1
|
Stefani A, Antelmi E, Arnaldi D, Arnulf I, During E, Högl B, Hu MMT, Iranzo A, Luke R, Peever J, Postuma RB, Videnovic A, Gan-Or Z. From mechanisms to future therapy: a synopsis of isolated REM sleep behavior disorder as early synuclein-related disease. Mol Neurodegener 2025; 20:19. [PMID: 39934903 PMCID: PMC11817540 DOI: 10.1186/s13024-025-00809-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/05/2025] [Indexed: 02/13/2025] Open
Abstract
Parkinson disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy are synucleinopathies, characterized by neuronal loss, gliosis and the abnormal deposition of α-synuclein in vulnerable areas of the nervous system. Neurodegeneration begins however several years before clinical onset of motor, cognitive or autonomic symptoms. The isolated form of REM sleep behavior disorder (RBD), a parasomnia with dream enactment behaviors and excessive muscle activity during REM sleep, is an early stage synucleinopathy. The neurophysiological hallmark of RBD is REM sleep without atonia (RWSA), i.e. the loss of physiological muscle atonia during REM sleep. RBD pathophysiology is not fully clarified yet, but clinical and basic science suggest that ɑ-syn pathology begins in the lower brainstem where REM atonia circuits are located, including the sublaterodorsal tegmental/subcoeruleus nucleus and the ventral medulla, then propagates rostrally to brain regions such as the substantia nigra, limbic system, cortex. Genetically, there is only a partial overlap between RBD, PD and DLB, and individuals with iRBD may represent a specific subpopulation. A genome-wide association study identified five loci, which all seem to revolve around the GBA1 pathway. iRBD patients often show subtle motor, cognitive, autonomic and/or sensory signs, neuroimaging alterations as well as biofluid and tissue markers of neurodegeneration (in particular pathologic α-synuclein aggregates), which can be useful for risk stratification. Patients with iRBD represent thus the ideal population for neuroprotective/neuromodulating trials. This review provides insights into these aspects, highlighting and substantiating the central role of iRBD in treatment development strategies for synucleinopathies.
Collapse
Affiliation(s)
| | - Elena Antelmi
- DIMI Department of Engineering and Medicine of Innovation, University of Verona, Verona, Italy
| | - Dario Arnaldi
- Clinical Neurophysiology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- DINOGMI, University of Genoa, Genoa, Italy
| | - Isabelle Arnulf
- Sleep Clinic, Pitié-Salpêtrière Hospital, APHP - Sorbonne University, Paris, France
- Paris Brain Institute, Paris, France
| | - Emmanuel During
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Birgit Högl
- Medical University Innsbruck, Innsbruck, Austria
| | - Michele M T Hu
- Division of Neurology, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Alex Iranzo
- Sleep Unit, Neurology Service, Hospital Clínic de Barcelona, IDIBAPS, CIBERNED: CB06/05/0018-ISCIII, Universitat de Barcelona,, Barcelona, Spain
| | - Russell Luke
- Department of Cell and System Biology, University of Toronto, Toronto, ON, Canada
| | - John Peever
- Department of Cell and System Biology, University of Toronto, Toronto, ON, Canada
| | - Ronald B Postuma
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- The Neuro (Montreal Neurological Institute-Hospital), Montreal, QC, Canada
| | - Aleksandar Videnovic
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Ziv Gan-Or
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- The Neuro (Montreal Neurological Institute-Hospital), Montreal, QC, Canada.
