1
|
Kajita Y, Kojima N, Shirao T. A lack of drebrin causes olfactory impairment. Brain Behav 2024; 14:e3354. [PMID: 38376048 PMCID: PMC10757890 DOI: 10.1002/brb3.3354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/09/2023] [Accepted: 11/26/2023] [Indexed: 02/21/2024] Open
Abstract
INTRODUCTION Olfactory deficit often occurs during the prodromal stage of Alzheimer's disease (AD). Although olfactory deficit is a useful measure for screening AD-related amnestic disorder, little is known about the cause of this deficit. Human and animal studies indicate that loss of the actin binding protein, drebrin, is closely related to cognitive dysfunction in AD. We hypothesized that the olfactory deficit in AD is caused by the loss of drebrin from the spine. METHODS To verify this hypothesis, we performed the buried food test in two types of drebrin knockout mice, such as drebrin-double (E and A) knockout (DXKO) mice, and drebrin A-specific knockout (DAKO) mice. RESULTS The DXKO mice spent a significantly longer time to find food compared with the wild-type (WT) littermates. In contrast, the DAKO mice, in which drebrin E rather than drebrin A is expressed in the postsynaptic sites of mature neurons, spent an equivalent time trying to find food compared to that of the WT. The DXKO mice showed comparable food motivation and sensory functions other than olfaction, including visual and auditory functions. CONCLUSION These results indicate that drebrin is necessary for normal olfactory function. Further study is needed to determine whether it is necessary for normal olfaction to express drebrin E during the developmental stage or to have drebrin (whether E or A) present after maturation.
Collapse
Affiliation(s)
- Yuki Kajita
- Department of Neurobiology & BehaviorGunma University Graduate School of MedicineMaebashiGunmaJapan
| | - Nobuhiko Kojima
- Department of Neurobiology & BehaviorGunma University Graduate School of MedicineMaebashiGunmaJapan
- Faculty of Life SciencesToyo UniversityOra‐gunGunmaJapan
| | - Tomoaki Shirao
- Department of Neurobiology & BehaviorGunma University Graduate School of MedicineMaebashiGunmaJapan
- AlzMed, Inc., UT South Building, Entrepreneurs LaboratoryBunkyo‐kuTokyoJapan
| |
Collapse
|
2
|
Phldb2 is essential for regulating hippocampal dendritic spine morphology through drebrin in an adult-type isoform-specific manner. Neurosci Res 2022; 185:1-10. [PMID: 36162735 DOI: 10.1016/j.neures.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022]
Abstract
Morphologically dynamic dendritic spines are the major sites of neuronal plasticity in the brain; however, the molecular mechanisms underlying their morphological dynamics have not been fully elucidated. Phldb2 is a protein that contains two predicted coiled-coil domains and the pleckstrin homology domain, whose binding is highly sensitive to PIP3. We have previously demonstrated that Phldb2 regulates synaptic plasticity, glutamate receptor trafficking, and PSD-95 turnover. Drebrin is one of the most abundant neuron-specific F-actin-binding proteins that are pivotal for synaptic morphology and plasticity. We observed that Phldb2 bound to drebrin A (adult-type drebrin), but not to drebrin E (embryonic-type drebrin). In the absence of Phldb2, the subcellular localization of drebrin A in the hippocampal spines and its distribution in the hippocampus were altered. Immature spines, such as the filopodium type, increased relatively in the CA1 regions of the hippocampus, whereas mushroom spines, a typical mature type, decreased in Phldb2-/- mice. Phldb2 suppressed the formation of an abnormal filopodium structure induced by drebrin A overexpression. Taken together, these findings demonstrate that Phldb2 is pivotal for dendritic spine morphology and possibly for synaptic plasticity in mature animals by regulating drebrin A localization.
