidus may be involved in pleasure reactions associated with recollection of happy life events. These findings shed light on the neural network involved in recalling positive AMs in healthy individuals, opening further avenues for future research in clinical populations with mood disorders.
Collapse
Affiliation(s)
- Giulia Testa
- Instituto de Transferencia e Investigación, Universidad Internacional de La Rioja, 26004 La Rioja, Spain
| | - Igor Sotgiu
- Department of Human and Social Sciences, University of Bergamo, 24129 Bergamo, Italy; (I.S.); (M.L.R.)
| | - Maria Luisa Rusconi
- Department of Human and Social Sciences, University of Bergamo, 24129 Bergamo, Italy; (I.S.); (M.L.R.)
| | - Franco Cauda
- Department of Psychology, University of Turin, 10124 Turin, Italy; (F.C.); (T.C.)
- GCS-fMRI Research Group, Koelliker Hospital, 10134 Turin, Italy
| | - Tommaso Costa
- Department of Psychology, University of Turin, 10124 Turin, Italy; (F.C.); (T.C.)
- GCS-fMRI Research Group, Koelliker Hospital, 10134 Turin, Italy
| |
Collapse
|
3
|
Prasad AA, Wallén-Mackenzie Å. Architecture of the subthalamic nucleus. Commun Biol 2024; 7:78. [PMID: 38200143 PMCID: PMC10782020 DOI: 10.1038/s42003-023-05691-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
The subthalamic nucleus (STN) is a major neuromodulation target for the alleviation of neurological and neuropsychiatric symptoms using deep brain stimulation (DBS). STN-DBS is today applied as treatment in Parkinson´s disease, dystonia, essential tremor, and obsessive-compulsive disorder (OCD). STN-DBS also shows promise as a treatment for refractory Tourette syndrome. However, the internal organization of the STN has remained elusive and challenges researchers and clinicians: How can this small brain structure engage in the multitude of functions that renders it a key hub for therapeutic intervention of a variety of brain disorders ranging from motor to affective to cognitive? Based on recent gene expression studies of the STN, a comprehensive view of the anatomical and cellular organization, including revelations of spatio-molecular heterogeneity, is now possible to outline. In this review, we focus attention to the neurobiological architecture of the STN with specific emphasis on molecular patterns discovered within this complex brain area. Studies from human, non-human primate, and rodent brains now reveal anatomically defined distribution of specific molecular markers. Together their spatial patterns indicate a heterogeneous molecular architecture within the STN. Considering the translational capacity of targeting the STN in severe brain disorders, the addition of molecular profiling of the STN will allow for advancement in precision of clinical STN-based interventions.
Collapse
Affiliation(s)
- Asheeta A Prasad
- University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, NSW, Australia.
| | | |
Collapse
|
4
|
Eisinger RS, Cagle JN, Alcantara JD, Opri E, Cernera S, Le A, Torres Ponce EM, Lanese J, Nelson B, Lopes J, Hundley C, Ravy T, Wu SS, Foote KD, Okun MS, Gunduz A. Distinct Roles of the Human Subthalamic Nucleus and Dorsal Pallidum in Parkinson's Disease Impulsivity. Biol Psychiatry 2022; 91:370-379. [PMID: 33993998 PMCID: PMC8419208 DOI: 10.1016/j.biopsych.2021.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 11/02/2022]
Abstract
BACKGROUND Impulsivity and impulse control disorders are common in Parkinson's disease and lead to increased morbidity and reduced quality of life. Impulsivity is thought to arise from aberrant reward processing and inhibitory control, but it is unclear why deep brain stimulation of either the subthalamic nucleus (STN) or globus pallidus internus (GPi) affects levels of impulsivity. Our aim was to assess the role of the STN and GPi in impulsivity using invasive local field potential (LFP) recordings from deep brain stimulation electrodes. METHODS We measured LFPs during a simple rewarding Go/NoGo paradigm in 39 female and male human patients with Parkinson's disease manifesting variable amounts of impulsivity who were undergoing unilateral deep brain stimulation of either the STN (18 nuclei) or GPi (28 nuclei). We identified reward-specific LFP event-related potentials and correlated them to impulsivity severity. RESULTS LFPs in both structures modulated during reward-specific Go and NoGo stimulus evaluation, reward feedback, and loss feedback. Motor and limbic functions were anatomically separable in the GPi but not in the STN. Across participants, LFP reward processing responses in the STN and GPi uniquely depended on the severity of impulsivity. CONCLUSIONS This study establishes LFP correlates of impulsivity within the STN and GPi regions. We propose a model for basal ganglia reward processing that includes the bottom-up role of the GPi in reward salience and the top-down role of the STN in cognitive control.