- Department of Human Genetics, McGill University, Montreal, QC, Canada.
| |
Collapse
|
2
|
Kashiwagi M, Beck G, Kanuka M, Arai Y, Tanaka K, Tatsuzawa C, Koga Y, Saito YC, Takagi M, Oishi Y, Sakaguchi M, Baba K, Ikuno M, Yamakado H, Takahashi R, Yanagisawa M, Murayama S, Sakurai T, Sakai K, Nakagawa Y, Watanabe M, Mochizuki H, Hayashi Y. A pontine-medullary loop crucial for REM sleep and its deficit in Parkinson's disease. Cell 2024; 187:6272-6289.e21. [PMID: 39303715 DOI: 10.1016/j.cell.2024.08.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/22/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024]
Abstract
Identifying the properties of the rapid eye movement (REM) sleep circuitry and its relation to diseases has been challenging due to the neuronal heterogeneity of the brainstem. Here, we show in mice that neurons in the pontine sublaterodorsal tegmentum (SubLDT) that express corticotropin-releasing hormone-binding protein (Crhbp+ neurons) and project to the medulla promote REM sleep. Within the medullary area receiving projections from Crhbp+ neurons, neurons expressing nitric oxide synthase 1 (Nos1+ neurons) project to the SubLDT and promote REM sleep, suggesting a positively interacting loop between the pons and the medulla operating as a core REM sleep circuit. Nos1+ neurons also project to areas that control wide forebrain activity. Ablating Crhbp+ neurons reduces sleep and impairs REM sleep atonia. In Parkinson's disease patients with REM sleep behavior disorders, CRHBP-immunoreactive neurons are largely reduced and contain pathologic α-synuclein, providing insight into the mechanisms underlying the sleep deficits characterizing this disease.
Collapse
Affiliation(s)
- Mitsuaki Kashiwagi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Goichi Beck
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mika Kanuka
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoshifumi Arai
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kaeko Tanaka
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Chika Tatsuzawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yumiko Koga
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuki C Saito
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Marina Takagi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yo Oishi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Masanori Sakaguchi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Kousuke Baba
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masashi Ikuno
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto 605-8507, Japan
| | - Hodaka Yamakado
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto 605-8507, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto 605-8507, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Japan Life Science Center for Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shigeo Murayama
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Suita, Osaka 565-0871, Japan; Department of Neurology and Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-Ku, Tokyo 173-0015, Japan
| | - Takeshi Sakurai
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Kazuya Sakai
- Integrative Physiology of the Brain Arousal System, Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR5292, School of Medicine, Claude Bernard University Lyon 1, 69373 Lyon, France
| | - Yoshimi Nakagawa
- Division of Complex Biosystem Research Institute of Natural Medicine, University of Toyama, Toyama, Toyama 930-0194, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yu Hayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
3
|
Koyama Y. The role of orexinergic system in the regulation of cataplexy. Peptides 2023; 169:171080. [PMID: 37598758 DOI: 10.1016/j.peptides.2023.171080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/06/2023] [Accepted: 08/18/2023] [Indexed: 08/22/2023]
Abstract
Loss of orexin/hypocretin causes serious sleep disorder; narcolepsy. Cataplexy is the most striking symptom of narcolepsy, characterized by abrupt muscle paralysis induced by emotional stimuli, and has been considered pathological activation of REM sleep atonia system. Clinical treatments for cataplexy/narcolepsy and early pharmacological studies in narcoleptic dogs tell us about the involvement of monoaminergic and cholinergic systems in the control of cataplexy/narcolepsy. Muscle atonia may be induced by activation of REM sleep-atonia generating system in the brainstem. Emotional stimuli may be processed in the limbic systems including the amygdala, nucleus accumbens, and medial prefrontal cortex. It is now considered that orexin/hypocretin prevents cataplexy by modulating the activity of different points of cataplexy-inducing circuit, including monoaminergic/cholinergic systems, muscle atonia-generating systems, and emotion-related systems. This review will describe the recent advances in understanding the neural mechanisms controlling cataplexy, with a focus on the involvement of orexin/hypocretin system, and will discuss future experimental strategies that will lead to further understanding and treatment of this disease.