Collapse
|
3
|
Kajita Y, Mushiake H. Heterogeneous GAD65 Expression in Subtypes of GABAergic Neurons Across Layers of the Cerebral Cortex and Hippocampus. Front Behav Neurosci 2021; 15:750869. [PMID: 34803625 PMCID: PMC8595203 DOI: 10.3389/fnbeh.2021.750869] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
Gamma-aminobutyric acid (GABA), a major inhibitory transmitter in the central nervous system, is synthesized via either of two enzyme isoforms, GAD65 or GAD67. GAD65 is synthesized in the soma but functions at synaptic terminals in an activity-dependent manner, playing a distinct role in excitatory-inhibitory balance. However, the extent to which each GABAergic subtype expresses GAD65 in the resting state remains unclear. In this study, we compared GAD65 expression among six GABAergic subtypes: NPY+, nNOS+, PV+, SOM+, CR+, and CCK+. According to the results, the GABAergic subtypes were classified into two groups per region based on GAD65 expression levels: high-expression (NPY+ and nNOS+) and low-expression groups (PV+, SOM+, CR+, and CCK+) in the cerebral cortex and high-expression (NPY+, nNOS+, and CCK+) and low-expression groups (PV+, SOM+, and CR+) in the hippocampus. Moreover, these expression patterns revealed a distinct laminar distribution in the cerebral cortex and hippocampus. To investigate the extent of GAD65 transport from the soma to synaptic terminals, we examined GAD65 expression in colchicine-treated rats in which GAD65 was synthesized in the soma but not transported to terminals. We found a significant positive correlation in GAD65 expression across subtypes between colchicine-treated and control rats. In summary, each GABAergic subtype exhibits a distinct GAD65 expression pattern across layers of the cerebral cortex and hippocampus. In addition, the level of GAD65 expression in the soma can be used as a proxy for the amount of GAD65 in the cytoplasm. These findings suggest that exploration of the distinct profiles of GAD65 expression among GABAergic subtypes could clarify the roles that GABAergic subtypes play in maintaining the excitatory-inhibitory balance.
Collapse
Affiliation(s)
- Yuki Kajita
- Department of Physiology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Hajime Mushiake
- Department of Physiology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
4
|
Nakajima C, Sawada M, Sawamoto K. Postnatal neuronal migration in health and disease. Curr Opin Neurobiol 2020; 66:1-9. [PMID: 32717548 DOI: 10.1016/j.conb.2020.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/02/2020] [Indexed: 10/23/2022]
Abstract
Postnatal neuronal migration modulates neuronal circuit formation and function throughout life and is conserved among species. Pathological conditions activate the generation of neuroblasts in the ventricular-subventricular zone (V-SVZ) and promote their migration towards a lesion. However, the neuroblasts generally terminate their migration before reaching the lesion site unless their intrinsic capacity is modified or the environment is improved. It is important to understand which factors impede neuronal migration for functional recovery of the brain. We highlight similarities and differences in the mechanisms of neuroblast migration under physiological and pathological conditions to provide novel insights into endogenous neuronal regeneration.
Collapse
Affiliation(s)
- Chikako Nakajima
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masato Sawada
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; Division of Neural Development and Regeneration, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; Division of Neural Development and Regeneration, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.
| |
Collapse
|
5
|
Gan YJ, Fang AW, Liu C, Liu BJ, Yang FM, Guan JT, Lan CL, Dai XD, Li T, Cao Y, Ran Y, Gong XH, Jin ZB, Cui RZ, Iwata T, Qu J, Lu F, Chi ZL. Elevated Plasma Levels of Drebrin in Glaucoma Patients With Neurodegeneration. Front Neurosci 2019; 13:326. [PMID: 31001081 PMCID: PMC6456690 DOI: 10.3389/fnins.2019.00326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/21/2019] [Indexed: 11/21/2022] Open
Abstract
Glaucoma is an optic neuropathy characterized by progressive degeneration of retinal ganglion cells (RGCs). Aberrations in several cytoskeletal proteins, such as tau have been implicated in the pathogenesis of neurodegenerative diseases, could be initiating factors in glaucoma progression and occurring prior to axon degeneration. Developmentally regulated brain protein (Drebrin or DBN1) is an evolutionarily conserved actin-binding protein playing a prominent role in neurons and is implicated in neurodegenerative diseases. However, the relationship between circulating DBN1 levels and RGC degeneration in glaucoma patients remains unclear. In our preliminary study, we detected drebrin protein in the plasma of glaucoma patients using proteomic analysis. Subsequently, we recruited a total of 232 patients including primary angle-closure glaucoma (PACG), primary open-angle glaucoma (POAG) and Posner-Schlossman syndrome (PS) and measured its DBN1 plasma levels. We observed elevated DBN1 plasma levels in patients with primary glaucoma but not in patients with PS compared to nonaxonopathic controls. Interestingly, in contrast to tau plasma levels increased in all groups of patients, elevated drebrin plasma levels correlated with retinal nerve fiber layer defect (RNFLD) in glaucoma patients. To further explore the expression of DBN1 in neurodegeneration, we conducted experiment of optic nerve crush (ONC) models, and observed increased expression of DBN1 in the serum as well as in the retina and then decreased after ONC. This result reinforces the potentiality of circulating DBN1 levels are increased in glaucoma patients with neurodegeneration. Taken together, our findings suggest that circulating DBN1 levels correlated with RNFLD and may reflect the severity of RGCs injury in glaucoma patients. Combining measurement of circulating drebrin and tau levels may be a useful indicator for monitoring progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yi-Jing Gan