Collapse
Affiliation(s)
- Robert S Eisinger
- Department of Neuroscience, University of Florida, Gainesville, Florida.
| | - Jackson N Cagle
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Jose D Alcantara
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Enrico Opri
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Stephanie Cernera
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Anh Le
- Department of Neuroscience, University of Florida, Gainesville, Florida
| | | | - Joseph Lanese
- Department of Neuroscience, University of Florida, Gainesville, Florida
| | - Brawn Nelson
- Department of Neuroscience, University of Florida, Gainesville, Florida
| | - Janine Lopes
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida
| | | | - Tasmeah Ravy
- Department of Neuroscience, University of Florida, Gainesville, Florida
| | - Samuel S Wu
- Department of Biostatistics, University of Florida, Gainesville, Florida
| | - Kelly D Foote
- Department of Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida
| | - Michael S Okun
- Department of Neuroscience, University of Florida, Gainesville, Florida; Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida; Department of Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida
| | - Aysegul Gunduz
- Department of Neuroscience, University of Florida, Gainesville, Florida; J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| |
Collapse
|
5
|
Eguchi K, Shirai S, Matsushima M, Kano T, Yamazaki K, Hamauchi S, Sasamori T, Seki T, Hirata K, Kitagawa M, Otsuki M, Shiga T, Houkin K, Sasaki H, Yabe I. Correlation of active contact location with weight gain after subthalamic nucleus deep brain stimulation: a case series. BMC Neurol 2021; 21:351. [PMID: 34517835 PMCID: PMC8436541 DOI: 10.1186/s12883-021-02383-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 09/01/2021] [Indexed: 12/16/2022] Open
Abstract
Background Weight gain (WG) is a frequently reported side effect of subthalamic deep brain stimulation; however, the underlying mechanisms remain unclear. The active contact locations influence the clinical outcomes of subthalamic deep brain stimulation, but it is unclear whether WG is directly associated with the active contact locations. We aimed to determine whether WG is associated with the subthalamic deep brain stimulation active contact locations. Methods We enrolled 14 patients with Parkinson’s disease who underwent bilateral subthalamic deep brain stimulation between 2013 and 2019. Bodyweight and body mass index were measured before and one year following the surgery. The Lead-DBS Matlab toolbox was used to determine the active contact locations based on magnetic resonance imaging and computed tomography. We also created sweet spot maps for WG using voxel-wise statistics, based on volume of tissue activation and the WG of each patient. Fluorodeoxyglucose-positron emission tomography data were also acquired before and one year following surgery, and statistical parametric mapping was used to evaluate changes in brain metabolism. We examined which brain regions’ metabolism fluctuation significantly correlated with increased body mass index scores and positron emission tomography data. Results One year after surgery, the body mass index increase was 2.03 kg/m2. The sweet spots for WG were bilateral, mainly located dorsally outside of the subthalamic nucleus (STN). Furthermore, WG was correlated with increased metabolism in the left limbic and associative regions, including the middle temporal gyrus, inferior frontal gyrus, and orbital gyrus. Conclusions Although the mechanisms underlying WG following subthalamic deep brain stimulation are possibly multifactorial, our findings suggest that dorsal stimulation outside of STN may lead to WG. The metabolic changes in limbic and associative cortical regions after STN-DBS may also be one of the mechanisms underlying WG. Further studies are warranted to confirm whether dorsal stimulation outside of STN changes the activities of these cortical regions.
Collapse
Affiliation(s)
- Katsuki Eguchi
- Department of Neurology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, 060-8638, Sapporo, Japan.