Collapse
Affiliation(s)
- Yoshimasa Koyama
- Faculty of Symbiotic Systems Science, Fukushima University, 1 Kanaya-gawa, Fukushima 960-1296, Japan..
| |
Collapse
|
4
|
Schott AL, Baik J, Chung S, Weber F. A medullary hub for controlling REM sleep and pontine waves. Nat Commun 2023; 14:3922. [PMID: 37400467 DOI: 10.1038/s41467-023-39496-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/07/2023] [Indexed: 07/05/2023] Open
Abstract
Rapid-eye-movement (REM) sleep is a distinct behavioral state associated with vivid dreaming and memory processing. Phasic bursts of electrical activity, measurable as spike-like pontine (P)-waves, are a hallmark of REM sleep implicated in memory consolidation. However, the brainstem circuits regulating P-waves, and their interactions with circuits generating REM sleep, remain largely unknown. Here, we show that an excitatory population of dorsomedial medulla (dmM) neurons expressing corticotropin-releasing-hormone (CRH) regulates both REM sleep and P-waves in mice. Calcium imaging showed that dmM CRH neurons are selectively activated during REM sleep and recruited during P-waves, and opto- and chemogenetic experiments revealed that this population promotes REM sleep. Chemogenetic manipulation also induced prolonged changes in P-wave frequency, while brief optogenetic activation reliably triggered P-waves along with transiently accelerated theta oscillations in the electroencephalogram (EEG). Together, these findings anatomically and functionally delineate a common medullary hub for the regulation of both REM sleep and P-waves.
Collapse
Affiliation(s)
- Amanda L Schott
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Justin Baik
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shinjae Chung
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Franz Weber
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
5
|
Stucynski JA, Schott AL, Baik J, Chung S, Weber F. Regulation of REM sleep by inhibitory neurons in the dorsomedial medulla. Curr Biol 2022; 32:37-50.e6. [PMID: 34735794 PMCID: PMC8752505 DOI: 10.1016/j.cub.2021.10.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/20/2021] [Accepted: 10/12/2021] [Indexed: 01/12/2023]
Abstract
The two major stages of mammalian sleep-rapid eye movement sleep (REMs) and non-REM sleep (NREMs)-are characterized by distinct brain rhythms ranging from millisecond to minute-long (infraslow) oscillations. The mechanisms controlling transitions between sleep stages and how they are synchronized with infraslow rhythms remain poorly understood. Using opto- and chemogenetic manipulation in mice, we show that GABAergic neurons in the dorsomedial medulla (dmM) promote the initiation and maintenance of REMs, in part through their projections to the dorsal and median raphe nuclei. Fiber photometry revealed that their activity is strongly increased during REMs and fluctuates during NREMs in close synchrony with infraslow oscillations in the sleep spindle band of the electroencephalogram. The phase of this rhythm influenced the latency and probability with which dmM activation induced REMs. Thus, dmM inhibitory neurons strongly promote REMs, and their slow activity fluctuations may coordinate the timing of REMs episodes with infraslow brain rhythms.
Collapse
Affiliation(s)
- Joseph A Stucynski
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Amanda L Schott
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Justin Baik
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Shinjae Chung
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Franz Weber
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Distinct Fastigial Output Channels and Their Impact on Temporal Lobe Seizures. J Neurosci 2021; 41:10091-10107. [PMID: 34716233 DOI: 10.1523/jneurosci.0683-21.2021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/07/2021] [Accepted: 10/22/2021] [Indexed: 01/07/2023] Open
Abstract
Despite being canonically considered a motor control structure, the cerebellum is increasingly recognized for important roles in processes beyond this traditional framework, including seizure suppression. Excitatory fastigial neurons project to a large number of downstream targets, and it is unclear whether this broad targeting underlies seizure suppression, or whether a specific output may be sufficient. To address this question, we used the intrahippocampal kainic acid mouse model of temporal lobe epilepsy, male and female animals, and a dual-virus approach to selectively label and manipulate fastigial outputs. We examined fastigial neurons projecting to the superior colliculus, medullary reticular formation, and central lateral nucleus of the thalamus, and found that these comprise largely nonoverlapping populations of neurons that send collaterals to unique sets of additional, somewhat overlapping, thalamic and brainstem regions. We found that neither optogenetic stimulation of superior colliculus nor reticular formation output channels attenuated hippocampal seizures. In contrast, on-demand stimulation of fastigial neurons targeting the central lateral nucleus robustly inhibited seizures. Our results indicate that fastigial control of hippocampal seizures does not require simultaneous modulation of many fastigial output channels. Rather, selective modulation of the fastigial output channel to the central lateral thalamus, specifically, is sufficient for seizure control. More broadly, our data highlight the concept of specific cerebellar output channels, whereby discrete cerebellar nucleus neurons project to specific aggregates of downstream targets, with important consequences for therapeutic interventions.SIGNIFICANCE STATEMENT The cerebellum has an emerging relationship with nonmotor systems and may represent a powerful target for therapeutic intervention in temporal lobe epilepsy. We find, as previously reported, that fastigial neurons project to numerous brain regions via largely segregated output channels, and that projection targets cannot be predicted simply by somatic locations within the nucleus. We further find that on-demand optogenetic excitation of fastigial neurons projecting to the central lateral nucleus of the thalamus-but not fastigial neurons projecting to the reticular formation, superior colliculus, or ventral lateral thalamus-is sufficient to attenuate hippocampal seizures.