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, The Eye Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ai-Wu Fang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, The Eye Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chang Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, The Eye Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bai-Jing Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, The Eye Hospital of Wenzhou Medical University, Wenzhou, China
| | - Feng-Mei Yang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, The Eye Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ji-Tian Guan
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, The Eye Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chun-Lin Lan
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, The Eye Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Dan Dai
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, The Eye Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tong Li
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, The Eye Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ying Cao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, The Eye Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yun Ran
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, The Eye Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xian-Hui Gong
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, The Eye Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zi-Bing Jin
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, The Eye Hospital of Wenzhou Medical University, Wenzhou, China.,International Joint Research Center for Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China
| | - Ren-Zhe Cui
- Department of Ophthalmology, Affiliated Hospital of Yanbian University, Yanji, China
| | - Takeshi Iwata
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Jia Qu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, The Eye Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fan Lu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, The Eye Hospital of Wenzhou Medical University, Wenzhou, China.,International Joint Research Center for Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China
| | - Zai-Long Chi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, The Eye Hospital of Wenzhou Medical University, Wenzhou, China.,International Joint Research Center for Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
Yasuda H, Kojima N, Hanamura K, Yamazaki H, Sakimura K, Shirao T. Drebrin Isoforms Critically Regulate NMDAR- and mGluR-Dependent LTD Induction. Front Cell Neurosci 2018; 12:330. [PMID: 30349460 PMCID: PMC6186840 DOI: 10.3389/fncel.2018.00330] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 09/10/2018] [Indexed: 02/01/2023] Open
Abstract
Drebrin is an actin-binding protein that is preferentially expressed in the brain. It is highly localized in dendritic spines and regulates spine shapes. The embryonic-type (drebrin E) is expressed in the embryonic and early postnatal brain and is replaced by the adult-type (drebrin A) during development. In parallel, NMDA receptor (NMDAR)-dependent long-term depression (LTD) of synaptic transmission, induced by low-frequency stimulation (LFS), is dominant in the immature brain and decreases during development. Here, we report that drebrin regulates NMDAR-dependent and group 1 metabotropic glutamate receptor (mGluR)-dependent LTD induction in the hippocampus. While LFS induced NMDAR-dependent LTD in the developing hippocampus in wild-type (WT) mice, it did not induce LTD in developing drebrin E and A double knockout (DXKO) mice, indicating that drebrin is required for NMDAR-dependent LTD. On the other hand, LFS induced robust LTD dependent on mGluR5, one of group 1 mGluRs, in both developing and adult brains of drebrin A knockout (DAKO) mice, in which drebrin E is expressed throughout development and adulthood. Agonist-induced mGluR-dependent LTD was normal in WT and DXKO mice; however, it was enhanced in DAKO mice. Also, mGluR1, another group 1 mGluR, was involved in agonist-induced mGluR-dependent LTD in DAKO mice. These data suggest that abnormal drebrin E expression in adults promotes group 1 mGluR-dependent LTD induction. Therefore, while drebrin expression is critical for NMDAR-dependent LTD induction, developmental conversion from drebrin E to drebrin A prevents robust group 1 mGluR-dependent LTD.
Collapse
Affiliation(s)
- Hiroki Yasuda
- Department of Neurobiology and Behavior, Graduate School of Medicine, Gunma University, Maebashi, Japan.,Education and Research Support Center, Graduate School of Medicine, Gunma University, Maebashi, Japan.,Division of Physiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Nobuhiko Kojima
- Department of Neurobiology and Behavior, Graduate School of Medicine, Gunma University, Maebashi, Japan.,Faculty of Life Sciences, Toyo University, Itakura, Japan
| | - Kenji Hanamura
- Department of Neurobiology and Behavior, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Hiroyuki Yamazaki
- Department of Neurobiology and Behavior, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Tomoaki Shirao
- Department of Neurobiology and Behavior, Graduate School of Medicine, Gunma University, Maebashi, Japan.,Education and Research Support Center, Graduate School of Medicine, Gunma University, Maebashi, Japan
| |
Collapse
|