| | - Shinichi Shirai
- Department of Neurology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, 060-8638, Sapporo, Japan
| | - Masaaki Matsushima
- Department of Neurology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, 060-8638, Sapporo, Japan
| | - Takahiro Kano
- Department of Neurology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, 060-8638, Sapporo, Japan
| | - Kazuyoshi Yamazaki
- Department of Neurosurgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, 060-8638, Sapporo, Japan
| | - Shuji Hamauchi
- Department of Neurosurgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, 060-8638, Sapporo, Japan
| | - Toru Sasamori
- Department of Neurosurgery, Sapporo Azabu Neurosurgical Hospital, Kita 22, Higashi 1, Higashi-ku, 065-0022, Sapporo, Japan
| | - Toshitaka Seki
- Department of Neurosurgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, 060-8638, Sapporo, Japan
| | - Kenji Hirata
- Department of Diagnostic Imaging, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, 060-8638, Sapporo, Japan
| | - Mayumi Kitagawa
- Sapporo Teishinkai Hospital, Kita 33, Higashi 1, Higashi-ku, 065-0033, Sapporo, Japan
| | - Mika Otsuki
- Faculty of Health Sciences, Graduate School of Health Sciences, Hokkaido University, Kita 15, Nishi 7, Kita-ku, 060-8638, Sapporo, Japan
| | - Tohru Shiga
- Department of Nuclear Medicine, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, 060-8638, Sapporo, Japan
| | - Kiyohiro Houkin
- Department of Neurosurgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, 060-8638, Sapporo, Japan
| | - Hidenao Sasaki
- Department of Neurology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, 060-8638, Sapporo, Japan
| | - Ichiro Yabe
- Department of Neurology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, 060-8638, Sapporo, Japan
| |
Collapse
|
6
|
Internal States Influence the Representation and Modulation of Food Intake by Subthalamic Neurons. Neurosci Bull 2020; 36:1355-1368. [PMID: 32567027 DOI: 10.1007/s12264-020-00533-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 02/16/2020] [Indexed: 01/02/2023] Open
Abstract
Deep brain stimulation of the subthalamic nucleus (STN) is an effective therapy for motor deficits in Parkinson's disease (PD), but commonly causes weight gain in late-phase PD patients probably by increasing feeding motivation. It is unclear how STN neurons represent and modulate feeding behavior in different internal states. In the present study, we found that feeding caused a robust activation of STN neurons in mice (GCaMP6 signal increased by 48.4% ± 7.2%, n = 9, P = 0.0003), and the extent varied with the size, valence, and palatability of food, but not with the repetition of feeding. Interestingly, energy deprivation increased the spontaneous firing rate (8.5 ± 1.5 Hz, n = 17, versus 4.7 ± 0.7 Hz, n = 18, P = 0.03) and the depolarization-induced spikes in STN neurons, as well as enhanced the STN responses to feeding. Optogenetic experiments revealed that stimulation and inhibition of STN neurons respectively reduced (by 11% ± 6%, n = 6, P = 0.02) and enhanced (by 36% ± 15%, n = 7, P = 0.03) food intake only in the dark phase. In conclusion, our results support the hypothesis that STN neurons are activated by feeding behavior, depending on energy homeostatic status and the palatability of food, and modulation of these neurons is sufficient to regulate food intake.
Collapse
|
7
|
Vachez Y, Carcenac C, Magnard R, Kerkerian‐Le Goff L, Salin P, Savasta M, Carnicella S, Boulet S. Subthalamic Nucleus Stimulation Impairs Motivation: Implication for Apathy in Parkinson's Disease. Mov Disord 2020; 35:616-628. [DOI: 10.1002/mds.27953] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 11/13/2019] [Accepted: 11/25/2019] [Indexed: 12/25/2022] Open
Affiliation(s)
- Yvan Vachez
- Inserm U1216 Grenoble France
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN Grenoble France
| | - Carole Carcenac
- Inserm U1216 Grenoble France
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN Grenoble France
| | - Robin Magnard
- Inserm U1216 Grenoble France
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN Grenoble France
| | | | | | - Marc Savasta
- Inserm U1216 Grenoble France
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN Grenoble France
| | - Sebastien Carnicella
- Inserm U1216 Grenoble France
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN Grenoble France
| | - Sabrina Boulet
- Inserm U1216 Grenoble France
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN Grenoble France
| |
Collapse
|
8
|
Duprez J, Houvenaghel JF, Dondaine T, Péron J, Haegelen C, Drapier S, Modolo J, Jannin P, Vérin M, Sauleau P. Subthalamic nucleus local field potentials recordings reveal subtle effects of promised reward during conflict resolution in Parkinson's disease. Neuroimage 2019; 197:232-242. [DOI: 10.1016/j.neuroimage.2019.04.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/20/2019] [Accepted: 04/26/2019] [Indexed: 10/26/2022] Open
|
9
|
Vitale C, Amboni M, Erro R, Picillo M, Pellecchia MT, Barone P, Trojano L, Santangelo G. Parkinson’s disease management and impulse control disorders: current state and future perspectives. Expert Rev Neurother 2019; 19:495-508. [DOI: 10.1080/14737175.2019.1620603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Carmine Vitale