Collapse
|
7
|
Park SH, Weber F. Neural and Homeostatic Regulation of REM Sleep. Front Psychol 2020; 11:1662. [PMID: 32793050 PMCID: PMC7385183 DOI: 10.3389/fpsyg.2020.01662] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022] Open
Abstract
Rapid eye movement (REM) sleep is a distinct, homeostatically controlled brain state characterized by an activated electroencephalogram (EEG) in combination with paralysis of skeletal muscles and is associated with vivid dreaming. Understanding how REM sleep is controlled requires identification of the neural circuits underlying its initiation and maintenance, and delineation of the homeostatic processes regulating its expression on multiple timescales. Soon after its discovery in humans in 1953, the pons was demonstrated to be necessary and sufficient for the generation of REM sleep. But, especially within the last decade, researchers have identified further neural populations in the hypothalamus, midbrain, and medulla that regulate REM sleep by either promoting or suppressing this brain state. The discovery of these populations was greatly facilitated by the availability of novel technologies for the dissection of neural circuits. Recent quantitative models integrate findings about the activity and connectivity of key neurons and knowledge about homeostatic mechanisms to explain the dynamics underlying the recurrence of REM sleep. For the future, combining quantitative with experimental approaches to directly test model predictions and to refine existing models will greatly advance our understanding of the neural and homeostatic processes governing the regulation of REM sleep.
Collapse
Affiliation(s)
| | - Franz Weber
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
8
|
Jones BE. Arousal and sleep circuits. Neuropsychopharmacology 2020; 45:6-20. [PMID: 31216564 PMCID: PMC6879642 DOI: 10.1038/s41386-019-0444-2] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/16/2019] [Accepted: 06/11/2019] [Indexed: 12/20/2022]
Abstract
The principal neurons of the arousal and sleep circuits are comprised by glutamate and GABA neurons, which are distributed within the reticular core of the brain and, through local and distant projections and interactions, regulate cortical activity and behavior across wake-sleep states. These are in turn modulated by the neuromodulatory systems that are comprised by acetylcholine, noradrenaline, dopamine, serotonin, histamine, orexin (hypocretin), and melanin-concentrating hormone (MCH) neurons. Glutamate and GABA neurons are heterogeneous in their profiles of discharge, forming distinct functional cell types by selective or maximal discharge during (1) waking and paradoxical (REM) sleep, (2) during slow wave sleep, (3) during waking, or (4) during paradoxical (REM) sleep. The neuromodulatory systems are each homogeneous in their profile of discharge, the majority discharging maximally during waking and paradoxical sleep or during waking. Only MCH neurons discharge maximally during sleep. They each exert their modulatory influence upon other neurons through excitatory and inhibitory receptors thus effecting a concerted differential change in the functionally different cell groups. Both arousal and sleep circuit neurons are homeostatically regulated as a function of their activity in part through changes in receptors. The major pharmacological agents used for the treatment of wake and sleep disorders act upon GABA and neuromodulatory transmission.