- Department of Motor Sciences and Health, University “Parthenope”, Naples, Italy
| | - Marianna Amboni
- Neurodegenerative Diseases Center, Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Roberto Erro
- Neurodegenerative Diseases Center, Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Marina Picillo
- Neurodegenerative Diseases Center, Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Maria Teresa Pellecchia
- Neurodegenerative Diseases Center, Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Paolo Barone
- Neurodegenerative Diseases Center, Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Luigi Trojano
- Department of Psychology, University “Luigi Vanvitelli”, Caserta, Italy
| | | |
Collapse
|
10
|
Signaling Incentive and Drive in the Primate Ventral Pallidum for Motivational Control of Goal-Directed Action. J Neurosci 2019; 39:1793-1804. [PMID: 30626695 PMCID: PMC6407294 DOI: 10.1523/jneurosci.2399-18.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/05/2018] [Accepted: 12/27/2018] [Indexed: 11/28/2022] Open
Abstract
Processing incentive and drive is essential for control of goal-directed behavior. The limbic part of the basal ganglia has been emphasized in these processes, yet the exact neuronal mechanism has remained elusive. In this study, we examined the neuronal activity of the ventral pallidum (VP) and its upstream area, the rostromedial caudate (rmCD), while two male macaque monkeys performed an instrumental lever release task in which a visual cue indicated the forthcoming reward size. We found that the activity of some neurons in VP and rmCD reflected the expected reward size transiently following the cue. Reward size coding appeared earlier and stronger in VP than in rmCD. We also found that the activity in these areas was modulated by the satiation level of monkeys, which also occurred more frequently in VP than in rmCD. The information regarding reward size and satiation level was independently signaled in the neuronal populations of these areas. The data thus highlighted the neuronal coding of key variables for goal-directed behavior in VP. Furthermore, pharmacological inactivation of VP induced more severe deficit of goal-directed behavior than inactivation of rmCD, which was indicated by abnormal error repetition and diminished satiation effect on the performance. These results suggest that VP encodes incentive value and internal drive and plays a pivotal role in the control of motivation to promote goal-directed behavior. SIGNIFICANCE STATEMENT The limbic part of the basal ganglia has been implicated in the motivational control of goal-directed action. Here, we investigated how the ventral pallidum (VP) and the rostromedial caudate (rmCD) encode incentive value and internal drive and control goal-directed behavior. Neuronal recording and subsequent pharmacological inactivation revealed that VP had stronger coding of reward size and satiation level than rmCD. Reward size and satiation level were independently encoded in the neuronal population of these areas. Furthermore, VP inactivation impaired goal-directed behavior more severely than rmCD inactivation. These results highlight the central role of VP in the motivational control of goal-directed action.
Collapse
|
11
|
Enhanced Motivational Modulation of Motor Behaviour with Subthalamic Nucleus Deep Brain Stimulation in Parkinson's Disease. PARKINSONS DISEASE 2019; 2019:3604372. [PMID: 30719276 PMCID: PMC6334333 DOI: 10.1155/2019/3604372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/27/2018] [Indexed: 01/24/2023]
Abstract
Background Motivational improvement of movement speed in Parkinson's disease (PD) is observed in life-threatening situations and has been empirically demonstrated in experimental studies using reaction time paradigms. Objectives To address two clinically relevant questions: first, if in PD, motivational modulation through provision of monetary incentive on a sorting task that approximates performance on everyday life tasks affects movement speed. Second, how this effect is compared between PD patients treated with medication or subthalamic deep brain stimulation. Methods We used the Card Arranging Reward Responsivity Objective Test that shares component processes with everyday life tasks to compare reward responsivity of movement speed in 10 PD patients with STN-DBS, 10 nonoperated medicated PD patients, both OFF and ON their usual medications/stimulation, and 11 age-matched healthy controls. Results Despite longer disease duration and more severe motor symptoms, STN-DBS PD patients with the stimulator turned ON showed greater improvement of movement speed with the prospect of monetary incentive compared to both medicated PD patients and healthy participants. Discussion The effect of monetary incentive on movement speed in PD patients is more pronounced with STN-DBS than dopaminergic medications, suggesting that motivational modulation of movement speed may be enhanced as a direct consequence of STN stimulation.
Collapse
|
12
|
Eisinger RS, Urdaneta ME, Foote KD, Okun MS, Gunduz A. Non-motor Characterization of the Basal Ganglia: Evidence From Human and Non-human Primate Electrophysiology. Front Neurosci 2018; 12:385. [PMID: 30026679 PMCID: PMC6041403 DOI: 10.3389/fnins.2018.00385] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/22/2018] [Indexed: 12/02/2022] Open
Abstract
Although the basal ganglia have been implicated in a growing list of human behaviors, they include some of the least understood nuclei in the brain. For several decades studies have employed numerous methodologies to uncover evidence pointing to the basal ganglia as a hub of both motor and non-motor function. Recently, new electrophysiological characterization of the basal ganglia in humans has become possible through direct access to these deep structures as part of routine neurosurgery. Electrophysiological approaches for identifying non-motor function have the potential to unlock a deeper understanding of pathways that may inform clinical interventions and particularly neuromodulation. Various electrophysiological modalities can also be combined to reveal functional connections between the basal ganglia and traditional structures throughout the neocortex that have been linked to non-motor behavior. Several reviews have previously summarized evidence for non-motor function in the basal ganglia stemming from behavioral, clinical, computational, imaging, and non-primate animal studies; in this review, instead we turn to electrophysiological studies of non-human primates and humans. We begin by introducing common electrophysiological methodologies for basal ganglia investigation, and then we discuss studies across numerous non-motor domains–emotion, response inhibition, conflict, decision-making, error-detection and surprise, reward processing, language, and time processing. We discuss the limitations of current approaches and highlight the current state of the information.
Collapse
Affiliation(s)
- Robert S Eisinger
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Morgan E Urdaneta
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Kelly D Foote
- Department of Neurosurgery, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States
| | - Michael S Okun
- Department of Neuroscience, University of Florida, Gainesville, FL, United States.,Department of Neurosurgery, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States.,Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States
| | - Aysegul Gunduz
- Department of Neuroscience, University of Florida, Gainesville, FL, United States.,Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States.,Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| |
Collapse
|
13
|
Nougaret S, Ravel S. Dynamic Encoding of Effort and Reward throughout the Execution of Action by External Globus Pallidus Neurons in Monkeys. J Cogn Neurosci 2018; 30:1130-1144. [PMID: 29762102 DOI: 10.1162/jocn_a_01277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Humans and animals must evaluate the costs and expected benefits of their actions to make adaptive choices. Prior studies have demonstrated the involvement of the basal ganglia in this evaluation. However, little is known about the role of the external part of the globus pallidus (GPe), which is well positioned to integrate motor and reward-related information, in this process. To investigate this role, the activity of 126 neurons was recorded in the associative and limbic parts of the GPe of two monkeys performing a behavioral task in which different levels of force were required to obtain different amounts of liquid reward. The results first revealed that the activity of associative and limbic GPe neurons could be modulated not only by cognitive and limbic but also motor information at the same time, both during a single period or during different periods throughout the trial, mainly in an independent way. Moreover, as a population, GPe neurons encoded these types of information dynamically throughout the trial, when each piece of information was the most relevant for the achievement of the action. Taken together, these results suggest that GPe neurons could be dedicated to the parallel monitoring of task parameters essential to adjusting and maintaining goal-directed behavior.
Collapse
Affiliation(s)
- Simon Nougaret
- Institut de Neurosciences de la Timone, UMR7289 Centre National de la Recherche Scientifique and Aix-Marseille Université, France
| | - Sabrina Ravel
- Institut de Neurosciences de la Timone, UMR7289 Centre National de la Recherche Scientifique and Aix-Marseille Université, France
| |
Collapse
|
14
|
Creed M. Current and emerging neuromodulation therapies for addiction: insight from pre-clinical studies. Curr Opin Neurobiol 2018. [PMID: 29524847 DOI: 10.1016/j.conb.2018.02.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Neuromodulation therapies such as deep brain stimulation or transcranial magnetic stimulation have shown promise in reducing symptoms of addiction when applied to the prefontal cortex, nucleus accumbens or subthalamic nucleus. Pre-clinical investigations implicate modulation of the cortico-basal ganglia network in these therapeutic effects, and this mechanistic understanding is necessary to optimize stimulation paradigms. Recently, the principle that neuromodulation can reverse drug-evoked synaptic plasticity and reduce behavioral symptoms of addiction has inspired novel stimulation paradigms that have long-term effects in animal models. Pre-clinical studies have also raised the possibility that tailoring neuromodulation protocols can modulate distinct symptoms of addiction. Combining mechanistic knowledge of circuit dysfunction with emerging technologies for non-invasive neuromodulation holds promise for developing therapies for addiction and related disorders.