Collapse
Affiliation(s)
- Barbara E. Jones
- 0000 0004 1936 8649grid.14709.3bDepartment of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4 Canada
| |
Collapse
|
9
|
Gompf HS, Anaclet C. The neuroanatomy and neurochemistry of sleep-wake control. CURRENT OPINION IN PHYSIOLOGY 2019; 15:143-151. [PMID: 32647777 DOI: 10.1016/j.cophys.2019.12.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Sleep-wake control is dependent upon multiple brain areas widely distributed throughout the neural axis. Historically, the monoaminergic and cholinergic neurons of the ascending arousal system were the first to be discovered, and it was only relatively recently that GABAergic and glutamatergic wake- and sleep-promoting populations have been identified. Contemporary advances in molecular-genetic tools have revealed both the complexity and heterogeneity of GABAergic NREM sleep-promoting neurons as well as REM sleep-regulating populations in the brainstem such as glutamatergic neurons in the sublaterodorsal nucleus. The sleep-wake cycle progresses from periods of wakefulness to non-rapid eye movement (NREM) sleep and subsequently rapid eye movement (REM) sleep. Each vigilance stage is controlled by multiple neuronal populations, via a complex regulation that is still incompletely understood. In recent years the field has seen a proliferation in the identification and characterization of new neuronal populations involved in sleep-wake control thanks to newer, more powerful molecular genetic tools that are able to reveal neurophysiological functions via selective activation, inhibition and lesion of neuroanatomically defined sub-types of neurons that are widespread in the brain, such as GABAergic and glutamatergic neurons.1,2.
Collapse
Affiliation(s)
- Heinrich S Gompf
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Christelle Anaclet
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
10
|
Sakai K. What single‐unit recording studies tell us about the basic mechanisms of sleep and wakefulness. Eur J Neurosci 2019; 52:3507-3530. [DOI: 10.1111/ejn.14485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/27/2019] [Accepted: 06/04/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Kazuya Sakai
- Integrative Physiology of the Brain Arousal System Lyon Neuroscience Research Center INSERM U1028 University Lyon 1 Lyon France
| |
Collapse
|
11
|
Gao S, Proekt A, Renier N, Calderon DP, Pfaff DW. Activating an anterior nucleus gigantocellularis subpopulation triggers emergence from pharmacologically-induced coma in rodents. Nat Commun 2019; 10:2897. [PMID: 31263107 PMCID: PMC6603023 DOI: 10.1038/s41467-019-10797-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/01/2019] [Indexed: 02/08/2023] Open
Abstract
Multiple areas within the reticular activating system (RAS) can hasten awakening from sleep or light planes of anesthesia. However, stimulation in individual sites has shown limited recovery from deep global suppression of brain activity, such as coma. Here we identify a subset of RAS neurons within the anterior portion of nucleus gigantocellularis (aNGC) capable of producing a high degree of awakening represented by a broad high frequency cortical reactivation associated with organized movements and behavioral reactivity to the environment from two different models of deep pharmacologically-induced coma (PIC): isoflurane (1.25%-1.5%) and induced hypoglycemic coma. Activating aNGC neurons triggered awakening by recruiting cholinergic, noradrenergic, and glutamatergic arousal pathways. In summary, we identify an evolutionarily conserved population of RAS neurons, which broadly restore cerebral cortical activation and motor behavior in rodents through the coordinated activation of multiple arousal-promoting circuits.
Collapse
Affiliation(s)
- S Gao
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - A Proekt
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, 10065, USA
- Laboratory of Neurobiology and Behavior, the Rockefeller University, New York, NY, 10065, USA
| | - N Renier
- ICM, Brain and Spine Institute, Hopital de la Pitie-Salpetriere, Sorbonne Universite, Inserm, CNRS, Paris, 75013, France
| | - D P Calderon
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, 10065, USA.
- Laboratory of Neurobiology and Behavior, the Rockefeller University, New York, NY, 10065, USA.
| | - D W Pfaff
- Laboratory of Neurobiology and Behavior, the Rockefeller University, New York, NY, 10065, USA
| |
Collapse
|