Collapse
Affiliation(s)
- Meaghan Creed
- University of Maryland School of Medicine, Department of Pharmacology, 655 West Baltimore Street, Bressler Research Building, 4-021, Baltimore, MD 21201, USA.
| |
Collapse
|
15
|
Rossi PJ, Shute JB, Opri E, Molina R, Peden C, Castellanos O, Foote KD, Gunduz A, Okun MS. Impulsivity in Parkinson's disease is associated with altered subthalamic but not globus pallidus internus activity. J Neurol Neurosurg Psychiatry 2017; 88:968-970. [PMID: 28822983 DOI: 10.1136/jnnp-2016-315325] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/08/2017] [Accepted: 07/11/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND A significant subset of patients with Parkinson's disease (PD) suffer from impulse control disorders (ICDs). A hallmark feature of many ICDs is the pursuit of rewarding behaviours despite negative consequences. Recent evidence implicates the subthalamic nucleus (STN) and globus pallidus internus (GPi) in reward and punishment processing, and deep brain stimulation (DBS) of these structures has been associated with changes in ICD symptoms. METHODS We tested the hypothesis that in patients with PD diagnosed with ICD, neurons in the STN and GPi would be more responsive to reward-related stimuli and less responsive to loss-related stimuli. We studied a cohort of 43 patients with PD (12 with an ICD and 31 without) undergoing DBS electrode placement surgery. Patients performed a behavioural task in which their action choices were motivated by the potential for either a monetary reward or a monetary loss. During task performance, the activity of individual neurons was recorded in either the STN (n=100) or the GPi (n=100). RESULTS The presence of an ICD was associated with significantly greater proportions of reward responsive neurons (p<0.01) and significantly lower proportions of loss responsive neurons (p<0.05) in the STN, but not in the GPi. CONCLUSIONS These findings provide further evidence of STN involvement in impulsive behaviour in the PD population.
Collapse
Affiliation(s)
- Peter Justin Rossi
- Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, USA
| | - Jonathan B Shute
- Department of Biomedical Engineering, University of Florida, Gainesville, USA
| | - Enrico Opri
- Department of Biomedical Engineering, University of Florida, Gainesville, USA
| | - Rene Molina
- Department of Biomedical Engineering, University of Florida, Gainesville, USA
| | - Corinna Peden
- Department of Biomedical Engineering, University of Florida, Gainesville, USA
| | - Oscar Castellanos
- Department of Biomedical Engineering, University of Florida, Gainesville, USA
| | - Kelly D Foote
- Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, USA
| | - Aysegul Gunduz
- Department of Biomedical Engineering, University of Florida, Gainesville, USA
| | - Michael S Okun
- Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, USA
| |
Collapse
|
16
|
Aiello M, Eleopra R, Foroni F, Rinaldo S, Rumiati RI. Weight gain after STN-DBS: The role of reward sensitivity and impulsivity. Cortex 2017; 92:150-161. [PMID: 28494345 DOI: 10.1016/j.cortex.2017.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/15/2017] [Accepted: 04/08/2017] [Indexed: 12/23/2022]
Abstract
Weight gain has been reported after deep brain stimulation of the subthalamic nucleus (STN-DBS), a widely used treatment for Parkinson's disease (PD). This nucleus has been repeatedly found to be linked both to reward and to inhibitory control, two key aspects in the control of food intake. In this study, we assessed whether weight gain experienced by patients with PD after STN-DBS, might be due to an alteration of reward and inhibitory functions. Eighteen patients with PD were compared to eighteen healthy controls and tested three times: before surgery, in ON medication and after surgery, respectively five days after the implantation in ON medication/OFF stimulation and at least three months after surgery in ON medication/ON stimulation. All participants were assessed for depression (Beck Depression Inventory), anhedonia (Snaith-Hamilton Pleasure Scale) and impulsiveness (Barratt Impulsiveness Scale). They performed a battery of tests assessing food reward sensitivity (Liking, Wanting and Preference) and a food go/no-go task. Results showed that body weight significantly increased after STN-DBS. A few days after surgery, patients were slower and more impulsive in the go/no-go task, showed a higher preference for high calorie (HC) foods and rated foods as less tasty. Months after subthalamic stimulation, the performance on the go/no-go task improved while no differences were observed in reward sensitivity. Interestingly, weight gain resulted greater in patients with higher levels of attentional impulsiveness pre-surgery, higher wanting for low calorie (LC) foods and impulsivity in the go/no-go task in ON medication/ON stimulation. However, only wanting and attentional impulsivity significantly predicted weight change. Furthermore, weight gain resulted associated with the reduction of l-Dopa after surgery and disease's duration. In conclusion, our findings are consistent with the view that weight gain in PD after STN-DBS has a multifactorial nature, which reflects the complex functional organization of the STN.
Collapse
Affiliation(s)
| | - Roberto Eleopra
- S.O.C. Neurologia, Azienda Ospedaliero Universitaria "Santa Maria Della Misericordia", Piazzale Santa Maria Della Misericordia, Udine, UD, Italy
| | | | - Sara Rinaldo
- S.O.C. Neurologia, Azienda Ospedaliero Universitaria "Santa Maria Della Misericordia", Piazzale Santa Maria Della Misericordia, Udine, UD, Italy
| | | |
Collapse
|
17
|
Justin Rossi P, Peden C, Castellanos O, Foote KD, Gunduz A, Okun MS. The human subthalamic nucleus and globus pallidus internus differentially encode reward during action control. Hum Brain Mapp 2017; 38:1952-1964. [PMID: 28130916 DOI: 10.1002/hbm.23496] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/20/2016] [Accepted: 12/07/2016] [Indexed: 12/18/2022] Open
Abstract
The subthalamic nucleus (STN) and globus pallidus internus (GPi) have recently been shown to encode reward, but few studies have been performed in humans. We investigated STN and GPi encoding of reward and loss (i.e., valence) in humans with Parkinson's disease. To test the hypothesis that STN and GPi neurons would change their firing rate in response to reward- and loss-related stimuli, we recorded the activity of individual neurons while participants performed a behavioral task. In the task, action choices were associated with potential rewarding, punitive, or neutral outcomes. We found that STN and GPi neurons encode valence-related information during action control, but the proportion of valence-responsive neurons was greater in the STN compared to the GPi. In the STN, reward-related stimuli mobilized a greater proportion of neurons than loss-related stimuli. We also found surprising limbic overlap with the sensorimotor regions in both the STN and GPi, and this overlap was greater than has been previously reported. These findings may help to explain alterations in limbic function that have been observed following deep brain stimulation therapy of the STN and GPi. Hum Brain Mapp 38:1952-1964, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Peter Justin Rossi
- Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, Florida
| | - Corinna Peden
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Oscar Castellanos
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Kelly D Foote
- Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, Florida
| | - Aysegul Gunduz
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Michael S Okun
- Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, Florida
| |
Collapse
|
18
|
Rossi PJ, Gunduz A, Okun MS. The Subthalamic Nucleus, Limbic Function, and Impulse Control. Neuropsychol Rev 2015; 25:398-410. [PMID: 26577509 DOI: 10.1007/s11065-015-9306-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/08/2015] [Indexed: 12/16/2022]
Abstract
It has been well documented that deep brain stimulation (DBS) of the subthalamic nucleus (STN) to address some of the disabling motor symptoms of Parkinson's disease (PD) can evoke unintended effects, especially on non-motor behavior. This observation has catalyzed more than a decade of research concentrated on establishing trends and identifying potential mechanisms for these non-motor effects. While many issues remain unresolved, the collective result of many research studies and clinical observations has been a general recognition of the role of the STN in mediating limbic function. In particular, the STN has been implicated in impulse control and the related construct of valence processing. A better understanding of STN involvement in these phenomena could have important implications for treating impulse control disorders (ICDs). ICDs affect up to 40% of PD patients on dopamine agonist therapy and approximately 15% of PD patients overall. ICDs have been reported to be associated with STN DBS. In this paper we will focus on impulse control and review pre-clinical, clinical, behavioral, imaging, and electrophysiological studies pertaining to the limbic function of the STN.
Collapse
Affiliation(s)
- P Justin Rossi
- Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, USA. .,Department of Neurology, University of Florida College of Medicine, HSC Box 100236, Gainesville, FL, 32610-0236, USA.
| | - Aysegul Gunduz
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, USA
| |
Collapse
|